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2D Turbulence in Fourier Space

•Navier–Stokes equation for vorticity ω
.
= ẑ·∇×u:

∂ω

∂t
+ u·∇ω = ν∇2ω + f.
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2D Turbulence in Fourier Space

•Navier–Stokes equation for vorticity ω
.
= ẑ·∇×u:

∂ω

∂t
+ u·∇ω = ν∇2ω + f.

• In Fourier space:

∂ωk
∂t

+ νkωk =

∫
dp

∫
dq

εkpq
q2

ω∗pω
∗
q + fk,

where νk
.
= νk2 and εkpq

.
= (ẑ·p×q) δ(k + p + q) is

antisymmetric under permutation of any two indices.
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•When ν = fk = 0,

enstrophy Z = 1
2

∑
k

|ωk|2 and energy E = 1
2

∑
k

|ωk|2
k2

are

conserved:

εkpq
q2

antisymmetric in k↔ p,

1

k2

εkpq
q2

antisymmetric in k↔ q.
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Spectral Reduction

• Introduce a coarse-grained grid indexed by K:

K

P

Q

Wavenumber Bin Geometry (8× 3 bins)
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•Define new variables

ΩK = 〈ωk〉K
.
=

1

∆K

∫
∆K

ωk dk,

where ∆K is the area of bin K.
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•Define new variables

ΩK = 〈ωk〉K
.
=

1

∆K

∫
∆K

ωk dk,

where ∆K is the area of bin K.

•Evolution of ΩK:

∂ΩK
∂t

+ 〈νkωk〉K =
∑
P ,Q

∆P∆Q

〈
εkpq
q2

ω∗pω
∗
q

〉
KPQ

,

where 〈f〉KPQ =
1

∆K∆P∆Q

∫
∆K

dk

∫
∆P

dp

∫
∆Q

dq f.
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•Define new variables

ΩK = 〈ωk〉K
.
=

1

∆K

∫
∆K

ωk dk,

where ∆K is the area of bin K.where ∆K is the area of bin K.

•Evolution of ΩK:

∂ΩK
∂t

+ 〈νkωk〉K =
∑
P ,Q

∆P∆Q

〈
εkpq
q2

ω∗pω
∗
q

〉
KPQ

,

where 〈f〉KPQ =
1

∆K∆P∆Q

∫
∆K

dk

∫
∆P

dp

∫
∆Q

dq f.

•Approximate ωp and ωq by bin-averaged values ΩP and ΩQ:

∂ΩK
∂t

+ 〈νk〉K ΩK =
∑
P ,Q

∆P∆Q

〈
εkpq
q2

〉
KPQ

Ω∗PΩ∗Q.
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•Define the coarse-grained enstrophy Z and energy E:

Z
.
=

1

2

∑
K

|ΩK|2 ∆K, E
.
=

1

2

∑
K

|ΩK|2
K2

∆K.
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•Define the coarse-grained enstrophy Z and energy E:

Z
.
=

1

2

∑
K

|ΩK|2 ∆K, E
.
=

1

2

∑
K

|ΩK|2
K2

∆K.

•Enstrophy is still conserved by the nonlinearity since〈
εkpq
q2

〉
KPQ

antisymmetric in K ↔ P .
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•Define the coarse-grained enstrophy Z and energy E:

Z
.
=

1

2

∑
K

|ΩK|2 ∆K, E
.
=

1

2

∑
K

|ΩK|2
K2

∆K.Z
.
=

1

2

∑
K

|ΩK|2 ∆K, E
.
=

1

2

∑
K

|ΩK|2
K2

∆K.

•Enstrophy is still conserved by the nonlinearity since〈
εkpq
q2

〉
KPQ

antisymmetric in K ↔ P .

•But energy conservation has been lost!

1

K2

〈
εkpq
q2

〉
KPQ

NOT antisymmetric in K ↔ Q.
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•Define the coarse-grained enstrophy Z and energy E:

Z
.
=

1

2

∑
K

|ΩK|2 ∆K, E
.
=

1

2

∑
K

|ΩK|2
K2

∆K.Z
.
=

1

2

∑
K

|ΩK|2 ∆K, E
.
=

1

2

∑
K

|ΩK|2
K2

∆K.

•Enstrophy is still conserved by the nonlinearity since〈
εkpq
q2

〉
KPQ

antisymmetric in K ↔ P .

〈
εkpq
q2

〉
KPQ

antisymmetric in K ↔ P .

•But energy conservation has been lost!

1

K2

〈
εkpq
q2

〉
KPQ

NOT antisymmetric in K ↔ Q.

•Reinstate both desired symmetries with the modified coefficient

〈εkpq〉KPQ
Q2

.
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Properties

•We call the forced-dissipative version of this approximation
spectral reduction (SR):

∂ΩK
∂t

+ 〈νk〉K ΩK =
∑
P ,Q

∆P∆Q

〈εkpq〉KPQ
Q2

Ω∗PΩ∗Q.
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Properties

•We call the forced-dissipative version of this approximation
spectral reduction (SR):

∂ΩK
∂t

+ 〈νk〉K ΩK =
∑
P ,Q

∆P∆Q

〈εkpq〉KPQ
Q2

Ω∗PΩ∗Q.

• SR conserves both energy and enstrophy and reduces to the
exact dynamics in the limit of small bin size.
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Properties

•We call the forced-dissipative version of this approximation
spectral reduction (SR):

∂ΩK
∂t

+ 〈νk〉K ΩK =
∑
P ,Q

∆P∆Q

〈εkpq〉KPQ
Q2

Ω∗PΩ∗Q.
∂ΩK
∂t

+ 〈νk〉K ΩK =
∑
P ,Q

∆P∆Q

〈εkpq〉KPQ
Q2

Ω∗PΩ∗Q.

• SR conserves both energy and enstrophy and reduces to the
exact dynamics in the limit of small bin size.

• It has the same general structure and symmetries as the original
equation and in this sense may be considered a renormalization.
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spectral reduction (SR):

∂ΩK
∂t
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∑
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〈εkpq〉KPQ
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exact dynamics in the limit of small bin size.
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equation and in this sense may be considered a renormalization.

• SR obeys a Liouville Theorem; in the inviscid limit, it yields
statistical-mechanical (equipartition) solutions.
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Properties

•We call the forced-dissipative version of this approximation
spectral reduction (SR):

∂ΩK
∂t

+ 〈νk〉K ΩK =
∑
P ,Q

∆P∆Q

〈εkpq〉KPQ
Q2

Ω∗PΩ∗Q.
∂ΩK
∂t

+ 〈νk〉K ΩK =
∑
P ,Q

∆P∆Q

〈εkpq〉KPQ
Q2

Ω∗PΩ∗Q.

• SR conserves both energy and enstrophy and reduces to the
exact dynamics in the limit of small bin size.
• SR conserves both energy and enstrophy and reduces to the

exact dynamics in the limit of small bin size.

• It has the same general structure and symmetries as the original
equation and in this sense may be considered a renormalization.
• It has the same general structure and symmetries as the original

equation and in this sense may be considered a renormalization.

• SR obeys a Liouville Theorem; in the inviscid limit, it yields
statistical-mechanical (equipartition) solutions.

•However: since the δk+p+q,0 factor in the nonlinear coefficient
εkpq has been smoothed over, spectral reduction is no longer a
convolution: pseudospectral collocation does not apply. 7



Moments

•Q. How accurate is spectral reduction?
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inaccurate.

8



Moments

•Q. How accurate is spectral reduction?•Q. How accurate is spectral reduction?

•A. For large bins, the instantaneous dynamics of SR is
inaccurate.

•However: the equations for the time-averaged (or ensemble-
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of the exact bin-averaged statistics.
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Moments

•Q. How accurate is spectral reduction?•Q. How accurate is spectral reduction?

•A. For large bins, the instantaneous dynamics of SR is
inaccurate.
•A. For large bins, the instantaneous dynamics of SR is

inaccurate.

•However: the equations for the time-averaged (or ensemble-
averaged) moments predicted by SR closely approximate those
of the exact bin-averaged statistics.

•E.g., time average the exact bin-averaged enstrophy equation:

∂

∂t

〈
|ωk|2

〉
K

+ 2 Re
〈
νk|ωk|2

〉
K

= 2 Re
∑
P ,Q

∆P∆Q

〈
εkpq
q2

ω∗kω
∗
pω
∗
q

〉
KPQ

,

where the bar means time average and 〈·〉K means bin average.
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Moments

•Q. How accurate is spectral reduction?•Q. How accurate is spectral reduction?

•A. For large bins, the instantaneous dynamics of SR is
inaccurate.
•A. For large bins, the instantaneous dynamics of SR is

inaccurate.

•However: the equations for the time-averaged (or ensemble-
averaged) moments predicted by SR closely approximate those
of the exact bin-averaged statistics.

•However: the equations for the time-averaged (or ensemble-
averaged) moments predicted by SR closely approximate those
of the exact bin-averaged statistics.

•E.g., time average the exact bin-averaged enstrophy equation:

∂

∂t

〈
|ωk|2

〉
K

+ 2 Re
〈
νk|ωk|2

〉
K

= 2 Re
∑
P ,Q

∆P∆Q

〈
εkpq
q2

ω∗kω
∗
pω
∗
q

〉
KPQ

,

where the bar means time average and 〈·〉K means bin average.

•Time-averaged quantities such as |ωk|2 and ω∗kω
∗
pω
∗
q are

generally smooth functions of k, p, q on the four-dimensional
surface defined by the triad condition k + p + q = 0. 8



•Mean Value Theorem for integrals: for some ξ ∈K.

|ΩK|2 = |ωξ|2 ≈ |ωk|2 ∀k ∈K.
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•Mean Value Theorem for integrals: for some ξ ∈K.

|ΩK|2 = |ωξ|2 ≈ |ωk|2 ∀k ∈K.

•To good accuracy these statistical moments may therefore be
evaluated at the characteristic wavenumbers K, P , Q:

∂

∂t
|ΩK|2 + 2 Re 〈νk〉K |ΩK|2 = 2 Re

∑
P ,Q

∆P∆Q

〈
εkpq
q2

〉
KPQ

Ω∗KΩ∗PΩ∗Q.

9



•Mean Value Theorem for integrals: for some ξ ∈K.

|ΩK|2 = |ωξ|2 ≈ |ωk|2 ∀k ∈K.|ΩK|2 = |ωξ|2 ≈ |ωk|2 ∀k ∈K.

•To good accuracy these statistical moments may therefore be
evaluated at the characteristic wavenumbers K, P , Q:

∂

∂t
|ΩK|2 + 2 Re 〈νk〉K |ΩK|2 = 2 Re

∑
P ,Q

∆P∆Q

〈
εkpq
q2

〉
KPQ

Ω∗KΩ∗PΩ∗Q.

•To the extent that the wavenumber magnitude q varies slowly
over a bin:

∂

∂t
|ΩK|2 + 2 Re 〈νk〉K |ΩK|2 = 2 Re

∑
P ,Q

∆P∆Q

〈εkpq〉KPQ
Q2

Ω∗KΩ∗PΩ∗Q.
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•Mean Value Theorem for integrals: for some ξ ∈K.

|ΩK|2 = |ωξ|2 ≈ |ωk|2 ∀k ∈K.|ΩK|2 = |ωξ|2 ≈ |ωk|2 ∀k ∈K.

•To good accuracy these statistical moments may therefore be
evaluated at the characteristic wavenumbers K, P , Q:

∂

∂t
|ΩK|2 + 2 Re 〈νk〉K |ΩK|2 = 2 Re

∑
P ,Q

∆P∆Q

〈
εkpq
q2

〉
KPQ

Ω∗KΩ∗PΩ∗Q.
∂

∂t
|ΩK|2 + 2 Re 〈νk〉K |ΩK|2 = 2 Re

∑
P ,Q

∆P∆Q

〈
εkpq
q2

〉
KPQ

Ω∗KΩ∗PΩ∗Q.

•To the extent that the wavenumber magnitude q varies slowly
over a bin:

∂

∂t
|ΩK|2 + 2 Re 〈νk〉K |ΩK|2 = 2 Re

∑
P ,Q

∆P∆Q

〈εkpq〉KPQ
Q2

Ω∗KΩ∗PΩ∗Q.

•But this is precisely the time-average of the SR equation!
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Noncanonical Hamiltonian Formulation

•Underlying noncanonical Hamiltonian formulation for inviscid
2D vorticity equation:

ω̇k =

∫
dq Jkq

δH

δωq
,

where

H
.
=

1

2

∫
dk
|ωk|2
k2

,

Jkq
.
=

∫
dp εkpqω

∗
p.
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Noncanonical Hamiltonian Formulation

•Underlying noncanonical Hamiltonian formulation for inviscid
2D vorticity equation:

ω̇k =

∫
dq Jkq

δH

δωq
,

where

H
.
=

1

2

∫
dk
|ωk|2
k2

,

Jkq
.
=

∫
dp εkpqω

∗
p.

•Leads to inviscid Navier–Stokes equation:

∂ωk
∂t

+ νkωk =

∫
dp

∫
dq

εkpq
q2

ω∗pω
∗
q.
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Liouville Theorem

•Navier–Stokes:

Jkq
.
=

∫
dp εkpqω

∗
p

⇒
∫
dk

δω̇k
δωk

=

∫
dk

∫
dq

δJkq
δωk︸︷︷︸

εk(−k)q=0

δH

δωq
+ Jkq

δ2H

δωkδωq
= 0.
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Liouville Theorem

•Navier–Stokes:

Jkq
.
=

∫
dp εkpqω

∗
p

⇒
∫
dk

δω̇k
δωk

=

∫
dk

∫
dq

δJkq
δωk︸︷︷︸

εk(−k)q=0

δH

δωq
+ Jkq

δ2H

δωkδωq
= 0.

• Spectral Reduction:

JKQ
.
=
∑
P

∆P 〈εkpq〉KPQΩ∗P

⇒
∑
K

∂Ω̇K
∂ΩK

=
∑
K,Q

∂JKQ
∂ΩK︸ ︷︷ ︸

〈εkpq〉K(−K)Q=0

∂H

∂ΩQ
+ JKQ

∂2H

∂ΩK∂ΩQ
= 0.
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Statistical Equipartition

•For mixing dynamics, the Liouville Theorem and the coarse-
grained invariants

E
.
=

1

2

∑
K

|ΩK|2
K2

∆K, Z
.
=

1

2

∑
K

|ΩK|2 ∆K,

lead to statistical equipartition of (α/K2 + β) |ΩK|2 ∆K.

12



Statistical Equipartition

•For mixing dynamics, the Liouville Theorem and the coarse-
grained invariants

E
.
=

1

2

∑
K

|ΩK|2
K2

∆K, Z
.
=

1

2

∑
K

|ΩK|2 ∆K,

lead to statistical equipartition of (α/K2 + β) |ΩK|2 ∆K.

•This is the correct equipartition only for uniform bins.

12



Statistical Equipartition

•For mixing dynamics, the Liouville Theorem and the coarse-
grained invariants

E
.
=

1

2

∑
K

|ΩK|2
K2

∆K, Z
.
=

1

2

∑
K

|ΩK|2 ∆K,

lead to statistical equipartition of (α/K2 + β) |ΩK|2 ∆K.lead to statistical equipartition of (α/K2 + β) |ΩK|2 ∆K.

•This is the correct equipartition only for uniform bins.

•However, for nonuniform bins, a rescaling of time by ∆K,

1

∆K

∂ΩK
∂t

+ 〈νk〉K ΩK =
∑
P ,Q

∆P∆Q

〈εkpq〉KPQ
Q2

Ω∗PΩ∗Q,

yields the correct inviscid equipartition:
〈
|ΩK|2

〉
=
(
α
K2 + β

)−1
.
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•Unfortunately, the rescaled spectral reduction equations are
hopelessly stiff [Bowman et al. 2001].

Relaxation of rescaled spectral reduction to equipartition.
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Spectral Reduction on a Lattice

•Reluctantly, we accept the fact that each bin must contain the
same number of modes.
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same number of modes.

• Imposing uniform bins has an important advantage: it affords
a pseudospectral implementation of spectral reduction!
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Spectral Reduction on a Lattice

•Reluctantly, we accept the fact that each bin must contain the
same number of modes.
•Reluctantly, we accept the fact that each bin must contain the

same number of modes.

• Imposing uniform bins has an important advantage: it affords
a pseudospectral implementation of spectral reduction!

•Consider spectral reduction on a coarse-grained lattice, with
r × r modes per rectangular bin.
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•The bin-averaging operations become:

〈fk〉K
.
=

1

r2

∑
k∈K

fk,

〈fkpq〉KPQ
.
=

1

r6

∑
k∈K

∑
p∈P

∑
q∈Q

fkpq.
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•The bin-averaging operations become:

〈fk〉K
.
=

1

r2

∑
k∈K

fk,

〈fkpq〉KPQ
.
=

1

r6

∑
k∈K

∑
p∈P

∑
q∈Q

fkpq.

•Uniform discrete spectral reduction:

∂ΩK
∂t

+ 〈νk〉K ΩK = r4
∑
P ,Q

1

Q2
〈εkpq〉KPQΩ∗PΩ∗Q + FKξ(t).
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•The bin-averaging operations become:

〈fk〉K
.
=

1

r2

∑
k∈K

fk,

〈fkpq〉KPQ
.
=

1

r6

∑
k∈K

∑
p∈P

∑
q∈Q

fkpq.〈fkpq〉KPQ
.
=

1

r6

∑
k∈K

∑
p∈P

∑
q∈Q

fkpq.

•Uniform discrete spectral reduction:

∂ΩK
∂t

+ 〈νk〉K ΩK = r4
∑
P ,Q

1

Q2
〈εkpq〉KPQΩ∗PΩ∗Q + FKξ(t).

•Let ξ(t) be a unit Gaussian stochastic white-noise process and

choose FK = 2εZ
fK√∑
K

|fK|2
to inject on average εZ units of

enstrophy Novikov [1964].
15



Discrete Fast Fourier Transform

•Define the N th primitive root of unity:

ζN = exp

(
2πi

N

)
.
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Discrete Fast Fourier Transform

•Define the N th primitive root of unity:

ζN = exp

(
2πi

N

)
.

•The fast Fourier transform (FFT) method exploits the
properties that ζrN = ζN/r and ζNN = 1.
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FFT of a Piecewise Constant Function

• Suppose N = rM and frK+` = FK for ` = 0, 1, . . . r − 1 and
K = 0, 1, . . . ,M − 1.
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FFT of a Piecewise Constant Function

• Suppose N = rM and frK+` = FK for ` = 0, 1, . . . r − 1 and
K = 0, 1, . . . ,M − 1.

•For J = 0, . . . ,M − 1 and s = 0, . . . , r − 1 the backwards
Fourier transform of the coarse-grained data FK is given by

f̂sM+J =

M−1∑
K=0

r−1∑
`=0

ζ
(sM+J)(rK+`)
N FK = SJ,sF̂J ,

where

SJ,s
.
=

r−1∑
`=0

ζJ`N ζ
s`
r ,

F̂J
.
=

M−1∑
K=0

ζJKM FK.

17



•The coarse-grained forwards Fourier transform is given by:

FK
.
=

1

Nr

r−1∑
`=0

frK+` =
1

r2M

r−1∑
`=0

M−1∑
J=0

r−1∑
s=0

ζ
−(rK+`)(sM+J)
N f̂sM+J

=
1

r2M

M−1∑
J=0

ζ−KJM

r−1∑
s=0

S∗J,sf̂sM+J .
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1D Coarse-Grained Convolution

•The coarse-grained convolution 〈f ∗ g〉K of f and g can then be
computed as

〈f ∗ g〉K
.
=

1

r

r−1∑
`=0

(f ∗ g)rK+` =
1

r2M

M−1∑
J=0

ζ−KJM

r−1∑
s=0

S∗J,sf̂sM+J ĝsM+J

=
1

r2M

M−1∑
J=0

ζ−KJM WJF̂JĜJ ,

in terms of the spatial weight factors WJ
.
=

r−1∑
s=0

|SJ,s|2 SJ,s.

19



• Similarly, the bin-averaged Fourier transform of FK weighted
by ` is given by

f̂sM+J =

M−1∑
K=0

r−1∑
`=0

ζ
(sM+J)(rK+`)
N `FK = TJ,sF̂J ,

where

TJ,s
.
=

r−1∑
`=0

`ζJ`N ζ
s`
r .

20



• Similarly, the bin-averaged Fourier transform of FK weighted
by ` is given by

f̂sM+J =

M−1∑
K=0

r−1∑
`=0

ζ
(sM+J)(rK+`)
N `FK = TJ,sF̂J ,

where

TJ,s
.
=

r−1∑
`=0

`ζJ`N ζ
s`
r .

•Let W ′
J
.
=
∑r−1

s=0 |SJ,s|2 TJ,s.
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Pseudospectral reduction

• In terms of F 0 .
= KxΩK, F 1 .

= KyΩK, F 2 .
= ΩK, G0 .

=
KxK

−2ΩK, G1 .
= KyK

−2ΩK, and G2 .
= K−2ΩK:

∑
P ,Q

1

Q2
〈δp+q,k(pxqy − pyqx)〉KPQΩPΩQ

=
1

r2

∑
`

(
[(rKx + `x)ΩK] ∗

[
(rKy + `y)K

−2ΩK
])
rK+`

− 1

r2

∑
`

(
[(rKy + `y)ΩK] ∗

[
(rKx + `x)K

−2ΩK
])
rK+`

=
1

r4M 2

∑
J

ζ−K·JM

[
r2WJxWJy(F̂

0
JĜ

1
J − F̂ 1

JĜ
0
J)

+rW ′
Jx
WJy(F̂

2
JĜ

1
J − F̂ 1

JĜ
2
J) + rWJxW

′
Jy

(F̂ 0
JĜ

2
J − F̂ 2

JĜ
0
J)
]
.

21



Pseudospectral reduction

• In terms of F 0 .
= KxΩK, F 1 .

= KyΩK, F 2 .
= ΩK, G0 .

=
KxK

−2ΩK, G1 .
= KyK

−2ΩK, and G2 .
= K−2ΩK:

∑
P ,Q

1

Q2
〈δp+q,k(pxqy − pyqx)〉KPQΩPΩQ

=
1

r2

∑
`

(
[(rKx + `x)ΩK] ∗

[
(rKy + `y)K

−2ΩK
])
rK+`

− 1

r2

∑
`

(
[(rKy + `y)ΩK] ∗

[
(rKx + `x)K

−2ΩK
])
rK+`

=
1

r4M 2

∑
J

ζ−K·JM

[
r2WJxWJy(F̂

0
JĜ

1
J − F̂ 1

JĜ
0
J)

+rW ′
Jx
WJy(F̂

2
JĜ

1
J − F̂ 1

JĜ
2
J) + rWJxW

′
Jy

(F̂ 0
JĜ

2
J − F̂ 2

JĜ
0
J)
]
.

•Computational complexity is O(N logN), with a coefficient
7/5 = 1.4 times greater that for pseudospectral collocation. 21



10−1

E
(k
)

101

k

31× 31 bins

πk

α+ βk2

Inviscid equipartition of a 31× 31 pseudospectrally reduced
simulation with radix r = 3.
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E
(k
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k

3412 bins

10232 modes

3412 modes

Direct cascade.
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E
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100 101 102

k

3412 bins

10232 modes

Inverse cascade.
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Conclusions

• Spectral reduction affords a dramatic reduction in the number of
degrees of freedom that must be explicitly evolved in turbulence
simulations.
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turnover times to obtain energy spectra smooth enough to
compare with theory.

•One can evolve a turbulent system for thousands of eddy
turnover times to obtain energy spectra smooth enough to
compare with theory.

•Recognizing that spectral reduction yields correct inviscid
equipartition spectra only with uniform binning and restricting
our attention to this case only, an efficient FFT-based
implementation, which we call pseudospectral reduction, is
proposed.

•Even with uniform binning, the resulting energy spectrum is
much closer to the predictions of the full dynamics than, say,
the spectrum obtained by simply using a smaller spatial domain
(larger mode spacing).
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•We have recently generalized our efficient FFTW++

[Bowman & Roberts 2011] library to support implicitly
dealiased 2D coarse-grained Hermitian convolutions:

http://fftwpp.sourceforge.net
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•We have recently generalized our efficient FFTW++

[Bowman & Roberts 2011] library to support implicitly
dealiased 2D coarse-grained Hermitian convolutions:

http://fftwpp.sourceforge.net

• Spectral reduction could be used to develop a reliable dynamic
subgrid model: Malcolm Roberts’ recent Ph.D. thesis (2011)
explores ways to couple a pseudospectrally reduced subgrid
model to a large-eddy simulation.
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