Pseudospectral Reduction of Incompressible Two-Dimensional Turbulence

John C. Bowman and Malcolm Roberts
University of Alberta

June 25, 2012
www.math.ualberta.ca/~bowman/talks

2D Turbulence in Fourier Space

- Navier-Stokes equation for vorticity $\omega \doteq \hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{u}$:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{u} \cdot \nabla \omega=\nu \nabla^{2} \omega+f .
$$

2D Turbulence in Fourier Space

- Navier-Stokes equation for vorticity $\omega \doteq \hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{u}$:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{u} \cdot \nabla \omega=\nu \nabla^{2} \omega+f
$$

- In Fourier space:

$$
\frac{\partial \omega_{k}}{\partial t}+\nu_{k} \omega_{k}=\int d \boldsymbol{p} \int d \boldsymbol{q} \frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}} \omega_{p}^{*} \omega_{\boldsymbol{q}}^{*}+f_{k}
$$

where $\quad \nu_{\boldsymbol{k}} \doteq \nu k^{2} \quad$ and $\quad \epsilon_{\boldsymbol{k} p q} \doteq(\hat{\boldsymbol{z}} \cdot \boldsymbol{p} \times \boldsymbol{q}) \delta(\boldsymbol{k}+\boldsymbol{p}+\boldsymbol{q}) \quad$ is antisymmetric under permutation of any two indices.

- When $\nu=f_{k}=0$,
enstrophy $Z=\frac{1}{2} \sum_{k}\left|\omega_{k}\right|^{2}$ and energy $E=\frac{1}{2} \sum_{k} \frac{\left|\omega_{k}\right|^{2}}{k^{2}}$ are conserved:

$$
\begin{array}{rlr}
\frac{\epsilon_{k p q}}{q^{2}} & \text { antisymmetric in } & \boldsymbol{k} \leftrightarrow \boldsymbol{p}, \\
\frac{1}{k^{2}} \frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}} & \text { antisymmetric in } & \boldsymbol{k} \leftrightarrow \boldsymbol{q} .
\end{array}
$$

Spectral Reduction

- Introduce a coarse-grained grid indexed by K :

Wavenumber Bin Geometry (8×3 bins)

- Define new variables

$$
\Omega_{\boldsymbol{K}}=\left\langle\omega_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \doteq \frac{1}{\Delta_{\boldsymbol{K}}} \int_{\Delta_{\boldsymbol{K}}} \omega_{\boldsymbol{k}} d \boldsymbol{k},
$$

where $\Delta_{\boldsymbol{K}}$ is the area of $\operatorname{bin} \boldsymbol{K}$.

- Define new variables

$$
\Omega_{\boldsymbol{K}}=\left\langle\omega_{k}\right\rangle_{\boldsymbol{K}} \doteq \frac{1}{\Delta_{\boldsymbol{K}}} \int_{\Delta_{K}} \omega_{\boldsymbol{k}} d \boldsymbol{k}
$$

where $\Delta_{\boldsymbol{K}}$ is the area of bin \boldsymbol{K}.

- Evolution of $\Omega_{\boldsymbol{K}}$:

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}} \omega_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}}=\sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}}\left\langle\frac{\epsilon_{\boldsymbol{k} p \boldsymbol{q}}}{q^{2}} \omega_{p}^{*} \omega_{\boldsymbol{q}}^{*}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}
$$

where $\langle f\rangle_{K P Q}=\frac{1}{\Delta_{K} \Delta_{P} \Delta_{Q}} \int_{\Delta_{K}} d \boldsymbol{k} \int_{\Delta_{P}} d \boldsymbol{p} \int_{\Delta_{Q}} d \boldsymbol{q} f$.

- Define new variables

$$
\Omega_{\boldsymbol{K}}=\left\langle\omega_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \doteq \frac{1}{\Delta_{\boldsymbol{K}}} \int_{\Delta_{\boldsymbol{K}}} \omega_{\boldsymbol{k}} d \boldsymbol{k}
$$

where $\Delta_{\boldsymbol{K}}$ is the area of $\operatorname{bin} \boldsymbol{K}$.

- Evolution of $\Omega_{\boldsymbol{K}}$:

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}} \omega_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}}=\sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}}\left\langle\frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}} \omega_{p}^{*} \omega_{\boldsymbol{q}}^{*}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}
$$

where $\langle f\rangle_{K P Q}=\frac{1}{\Delta_{K} \Delta_{P} \Delta_{Q}} \int_{\Delta_{K}} d \boldsymbol{k} \int_{\Delta_{P}} d \boldsymbol{p} \int_{\Delta_{Q}} d \boldsymbol{q} f$.

- Approximate $\omega_{\boldsymbol{p}}$ and $\omega_{\boldsymbol{q}}$ by bin-averaged values $\Omega_{\boldsymbol{P}}$ and $\Omega_{\boldsymbol{Q}}$:

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \Omega_{\boldsymbol{K}}=\sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}}\left\langle\frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}
$$

- Define the coarse-grained enstrophy Z and energy E :

$$
Z \doteq \frac{1}{2} \sum_{\boldsymbol{K}}\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}, \quad E \doteq \frac{1}{2} \sum_{\boldsymbol{K}} \frac{\left|\Omega_{\boldsymbol{K}}\right|^{2}}{K^{2}} \Delta_{\boldsymbol{K}}
$$

- Define the coarse-grained enstrophy Z and energy E :

$$
Z \doteq \frac{1}{2} \sum_{\boldsymbol{K}}\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}, \quad E \doteq \frac{1}{2} \sum_{\boldsymbol{K}} \frac{\left|\Omega_{\boldsymbol{K}}\right|^{2}}{K^{2}} \Delta_{\boldsymbol{K}}
$$

- Enstrophy is still conserved by the nonlinearity since

$$
\left\langle\frac{\epsilon_{\boldsymbol{k} p \boldsymbol{q}}}{q^{2}}\right\rangle_{\boldsymbol{K P Q}} \quad \text { antisymmetric in } \quad \boldsymbol{K} \leftrightarrow \boldsymbol{P} .
$$

- Define the coarse-grained enstrophy Z and energy E :

$$
Z \doteq \frac{1}{2} \sum_{\boldsymbol{K}}\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}, \quad E \doteq \frac{1}{2} \sum_{\boldsymbol{K}} \frac{\left|\Omega_{\boldsymbol{K}}\right|^{2}}{K^{2}} \Delta_{\boldsymbol{K}}
$$

- Enstrophy is still conserved by the nonlinearity since

$$
\left\langle\frac{\epsilon_{\boldsymbol{k} p \boldsymbol{q}}}{q^{2}}\right\rangle_{\boldsymbol{K P Q}} \quad \text { antisymmetric in } \quad \boldsymbol{K} \leftrightarrow \boldsymbol{P} .
$$

- But energy conservation has been lost!

$$
\frac{1}{K^{2}}\left\langle\frac{\epsilon_{k p q}}{q^{2}}\right\rangle_{K P Q} \quad \text { NOT antisymmetric in } \quad \boldsymbol{K} \leftrightarrow \boldsymbol{Q}
$$

- Define the coarse-grained enstrophy Z and energy E :

$$
Z \doteq \frac{1}{2} \sum_{\boldsymbol{K}}\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}, \quad E \doteq \frac{1}{2} \sum_{\boldsymbol{K}} \frac{\left|\Omega_{\boldsymbol{K}}\right|^{2}}{K^{2}} \Delta_{\boldsymbol{K}}
$$

- Enstrophy is still conserved by the nonlinearity since

$$
\left\langle\frac{\epsilon_{\boldsymbol{k} p \boldsymbol{q}}}{q^{2}}\right\rangle_{\boldsymbol{K P Q} Q} \quad \text { antisymmetric in } \quad \boldsymbol{K} \leftrightarrow \boldsymbol{P} .
$$

- But energy conservation has been lost!

$$
\frac{1}{K^{2}}\left\langle\frac{\epsilon_{k p q}}{q^{2}}\right\rangle_{K P Q} \quad \text { NOT antisymmetric in } \quad \boldsymbol{K} \leftrightarrow \boldsymbol{Q}
$$

- Reinstate both desired symmetries with the modified coefficient

$$
\frac{\left\langle\epsilon_{k p q}\right\rangle_{K P Q}}{Q^{2}} .
$$

Properties

- We call the forced-dissipative version of this approximation spectral reduction (SR):

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \Omega_{\boldsymbol{K}}=\sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \frac{\left\langle\epsilon_{\boldsymbol{k} p \boldsymbol{q}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}}{Q^{2}} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}
$$

Properties

- We call the forced-dissipative version of this approximation spectral reduction (SR):

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \Omega_{\boldsymbol{K}}=\sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \frac{\left\langle\epsilon_{\boldsymbol{k} p \boldsymbol{q}}\right\rangle_{\boldsymbol{K} P \boldsymbol{Q}}}{Q^{2}} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}
$$

- SR conserves both energy and enstrophy and reduces to the exact dynamics in the limit of small bin size.

Properties

- We call the forced-dissipative version of this approximation spectral reduction (SR):

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \Omega_{\boldsymbol{K}}=\sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \frac{\left\langle\epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}}\right\rangle_{\boldsymbol{K} P \boldsymbol{Q}}}{Q^{2}} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}
$$

- SR conserves both energy and enstrophy and reduces to the exact dynamics in the limit of small bin size.
- It has the same general structure and symmetries as the original equation and in this sense may be considered a renormalization.

Properties

- We call the forced-dissipative version of this approximation spectral reduction (SR):

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \Omega_{\boldsymbol{K}}=\sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \frac{\left\langle\epsilon_{\boldsymbol{k} p \boldsymbol{q}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}}{Q^{2}} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}
$$

- SR conserves both energy and enstrophy and reduces to the exact dynamics in the limit of small bin size.
- It has the same general structure and symmetries as the original equation and in this sense may be considered a renormalization.
- SR obeys a Liouville Theorem; in the inviscid limit, it yields statistical-mechanical (equipartition) solutions.

Properties

- We call the forced-dissipative version of this approximation spectral reduction (SR):

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \Omega_{\boldsymbol{K}}=\sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \frac{\left\langle\epsilon_{\boldsymbol{k} p \boldsymbol{q}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}}{Q^{2}} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}
$$

- SR conserves both energy and enstrophy and reduces to the exact dynamics in the limit of small bin size.
- It has the same general structure and symmetries as the original equation and in this sense may be considered a renormalization.
- SR obeys a Liouville Theorem; in the inviscid limit, it yields statistical-mechanical (equipartition) solutions.
- However: since the $\delta_{\boldsymbol{k}+\boldsymbol{p}+\boldsymbol{q}, 0}$ factor in the nonlinear coefficient $\epsilon_{\boldsymbol{k p q}}$ has been smoothed over, spectral reduction is no longer a convolution: pseudospectral collocation does not apply.

Moments

- Q. How accurate is spectral reduction?

Moments

- Q. How accurate is spectral reduction?
- A. For large bins, the instantaneous dynamics of SR is inaccurate.

Moments

- Q. How accurate is spectral reduction?
- A. For large bins, the instantaneous dynamics of SR is inaccurate.
- However: the equations for the time-averaged (or ensembleaveraged) moments predicted by SR closely approximate those of the exact bin-averaged statistics.

Moments

- Q. How accurate is spectral reduction?
- A. For large bins, the instantaneous dynamics of SR is inaccurate.
- However: the equations for the time-averaged (or ensembleaveraged) moments predicted by SR closely approximate those of the exact bin-averaged statistics.
- E.g., time average the exact bin-averaged enstrophy equation:

where the bar means time average and $\langle\cdot\rangle_{K}$ means bin average.

Moments

- Q. How accurate is spectral reduction?
- A. For large bins, the instantaneous dynamics of SR is inaccurate.
- However: the equations for the time-averaged (or ensembleaveraged) moments predicted by SR closely approximate those of the exact bin-averaged statistics.
- E.g., time average the exact bin-averaged enstrophy equation:
$\overline{\left.\left.\frac{\partial}{\partial t}\langle | \omega_{\boldsymbol{k}}\right|^{2}\right\rangle_{\boldsymbol{K}}}+2 \operatorname{Re}\left\langle\nu_{\boldsymbol{k}}^{\left|\omega_{\boldsymbol{k}}\right|^{2}}\right\rangle_{\boldsymbol{K}}=2 \operatorname{Re} \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}}\left\langle\frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}} \overline{\omega_{\boldsymbol{k}}^{*} \omega_{\boldsymbol{p}}^{*} \omega_{\boldsymbol{q}}^{*}}\right\rangle_{\boldsymbol{K} \boldsymbol{P Q}}$,
where the bar means time average and $\langle\cdot\rangle_{\boldsymbol{K}}$ means bin average.
- Time-averaged quantities such as $\overline{\left|\omega_{\boldsymbol{k}}\right|^{2}}$ and $\overline{\omega_{k}^{*} \omega_{p}^{*} \omega_{q}^{*}}$ are generally smooth functions of $\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}$ on the four-dimensional surface defined by the triad condition $\boldsymbol{k}+\boldsymbol{p}+\boldsymbol{q}=0$.
- Mean Value Theorem for integrals: for some $\boldsymbol{\xi} \in \boldsymbol{K}$.

$$
\overline{\left|\Omega_{\boldsymbol{K}}\right|^{2}}=\overline{\left|\omega_{\xi}\right|^{2}} \approx \overline{\left|\omega_{\boldsymbol{k}}\right|^{2}} \quad \forall \boldsymbol{k} \in \boldsymbol{K} .
$$

- Mean Value Theorem for integrals: for some $\boldsymbol{\xi} \in \boldsymbol{K}$.

$$
\overline{\left|\Omega_{\boldsymbol{K}}\right|^{2}}=\overline{\left|\omega_{\boldsymbol{\xi}}\right|^{2}} \approx \overline{\left|\omega_{\boldsymbol{k}}\right|^{2}} \quad \forall \boldsymbol{k} \in \boldsymbol{K} .
$$

- To good accuracy these statistical moments may therefore be evaluated at the characteristic wavenumbers $\boldsymbol{K}, \boldsymbol{P}, \boldsymbol{Q}$:
$\overline{\frac{\partial}{\partial t}\left|\Omega_{\boldsymbol{K}}\right|^{2}}+2 \operatorname{Re}\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \overline{\left|\Omega_{\boldsymbol{K}}\right|^{2}}=2 \operatorname{Re} \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}}\left\langle\frac{\epsilon_{\boldsymbol{k} \boldsymbol{q}}}{q^{2}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} \overline{\Omega_{\boldsymbol{K}}^{*} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}}$.
- Mean Value Theorem for integrals: for some $\boldsymbol{\xi} \in \boldsymbol{K}$.

$$
\overline{\left|\Omega_{\boldsymbol{K}}\right|^{2}}=\overline{\left|\omega_{\boldsymbol{\xi}}\right|^{2}} \approx \overline{\left|\omega_{\boldsymbol{k}}\right|^{2}} \quad \forall \boldsymbol{k} \in \boldsymbol{K} .
$$

- To good accuracy these statistical moments may therefore be evaluated at the characteristic wavenumbers $\boldsymbol{K}, \boldsymbol{P}, \boldsymbol{Q}$:
$\overline{\bar{\partial}\left|\Omega_{\boldsymbol{K}}\right|^{2}}+2 \operatorname{Re}\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \overline{\left|\Omega_{\boldsymbol{K}}\right|^{2}}=2 \operatorname{Re} \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}}\left\langle\frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} \overline{\Omega_{\boldsymbol{K}}^{*} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}}$.
- To the extent that the wavenumber magnitude q varies slowly over a bin:
$\overline{\frac{\partial}{\partial t}\left|\Omega_{\boldsymbol{K}}\right|^{2}}+2 \operatorname{Re}\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \overline{\left|\Omega_{\boldsymbol{K}}\right|^{2}}=2 \operatorname{Re} \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \frac{\left\langle\epsilon_{\boldsymbol{k} \boldsymbol{q} \boldsymbol{q}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}}{Q^{2}} \overline{\Omega_{\boldsymbol{K}}^{*} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}}$.
- Mean Value Theorem for integrals: for some $\boldsymbol{\xi} \in \boldsymbol{K}$.

$$
\overline{\left|\Omega_{\boldsymbol{K}}\right|^{2}}=\overline{\left|\omega_{\boldsymbol{\xi}}\right|^{2}} \approx \overline{\left|\omega_{\boldsymbol{k}}\right|^{2}} \quad \forall \boldsymbol{k} \in \boldsymbol{K} .
$$

- To good accuracy these statistical moments may therefore be evaluated at the characteristic wavenumbers $\boldsymbol{K}, \boldsymbol{P}, \boldsymbol{Q}$:
$\overline{\bar{\partial}\left|\Omega_{\boldsymbol{K}}\right|^{2}}+2 \operatorname{Re}\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \overline{\left|\Omega_{\boldsymbol{K}}\right|^{2}}=2 \operatorname{Re} \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}}\left\langle\frac{\epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}}}{q^{2}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} \overline{\Omega_{\boldsymbol{K}}^{*} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}}$.
- To the extent that the wavenumber magnitude q varies slowly over a bin:
$\overline{\bar{\partial}}\left|\Omega_{\boldsymbol{K}}\right|^{2}+2 \operatorname{Re}\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \overline{\left|\Omega_{\boldsymbol{K}}\right|^{2}}=2 \operatorname{Re} \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \frac{\left\langle\epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}}{Q^{2}} \overline{\Omega_{\boldsymbol{K}}^{*} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}}$.
- But this is precisely the time-average of the SR equation!

Noncanonical Hamiltonian Formulation

- Underlying noncanonical Hamiltonian formulation for inviscid 2D vorticity equation:

$$
\dot{\omega}_{k}=\int d \boldsymbol{q} J_{k q} \frac{\delta H}{\delta \omega_{q}},
$$

where

$$
\begin{aligned}
H & \doteq \frac{1}{2} \int d \boldsymbol{k} \frac{\left|\omega_{k}\right|^{2}}{k^{2}} \\
J_{k q} & \doteq \int d \boldsymbol{p} \epsilon_{k p q} \omega_{p}^{*}
\end{aligned}
$$

Noncanonical Hamiltonian Formulation

- Underlying noncanonical Hamiltonian formulation for inviscid 2D vorticity equation:

$$
\dot{\omega}_{k}=\int d \boldsymbol{q} J_{k q} \frac{\delta H}{\delta \omega_{q}},
$$

where

$$
\begin{aligned}
H & \doteq \frac{1}{2} \int d \boldsymbol{k} \frac{\left|\omega_{k}\right|^{2}}{k^{2}} \\
J_{k q} & \doteq \int d \boldsymbol{p} \epsilon_{k p q} \omega_{p}^{*}
\end{aligned}
$$

- Leads to inviscid Navier-Stokes equation:

$$
\frac{\partial \omega_{\boldsymbol{k}}}{\partial t}+\nu_{\boldsymbol{k}} \omega_{\boldsymbol{k}}=\int d \boldsymbol{p} \int d \boldsymbol{q} \frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}} \omega_{p}^{*} \omega_{q}^{*}
$$

Liouville Theorem

- Navier-Stokes:

$$
\begin{gathered}
J_{k q} \doteq \int d \boldsymbol{p} \epsilon_{\boldsymbol{k} p q} \omega_{p}^{*} \\
\Rightarrow \quad \int d \boldsymbol{k} \frac{\delta \dot{\omega}_{\boldsymbol{k}}}{\delta \omega_{\boldsymbol{k}}}=\int d \boldsymbol{k} \int d \boldsymbol{q} \underbrace{\frac{\delta J_{\boldsymbol{k} q}}{\delta \omega_{k}} \frac{\delta H}{\delta \omega_{\boldsymbol{q}}}+J_{\boldsymbol{k} \boldsymbol{q}} \frac{\delta^{2} H}{\delta \omega_{\boldsymbol{k}} \delta \omega_{\boldsymbol{q}}}=0 .}_{\epsilon_{k(-k) q}=0} . .
\end{gathered}
$$

Liouville Theorem

- Navier-Stokes:

$$
\begin{gathered}
J_{k q} \doteq \int d \boldsymbol{p} \epsilon_{k p q} \omega_{p}^{*} \\
\Rightarrow \quad \int d \boldsymbol{k} \frac{\delta \dot{\omega}_{\boldsymbol{k}}}{\delta \omega_{k}}=\int d \boldsymbol{k} \int d \boldsymbol{q} \underbrace{\frac{\delta J_{\boldsymbol{k} \boldsymbol{q}}}{\delta \omega_{k}} \frac{\delta H}{\delta \omega_{\boldsymbol{q}}}+J_{\boldsymbol{k} \boldsymbol{q}} \frac{\delta^{2} H}{\delta \omega_{\boldsymbol{k}} \delta \omega_{\boldsymbol{q}}}=0 .}_{\epsilon_{k(-k) q}=0} .
\end{gathered}
$$

- Spectral Reduction:

$$
\begin{gathered}
J_{\boldsymbol{K} \boldsymbol{Q}} \doteq \sum_{\boldsymbol{P}} \Delta_{\boldsymbol{P}}\left\langle\epsilon_{\boldsymbol{k} p \boldsymbol{q}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} \Omega_{\boldsymbol{P}}^{*} \\
\Rightarrow \quad \sum_{\boldsymbol{K}} \frac{\partial \dot{\Omega}_{\boldsymbol{K}}}{\partial \Omega_{\boldsymbol{K}}}=\sum_{\boldsymbol{K}, \boldsymbol{Q}} \underbrace{\frac{\partial J_{\boldsymbol{K} \boldsymbol{Q}}}{\partial \Omega_{\boldsymbol{K}}}}_{\left\langle\epsilon_{k p q}\right\rangle_{\boldsymbol{K}(-K) Q}=0} \frac{\partial H}{\partial \Omega_{\boldsymbol{Q}}}+J_{\boldsymbol{K} \boldsymbol{Q}} \frac{\partial^{2} H}{\partial \Omega_{\boldsymbol{K}} \partial \Omega_{\boldsymbol{Q}}}=0 .
\end{gathered}
$$

Statistical Equipartition

- For mixing dynamics, the Liouville Theorem and the coarsegrained invariants

$$
E \doteq \frac{1}{2} \sum_{\boldsymbol{K}} \frac{\left|\Omega_{\boldsymbol{K}}\right|^{2}}{K^{2}} \Delta_{\boldsymbol{K}}, \quad Z \doteq \frac{1}{2} \sum_{\boldsymbol{K}}\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}
$$

lead to statistical equipartition of $\left(\alpha / K^{2}+\beta\right)\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}$.

Statistical Equipartition

- For mixing dynamics, the Liouville Theorem and the coarsegrained invariants

$$
E \doteq \frac{1}{2} \sum_{\boldsymbol{K}} \frac{\left|\Omega_{\boldsymbol{K}}\right|^{2}}{K^{2}} \Delta_{\boldsymbol{K}}, \quad Z \doteq \frac{1}{2} \sum_{\boldsymbol{K}}\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}
$$

lead to statistical equipartition of $\left(\alpha / K^{2}+\beta\right)\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}$.

- This is the correct equipartition only for uniform bins.

Statistical Equipartition

- For mixing dynamics, the Liouville Theorem and the coarsegrained invariants

$$
E \doteq \frac{1}{2} \sum_{\boldsymbol{K}} \frac{\left|\Omega_{\boldsymbol{K}}\right|^{2}}{K^{2}} \Delta_{\boldsymbol{K}}, \quad Z \doteq \frac{1}{2} \sum_{\boldsymbol{K}}\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}
$$

lead to statistical equipartition of $\left(\alpha / K^{2}+\beta\right)\left|\Omega_{\boldsymbol{K}}\right|^{2} \Delta_{\boldsymbol{K}}$.

- This is the correct equipartition only for uniform bins.
- However, for nonuniform bins, a rescaling of time by $\Delta_{\boldsymbol{K}}$,

$$
\frac{1}{\Delta_{\boldsymbol{K}}} \frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \Omega_{\boldsymbol{K}}=\sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \frac{\left\langle\epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}}{Q^{2}} \Omega_{\boldsymbol{P}}^{*} \Omega_{\boldsymbol{Q}}^{*}
$$

yields the correct inviscid equipartition: $\left.\left.\langle | \Omega_{\boldsymbol{K}}\right|^{2}\right\rangle=\left(\frac{\alpha}{K^{2}}+\beta\right)^{-1}$.

- Unfortunately, the rescaled spectral reduction equations are hopelessly stiff [Bowman et al. 2001].

Relaxation of rescaled spectral reduction to equipartition.

Spectral Reduction on a Lattice

- Reluctantly, we accept the fact that each bin must contain the same number of modes.

Spectral Reduction on a Lattice

- Reluctantly, we accept the fact that each bin must contain the same number of modes.
- Imposing uniform bins has an important advantage: it affords a pseudospectral implementation of spectral reduction!

Spectral Reduction on a Lattice

- Reluctantly, we accept the fact that each bin must contain the same number of modes.
- Imposing uniform bins has an important advantage: it affords a pseudospectral implementation of spectral reduction!
- Consider spectral reduction on a coarse-grained lattice, with $r \times r$ modes per rectangular bin.
- The bin-averaging operations become:

$$
\begin{gathered}
\left\langle f_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \doteq \frac{1}{r^{2}} \sum_{\boldsymbol{k} \in \boldsymbol{K}} f_{\boldsymbol{k}}, \\
\left\langle f_{\boldsymbol{k p q} \boldsymbol{q}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} \doteq \frac{1}{r^{6}} \sum_{\boldsymbol{k} \in \boldsymbol{K}} \sum_{\boldsymbol{p} \in \boldsymbol{P}} \sum_{\boldsymbol{q} \in \boldsymbol{Q}} f_{\boldsymbol{k} p \boldsymbol{q}} .
\end{gathered}
$$

- The bin-averaging operations become:

$$
\begin{gathered}
\left\langle f_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \doteq \frac{1}{r^{2}} \sum_{\boldsymbol{k} \in \boldsymbol{K}} f_{\boldsymbol{k}}, \\
\left\langle f_{\boldsymbol{k p q} \boldsymbol{q}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} \doteq \frac{1}{r^{6}} \sum_{k \in \boldsymbol{K}} \sum_{\boldsymbol{p} \in \boldsymbol{P}} \sum_{\boldsymbol{q} \in \boldsymbol{Q}} f_{\boldsymbol{k} p \boldsymbol{q}} .
\end{gathered}
$$

- Uniform discrete spectral reduction:

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \Omega_{\boldsymbol{K}}=r^{4} \sum_{P, Q} \frac{1}{Q^{2}}\left\langle\epsilon_{k p q}\right\rangle_{\boldsymbol{K} P Q} \Omega_{\boldsymbol{P}}^{*} \Omega_{Q}^{*}+F_{\boldsymbol{K}} \xi(t)
$$

- The bin-averaging operations become:

$$
\begin{gathered}
\left\langle f_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \doteq \frac{1}{r^{2}} \sum_{\boldsymbol{k} \in \boldsymbol{K}} f_{\boldsymbol{k}}, \\
\left\langle f_{\boldsymbol{k p \boldsymbol { q }}}\right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} \doteq \frac{1}{r^{6}} \sum_{\boldsymbol{k} \in \boldsymbol{K}} \sum_{\boldsymbol{p} \in \boldsymbol{P}} \sum_{\boldsymbol{q} \in \boldsymbol{Q}} f_{\boldsymbol{k} \boldsymbol{q} \boldsymbol{q}}
\end{gathered}
$$

- Uniform discrete spectral reduction:

$$
\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t}+\left\langle\nu_{\boldsymbol{k}}\right\rangle_{\boldsymbol{K}} \Omega_{\boldsymbol{K}}=r^{4} \sum_{P, Q} \frac{1}{Q^{2}}\left\langle\epsilon_{k p q}\right\rangle_{\boldsymbol{K} P Q} \Omega_{P}^{*} \Omega_{Q}^{*}+F_{\boldsymbol{K}} \xi(t)
$$

- Let $\xi(t)$ be a unit Gaussian stochastic white-noise process and choose $F_{\boldsymbol{K}}=2 \epsilon_{Z} \frac{f_{K}}{\sqrt{\sum_{\boldsymbol{K}}\left|f_{K}\right|^{2}}}$ to inject on average ϵ_{Z} units of
enstrophy Novikov [1964].

Discrete Fast Fourier Transform

- Define the N th primitive root of unity:

$$
\zeta_{N}=\exp \left(\frac{2 \pi i}{N}\right)
$$

Discrete Fast Fourier Transform

- Define the N th primitive root of unity:

$$
\zeta_{N}=\exp \left(\frac{2 \pi i}{N}\right)
$$

- The fast Fourier transform (FFT) method exploits the properties that $\zeta_{N}^{r}=\zeta_{N / r}$ and $\zeta_{N}^{N}=1$.

FFT of a Piecewise Constant Function

- Suppose $N=r M$ and $f_{r K+\ell}=F_{K}$ for $\ell=0,1, \ldots r-1$ and $K=0,1, \ldots, M-1$.

FFT of a Piecewise Constant Function

- Suppose $N=r M$ and $f_{r K+\ell}=F_{K}$ for $\ell=0,1, \ldots r-1$ and $K=0,1, \ldots, M-1$.
- For $J=0, \ldots, M-1$ and $s=0, \ldots, r-1$ the backwards Fourier transform of the coarse-grained data F_{K} is given by

$$
\hat{f}_{s M+J}=\sum_{K=0}^{M-1} \sum_{\ell=0}^{r-1} \zeta_{N}^{(s M+J)(r K+\ell)} F_{K}=S_{J, s} \hat{F}_{J},
$$

where

$$
\begin{aligned}
& S_{J, s} \doteq \sum_{\ell=0}^{r-1} \zeta_{N}^{J \ell} \zeta_{r}^{s \ell}, \\
& \hat{F}_{J} \doteq \sum_{K=0}^{M-1} \zeta_{M}^{J K} F_{K} .
\end{aligned}
$$

- The coarse-grained forwards Fourier transform is given by:

$$
\begin{aligned}
F_{K} & \doteq \frac{1}{N r} \sum_{\ell=0}^{r-1} f_{r K+\ell}=\frac{1}{r^{2} M} \sum_{\ell=0}^{r-1} \sum_{J=0}^{M-1} \sum_{s=0}^{r-1} \zeta_{N}^{-(r K+\ell)(s M+J)} \hat{f}_{s M+J} \\
& =\frac{1}{r^{2} M} \sum_{J=0}^{M-1} \zeta_{M}^{-K J} \sum_{s=0}^{r-1} S_{J, s}^{*} \hat{f}_{s M+J} .
\end{aligned}
$$

1D Coarse-Grained Convolution

- The coarse-grained convolution $\langle f * g\rangle_{K}$ of f and g can then be computed as

$$
\begin{aligned}
\langle f * g\rangle_{K} & \doteq \frac{1}{r} \sum_{\ell=0}^{r-1}(f * g)_{r K+\ell}=\frac{1}{r^{2} M} \sum_{J=0}^{M-1} \zeta_{M}^{-K J} \sum_{s=0}^{r-1} S_{J, s}^{*} \hat{f}_{s M+J} \hat{g}_{s M+J} \\
& =\frac{1}{r^{2} M} \sum_{J=0}^{M-1} \zeta_{M}^{-K J} W_{J} \hat{F}_{J} \hat{G}_{J}
\end{aligned}
$$

in terms of the spatial weight factors $W_{J} \doteq \sum_{s=0}^{r-1}\left|S_{J, s}\right|^{2} S_{J, s}$.

- Similarly, the bin-averaged Fourier transform of F_{K} weighted by ℓ is given by

$$
\hat{f}_{s M+J}=\sum_{K=0}^{M-1} \sum_{\ell=0}^{r-1} \zeta_{N}^{(s M+J)(r K+\ell)} \ell F_{K}=T_{J, s} \hat{F}_{J}
$$

where

$$
T_{J, s} \doteq \sum_{\ell=0}^{r-1} \ell \zeta_{N}^{J \ell} \zeta_{r}^{s \ell}
$$

- Similarly, the bin-averaged Fourier transform of F_{K} weighted by ℓ is given by

$$
\hat{f}_{s M+J}=\sum_{K=0}^{M-1} \sum_{\ell=0}^{r-1} \zeta_{N}^{(s M+J)(r K+\ell)} \ell F_{K}=T_{J, s} \hat{F}_{J}
$$

where

$$
T_{J, s} \doteq \sum_{\ell=0}^{r-1} \ell \zeta_{N}^{J \ell} \zeta_{r}^{s \ell}
$$

- Let $W_{J}^{\prime} \doteq \sum_{s=0}^{r-1}\left|S_{J, s}\right|^{2} T_{J, s}$.

Pseudospectral reduction

- In terms of $F^{0} \doteq K_{x} \Omega_{\boldsymbol{K}}, F^{1} \doteq K_{y} \Omega_{\boldsymbol{K}}, F^{2} \doteq \Omega_{\boldsymbol{K}}, G^{0} \doteq$ $K_{x} K^{-2} \Omega_{\boldsymbol{K}}, G^{1} \doteq K_{y} K^{-2} \Omega_{\boldsymbol{K}}$, and $G^{2} \doteq K^{-2} \Omega_{\boldsymbol{K}}:$

$$
\begin{aligned}
& \sum_{P, Q} \\
& \frac{1}{Q^{2}}\left\langle\delta_{p+q, k}\left(p_{x} q_{y}-p_{y} q_{x}\right)\right\rangle_{K P Q} \Omega_{P} \Omega_{Q} \\
&= \frac{1}{r^{2}} \sum_{\ell}\left(\left[\left(r K_{x}+\ell_{x}\right) \Omega_{\boldsymbol{K}}\right] *\left[\left(r K_{y}+\ell_{y}\right) K^{-2} \Omega_{\boldsymbol{K}}\right]\right)_{r \boldsymbol{K}+\ell} \\
& \quad \quad-\frac{1}{r^{2}} \sum_{\ell}\left(\left[\left(r K_{y}+\ell_{y}\right) \Omega_{\boldsymbol{K}}\right] *\left[\left(r K_{x}+\ell_{x}\right) K^{-2} \Omega_{\boldsymbol{K}}\right]\right)_{r \boldsymbol{K}+\ell} \\
&= \frac{1}{r^{4} M^{2}} \sum_{J} \zeta_{M}^{-K} \cdot \boldsymbol{J}\left[r^{2} W_{J_{x}} W_{J_{y}}\left(\hat{F}_{J}^{0} \hat{G}_{J}^{1}-\hat{F}_{J}^{1} \hat{G}_{J}^{0}\right)\right. \\
&\left.\quad+r W_{J_{x}}^{\prime} W_{J_{y}}\left(\hat{F}_{J}^{2} \hat{G}_{J}^{1}-\hat{F}_{J}^{1} \hat{G}_{J}^{2}\right)+r W_{J_{x}} W_{J_{y}}^{\prime}\left(\hat{F}_{J}^{0} \hat{G}_{J}^{2}-\hat{F}_{J}^{2} \hat{G}_{J}^{0}\right)\right] .
\end{aligned}
$$

Pseudospectral reduction

- In terms of $F^{0} \doteq K_{x} \Omega_{\boldsymbol{K}}, F^{1} \doteq K_{y} \Omega_{\boldsymbol{K}}, F^{2} \doteq \Omega_{\boldsymbol{K}}, G^{0} \doteq$ $K_{x} K^{-2} \Omega_{\boldsymbol{K}}, G^{1} \doteq K_{y} K^{-2} \Omega_{\boldsymbol{K}}$, and $G^{2} \doteq K^{-2} \Omega_{\boldsymbol{K}}:$

$$
\begin{aligned}
& \sum_{P, Q} \\
& \frac{1}{Q^{2}}\left\langle\delta_{p+q, k}\left(p_{x} q_{y}-p_{y} q_{x}\right)\right\rangle_{K P Q} \Omega_{P} \Omega_{Q} \\
&= \frac{1}{r^{2}} \sum_{\ell}\left(\left[\left(r K_{x}+\ell_{x}\right) \Omega_{\boldsymbol{K}}\right] *\left[\left(r K_{y}+\ell_{y}\right) K^{-2} \Omega_{\boldsymbol{K}}\right]\right)_{r \boldsymbol{K}+\ell} \\
& \quad \quad-\frac{1}{r^{2}} \sum_{\ell}\left(\left[\left(r K_{y}+\ell_{y}\right) \Omega_{\boldsymbol{K}}\right] *\left[\left(r K_{x}+\ell_{x}\right) K^{-2} \Omega_{\boldsymbol{K}}\right]\right)_{r \boldsymbol{K}+\ell} \\
&= \frac{1}{r^{4} M^{2}} \sum_{J} \zeta_{M}^{-\boldsymbol{K} \cdot J}\left[r^{2} W_{J_{x}} W_{J_{y}}\left(\hat{F}_{J}^{0} \hat{G}_{J}^{1}-\hat{F}_{J}^{1} \hat{G}_{J}^{0}\right)\right. \\
&\left.\quad+r W_{J_{x}}^{\prime} W_{J_{y}}\left(\hat{F}_{J}^{2} \hat{G}_{J}^{1}-\hat{F}_{J}^{1} \hat{G}_{J}^{2}\right)+r W_{J_{x}} W_{J_{y}}^{\prime}\left(\hat{F}_{J}^{0} \hat{G}_{J}^{2}-\hat{F}_{J}^{2} \hat{G}_{J}^{0}\right)\right] .
\end{aligned}
$$

- Computational complexity is $\mathcal{O}(N \log N)$, with a coefficient $7 / 5=1.4$ times greater that for pseudospectral collocation.

Inviscid equipartition of a 31×31 pseudospectrally reduced simulation with radix $r=3$.

Direct cascade.

Inverse cascade.

Conclusions

- Spectral reduction affords a dramatic reduction in the number of degrees of freedom that must be explicitly evolved in turbulence simulations.

Conclusions

- Spectral reduction affords a dramatic reduction in the number of degrees of freedom that must be explicitly evolved in turbulence simulations.
- One can evolve a turbulent system for thousands of eddy turnover times to obtain energy spectra smooth enough to compare with theory.

Conclusions

- Spectral reduction affords a dramatic reduction in the number of degrees of freedom that must be explicitly evolved in turbulence simulations.
- One can evolve a turbulent system for thousands of eddy turnover times to obtain energy spectra smooth enough to compare with theory.
- Recognizing that spectral reduction yields correct inviscid equipartition spectra only with uniform binning and restricting our attention to this case only, an efficient FFT-based implementation, which we call pseudospectral reduction, is proposed.

Conclusions

- Spectral reduction affords a dramatic reduction in the number of degrees of freedom that must be explicitly evolved in turbulence simulations.
- One can evolve a turbulent system for thousands of eddy turnover times to obtain energy spectra smooth enough to compare with theory.
- Recognizing that spectral reduction yields correct inviscid equipartition spectra only with uniform binning and restricting our attention to this case only, an efficient FFT-based implementation, which we call pseudospectral reduction, is proposed.
- Even with uniform binning, the resulting energy spectrum is much closer to the predictions of the full dynamics than, say, the spectrum obtained by simply using a smaller spatial domain (larger mode spacing).
- We have recently generalized our efficient FFTW++ [Bowman \& Roberts 2011] library to support implicitly dealiased 2D coarse-grained Hermitian convolutions:
http://fftwpp.sourceforge.net
- We have recently generalized our efficient FFTW++ [Bowman \& Roberts 2011] library to support implicitly dealiased 2D coarse-grained Hermitian convolutions:

http://fftwpp.sourceforge.net

- Spectral reduction could be used to develop a reliable dynamic subgrid model: Malcolm Roberts' recent Ph.D. thesis (2011) explores ways to couple a pseudospectrally reduced subgrid model to a large-eddy simulation.

References

[Bowman \& Roberts 2010] J. C. Bowman \& M. Roberts, "FFTW++: A fast Fourier transform C ${ }^{++}$header class for the FFTW3 library," http://fftwpp. sourceforge.net, 2010.
[Bowman \& Roberts 2011] J. C. Bowman \& M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.
[Bowman et al. 1996] J. C. Bowman, B. A. Shadwick, \& P. J. Morrison, "Spectral reduction for two-dimensional turbulence," in Transport, Chaos, and Plasma Physics 2, edited by S. Benkadda, F. Doveil, \& Y. Elskens, pp. 58-73, New York, 1996, Institute Méditerranéen de Technologie (Marseille, 1995), World Scientific.
[Bowman et al. 2001] J. C. Bowman, B. A. Shadwick, \& P. J. Morrison, "Numerical challenges for turbulence computation: Statistical equipartition and the method of spectral reduction," in Scientific Computing and Applications, edited by P. Minev, Y. S. Wong, \& Y. Lin, volume 7 of Advances in Computation: Theory and Practice, pp. 171-178, Huntington, New York, 2001, Nova Science Publishers.
[Novikov 1964] E. A. Novikov, J. Exptl. Theoret. Phys. (U.S.S.R), 47:1919, 1964.

