Recent Advances in the Pseudospectral Method

John C. Bowman
University of Alberta

Dec 8, 2015
www.math.ualberta.ca/~bowman/talks
Acknowledgements: Malcolm Roberts (Université de Strasbourg)

Pseudospectral Method

- Pseudospectral simulations are a widely used numerical tool for the study of fluid turbulence:
- Fast $N \log N$ scaling for N modes.
- Spectral accuracy: more accurate than finite-difference or finite-element methods.
- Ideal choice for studying homogenous turbulence with periodic boundary conditions.
- Generalizations such as Chebyshev collocation and penalty methods allow them to handle more complicated boundary conditions and geometries.
- However, in many cases pseudospectral methods do not parallelize well on massively parallel distributed architectures due to the communication costs of the parallel transpose.

Dealiasing

- Patterson and Orszag pioneered the pseudospectral method over 40 years ago.
- They emphasized that the convolution theorem necessitates dealiasing unwanted harmonics arising from the periodicity of the discrete Fourier transform.

Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the discrete cyclic convolution

$$
\sum_{p=0}^{N-1} F_{p} G_{k-p}
$$

where the vectors F and G have period N.

- Define the N th primitive root of unity:

$$
\zeta_{N}=\exp \left(\frac{2 \pi i}{N}\right)
$$

- The fast Fourier transform method exploits the properties that $\zeta_{N}^{r}=\zeta_{N / r}$ and $\zeta_{N}^{N}=1$.
- However, the pseudospectral method requires a linear convolution.
- The unnormalized backwards discrete Fourier transform of $\left\{F_{k}: k=0, \ldots, N\right\}$ is

$$
f_{j} \doteq \sum_{k=0}^{N-1} \zeta_{N}^{j k} F_{k} \quad j=0, \ldots, N-1
$$

- The corresponding forward transform is

$$
F_{k} \doteq \frac{1}{N} \sum_{j=0}^{N-1} \zeta_{N}^{-k j} f_{j} \quad k=0, \ldots, N-1
$$

- The orthogonality of this transform pair follows from

$$
\sum_{j=0}^{N-1} \zeta_{N}^{\ell j}= \begin{cases}N & \text { if } \ell=s N \text { for } s \in \mathbb{Z} \\ \frac{1-\zeta_{N}^{\ell N}}{1-\zeta_{N}^{\ell}}=0 & \text { otherwise }\end{cases}
$$

Convolution Theorem

$$
\begin{aligned}
\sum_{j=0}^{N-1} f_{j} g_{j} \zeta_{N}^{-j k} & =\sum_{j=0}^{N-1} \zeta_{N}^{-j k}\left(\sum_{p=0}^{N-1} \zeta_{N}^{j p} F_{p}\right)\left(\sum_{q=0}^{N-1} \zeta_{N}^{j q} G_{q}\right) \\
& =\sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_{p} G_{q} \sum_{j=0}^{N-1} \zeta_{N}^{(-k+p+q) j} \\
& =N \sum_{s} \sum_{p=0}^{N-1} F_{p} G_{k-p+s N}
\end{aligned}
$$

- The terms indexed by $s \neq 0$ are aliases; we need to remove them!
- If only the first m entries of the input vectors are nonzero, aliases can be avoided by zero padding input data vectors of length m to length $N \geq 2 m-1$.
- Explicit zero padding prevents mode $m-1$ from beating with itself and wrapping around to contaminate mode $N=0 \bmod N$.
- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

$$
\left\{F_{k}\right\}_{k=0}^{m-1}
$$

\square

- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

Implicit Padding

- Let $N=2 m$. For $j=0, \ldots, 2 m-1$ we want to compute

$$
f_{j}=\sum_{k=0}^{2 m-1} \zeta_{2 m}^{j k} F_{k}
$$

- If $F_{k}=0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$
\begin{aligned}
f_{2 \ell} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{2 \ell k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} F_{k}, \\
f_{2 \ell+1} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{(2 \ell+1) k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} \zeta_{2 m}^{k} F_{k}, \quad \ell=0,1, \ldots m-1 .
\end{aligned}
$$

- This requires computing two subtransforms, each of size m, for an overall computational scaling of order $2 m \log _{2} m=$ $N \log _{2} m$.
- Odd and even terms of the convolution can then be computed separately, multiplied term-by-term, and transformed again to Fourier space:

$$
\begin{aligned}
2 m F_{k} & =\sum_{j=0}^{2 m-1} \zeta_{2 m}^{-k j} f_{j} \\
& =\sum_{\ell=0}^{m-1} \zeta_{2 m}^{-k 2 \ell} f_{2 \ell}+\sum_{\ell=0}^{m-1} \zeta_{2 m}^{-k(2 \ell+1)} f_{2 \ell+1} \\
& =\sum_{\ell=0}^{m-1} \zeta_{m}^{-k \ell} f_{2 \ell}+\zeta_{2 m}^{-k} \sum_{\ell=0}^{m-1} \zeta_{m}^{-k \ell} f_{2 \ell+1} \quad k=0, \ldots, m-1 .
\end{aligned}
$$

- No bit reversal is required at the highest level.
- A 1D implicitly padded convolution is implemented in our FFTW++ library.
- This in-place convolution was written to use six out-of-place transforms, thereby avoiding bit reversal at all levels.
- The computational complexity is $6 \mathrm{Km} \log _{2} m$.
- The numerical error is similar to explicit padding and the memory usage is identical.
$\left\{F_{k}\right\}_{k=0}^{m-1}$
$\left\{G_{k}\right\}_{k=0}^{m-1}$
- The computational complexity is $6 \mathrm{Km} \log _{2} m$.
- The numerical error is similar to explicit padding and the memory usage is identical.

- The computational complexity is $6 \mathrm{Km} \log _{2} m$.
- The numerical error is similar to explicit padding and the memory usage is identical.

- The computational complexity is $6 \mathrm{Km} \log _{2} m$.
- The numerical error is similar to explicit padding and the memory usage is identical.

Input: vector f, vector g
Output: vector f
$\mathrm{u} \leftarrow \mathrm{fft}^{-1}(\mathrm{f})$;
$\mathrm{v} \leftarrow \mathrm{fft}^{-1}(\mathrm{~g})$;
$\mathrm{u} \leftarrow \mathrm{u} * \mathrm{v} ;$
for $k=0$ to $m-1$ do
$\mathrm{f}[k] \leftarrow \zeta_{2 m}^{k} \mathrm{f}[k] ;$
$\mathrm{g}[k] \leftarrow \zeta_{2 m}^{k} \mathrm{~g}[k] ;$
end
$\mathrm{v} \leftarrow \mathrm{fft}^{-1}(\mathrm{f})$;
$\mathrm{f} \leftarrow \mathrm{fft}^{-1}(\mathrm{~g}) ;$
$\mathrm{v} \leftarrow \mathrm{v} * \mathrm{f}$;
$\mathrm{f} \leftarrow \mathrm{fft}(\mathrm{u})$;
$\mathrm{u} \leftarrow \mathrm{fft}(\mathrm{v})$;
for $k=0$ to $m-1$ do $\mathbf{f}[k] \leftarrow \mathbf{f}[k]+\zeta_{2 m}^{-k} \mathbf{u}[k] ;$
end
return $\mathrm{f} /(2 \mathrm{~m})$;

Implicit Padding in 1D

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Recursive Convolution

- Naive way to compute a multiple-dimensional convolution:

- The technique of recursive convolution allows one to avoid computing and storing the entire Fourier image of the data:

$$
\mathcal{F}_{N_{d}} \longrightarrow N_{d} \times \text { convolve }_{N_{1}, \ldots, N_{d-1}} \longrightarrow \mathcal{F}_{N_{d}}^{-1}
$$

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

Implicit Padding in 3D

Centered (Pseudospectral) Convolutions

- For a centered convolution, the Fourier origin $(k=0)$ is centered in the domain:

$$
\sum_{p=k-m+1}^{m-1} f_{p} g_{k-p}
$$

- Need to pad to $N \geq 3 m-2$ to remove aliases.
- The ratio $(2 m-1) /(3 m-2)$ of the number of physical to total modes is asymptotic to $2 / 3$ for large m.
- A Hermitian convolution arises since the input vectors are real:

$$
f_{-k}=\overline{f_{k}}
$$

Multithreaded Hermitian Convolution

- The backwards implicitly padded centered Hermitian transform appears as

$$
u_{3 \ell+r}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} w_{k, r}
$$

where

$$
w_{k, r} \doteq \begin{cases}U_{0}+\operatorname{Re} \zeta_{3}^{-r} U_{-m} & \text { if } k=0 \\ \zeta_{3 m}^{k}\left(U_{k}+\zeta_{3}^{-r} \frac{U_{m-k}}{}\right) & \text { if } 1 \leq k \leq m-1\end{cases}
$$

- We exploit the Hermitian symmetry $w_{k, r}=\overline{w_{m-k, r}}$ to reduce the problem to three complex-to-real Fourier transforms of the first $c+1$ components of $w_{k, r}$ (one for each $r=-1,0,1$), where $c \doteq\lfloor m / 2\rfloor$ zeros.
- To facilitate an in-place implementation, in our original paper [SIAM J. Sci. Comput. 33, 386 (2011)], we stored the transformed values for $r=1$ in reverse order in the upper half of the input vector.
- However, loop dependencies in the resulting algorithm prevented the top level of the 1D transforms from being multithreaded.

Multithreaded Hermitian Convolution

- Unrolling the loop to process four inputs and outputs simultaneously allows loop independence to be achieved, significantly improving performance in both the serial and parallel contexts.

Multithreaded Hermitian Convolution

- Unrolling the loop to process four inputs and outputs simultaneously allows loop independence to be achieved, significantly improving performance in both the serial and parallel contexts.

- As a result, even in 1D, implicit dealiasing of pseudospectral convolutions is now significantly faster than explicit zero padding.

1D Implicit Hermitian Convolution

Shared-Memory Parallelization

- Our implicit and explicit convolution routines have been multithreaded for shared-memory architectures.

2D Navier-Stokes Pseudospectral [1 thread]

2D Navier--Stokes Pseudospectral [4 threads]

Distributed-Memory Parallelization

- The pseudospectral method uses a matrix transpose to localize the computation of the multi-dimensional FFTs onto individual processors.
- Parallel generalized slab/pencil decompositions have recently been developed for distributed-memory architectures.
- We have compared several distributed matrix transpose algorithms, both blocking and nonblocking, under pure MPI and hybrid MPI/OpenMP architectures.
- Local transposition is not required within a single MPI node.
- We have developed an adaptive algorithm, dynamically tuned to choose the optimal block size.
8×8 Block Transpose over 8 processors

Advantages of Hybrid MPI/OpenMP

- Use hybrid OpenMPI/MPI with the optimal number of threads:
- yields larger communication block size;
- local transposition is not required within a single MPI node;
- allows smaller problems to be distributed over a large number of processors;
- for 3D FFTs, allows for more slab-like than pencil-like models, reducing the size of or even eliminating the need for a second transpose.
- sometimes more efficient (by a factor of 2) than pure MPI.
- The use of nonblocking MPI communications allows us to overlap computation with communication: this can yield up to an additional 32% performance gain for implicitly dealiased convolutions, for which a natural parallelism exists between communication and computation.

Communication Costs: Direct Transpose

- Suppose an $N \times N$ matrix is distributed over P processes with $P \mid N$.
- Direct transposition involves $P-1$ communications per process, each of size N^{2} / P^{2}, for a total per-process data transfer of

$$
\frac{P-1}{P^{2}} N^{2} .
$$

Block Transpose

- Let $P=a b$. Subdivide $N \times M$ matrix into $a \times a$ blocks each of size $N / a \times M / a$.
- Inner: Over each team of b processes, transpose the a individual $N / a \times M / a$ matrices, grouping all a communications with the same source and destination together.
- Outer: Over each team of a processes, transpose the $a \times a$ matrix of $N / a \times M / a$ blocks.

Communication Costs

- Let τ_{ℓ} be the typical latency of a message and τ_{d} be the time required to send each matrix element, so that the time to send a message consisting of n matrix elements is

$$
\tau_{\ell}+n \tau_{d}
$$

- The time required to perform a direct transpose is

$$
T_{D}=\tau_{\ell}(P-1)+\tau_{d} \frac{P-1}{P^{2}} N M=(P-1)\left(\tau_{\ell}+\tau_{d} \frac{N M}{P^{2}}\right)
$$

whereas a block transpose requires

$$
T_{B}(a)=\tau_{\ell}\left(a+\frac{P}{a}-2\right)+\tau_{d}\left(2 P-a-\frac{P}{a}\right) \frac{N M}{P^{2}}
$$

- Let $L=\tau_{\ell} / \tau_{d}$ be the effective communication block length.

Direct vs. Block Transposes

- Since

$$
T_{D}-T_{B}=\tau_{d}\left(P+1-a-\frac{P}{a}\right)\left(L-\frac{N M}{P^{2}}\right)
$$

we see that a direct transpose is preferred when $N M \geq P^{2} L$, whereas a block transpose should be used when $N M<P^{2} L$.

- To find the optimal value of a for a block transpose consider

$$
T_{B}^{\prime}(a)=\tau_{d}\left(1-\frac{P}{a^{2}}\right)\left(L-\frac{N M}{P^{2}}\right)
$$

- For $N M<P^{2} L$, we see that T_{B} is convex, with a minimum at $a=\sqrt{P}$.

Optimal Number of Threads

- The minimum value of T_{B} is

$$
\begin{aligned}
T_{B}(\sqrt{P}) & =2 \tau_{d}(\sqrt{P}-1)\left(L+\frac{N M}{P^{3 / 2}}\right) \\
& \sim 2 \tau_{d} \sqrt{P}\left(L+\frac{N M}{P^{3 / 2}}\right), \quad P \gg 1 .
\end{aligned}
$$

- The global minimum of T_{B} over both a and P occurs at

$$
P \approx(2 N M / L)^{2 / 3}
$$

- If the matrix dimensions satisfy $N M>L$, as is typically the case, this minimum occurs above the transition value $(N M / L)^{1 / 2}$.

Transpose Communication Costs

Optimal Number of Threads: 1024×1024

Optimal Number of Threads: 4096×4096

Windowed Time Averages

- Suppose we evolve an equation of the form

$$
\frac{d \omega_{k}}{d t}=S_{k}
$$

- Once a statistically stationary state has been achieved, we may want to compute windowed time averages of moments like $\left|\omega_{k}\right|^{n}$ and $S_{\boldsymbol{k}} \omega_{\boldsymbol{k}}^{*}$.
- But the saturation time is not normally known until after the simulation is completed.

Dynamic Moment Averaging

- Advantageous to precompute time-integrated moments like

$$
M_{n}(t)=\int_{0}^{t}\left|\omega_{k}(\tau)\right|^{n} d \tau
$$

- This can be accomplished done by evolving

$$
\frac{d M_{n}}{d t}=\left|\omega_{k}\right|^{n}
$$

along with the vorticity ω_{k} itself, using the same temporal discretization.

- These evolved quantities M_{n} can be used to extract accurate statistical averages during the post-processing phase, once the saturation time t_{1} has been determined by the user:

$$
\int_{t_{1}}^{t_{2}}\left|\omega_{\boldsymbol{k}}\right|^{n}(\tau) d \tau=M_{n}\left(t_{2}\right)-M_{n}\left(t_{1}\right)
$$

Enstrophy Balance

$$
\frac{\partial \omega_{k}}{\partial t}+\nu k^{2} \omega_{k}=S_{k}+f_{k}
$$

- Multiply by ω_{k}^{*} and integrate over wavenumber angle \Rightarrow enstrophy spectrum $Z(k)$ evolves as:

$$
\frac{\partial}{\partial t} Z(k)+2 \nu k^{2} Z(k)=2 T(k)+G(k)
$$

where $T(k)$ and $G(k)$ are the corresponding angular averages of $\operatorname{Re}\left\langle S_{\boldsymbol{k}} \omega_{\boldsymbol{k}}^{*}\right\rangle$ and $\operatorname{Re}\left\langle f_{\boldsymbol{k}} \omega_{\boldsymbol{k}}^{*}\right\rangle$.

Nonlinear Enstrophy Transfer Function

$$
\frac{\partial}{\partial t} Z(k)+2 \nu k^{2} Z(k)=2 T(k)+G(k) .
$$

- Let

$$
\Pi(k) \doteq 2 \int_{k}^{\infty} T(p) d p
$$

represent the nonlinear transfer of enstrophy into $[k, \infty)$.

- Integrate from k to ∞ :

$$
\frac{d}{d t} \int_{k}^{\infty} Z(p) d p=\Pi(k)-\epsilon_{Z}(k)
$$

where $\epsilon_{Z}(k) \doteq 2 \nu \int_{k}^{\infty} p^{2} Z(p) d p-\int_{k}^{\infty} G(p) d p$ is the total enstrophy transfer, via dissipation and forcing, out of wavenumbers higher than k.

- A positive (negative) value for $\Pi(k)$ represents a flow of enstrophy to wavenumbers higher (lower) than k.
- When $\nu=0$ and $f_{k}=0$:

$$
0=\frac{d}{d t} \int_{0}^{\infty} Z(p) d p=2 \int_{0}^{\infty} T(p) d p
$$

so that

$$
\Pi(k)=2 \int_{k}^{\infty} T(p) d p=-2 \int_{0}^{k} T(p) d p
$$

- Note that $\Pi(0)=\Pi(\infty)=0$.
- In a steady state, $\Pi(k)=\epsilon_{Z}(k)$.
- This provides an excellent numerical diagnostic for determining the saturation time t_{1}.

Forcing at $k=2$, friction for $k<3$, viscosity for $k \geq k_{H}=300$ (1023×1023 dealiased modes)

$\longrightarrow k_{H}=300$
$\longrightarrow k_{H}=0$

$$
\begin{aligned}
& k_{H}=300 \\
& k_{H}=0
\end{aligned}
$$

Cutoff viscosity ($k \geq k_{H}=300$)

Cutoff viscosity $\left(k \geq k_{H}=300\right)$

Molecular viscosity $\left(k \geq k_{H}=0\right)$

Conservative Integration

- Conservative integration [SIAM J. Appl. Math 59, 1112 (1999)] provides a useful diagnostic technique for ensuring that the underlying dynamical symmetries have been correctly implemented.

Conclusions

- For centered convolutions in d dimensions implicit padding asymptotically uses $(2 / 3)^{d-1}$ of the conventional storage.
- The factor of 2 speedup is largely due to increased data locality.
- Highly optimized and parallelized implicit dealiasing routines have been implemented as a software layer FFTW++ (v 2.00) on top of the FFTW library and released under the Lesser GNU Public License: http://fftwpp.sourceforge.net/
- The advent of implicit dealiasing of convolutions makes overlapping transposition with FFT computation feasible.
- Dynamic moment averaging allows the integration time window to be specified by the user a posteriori. The cumulative enstrophy transfer function is an excellent diagnostic for determining the saturation time.
- Writing of a high-performance dealiased pseudospectral code is now a relatively straightforward exercise!

References

[Bowman \& Roberts 2011] J. C. Bowman \& M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.
[Bowman \& Roberts 2013] J. C. Bowman \& M. Roberts, submitted to Parallel computing, 2013.
[Orszag 1971] S. A. Orszag, Journal of the Atmospheric Sciences, 28:1074, 1971.
[Shadwick et al. 1999] B. A. Shadwick, J. C. Bowman, \& P. J. Morrison, SIAM J. Appl. Math., 59:1112, 1999.

