Structure-Preserving Discretizations of Initial-Value Problems

John C. Bowman (University of Alberta)

March 29, 2012
www.math.ualberta.ca/~bowman/talks

Outline

- Structure-Preserving Discretizations
- Symplectic Integrators
- Conservative Integrators
- Exponential Integrators
- Exponential Euler
- History
- Generalizations
- Stationary Green Function
- Higher-Order
- Vector Case
- Lagrangian Discretizations
- Charged Particle in Electromagnetic Fields
- Embedded Exponential Runge-Kutta (3,2) Pair
- Conclusions

Initial Value Problems

\bullet Given $\boldsymbol{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$, suppose $\boldsymbol{x} \in \mathbb{R}^{n}$ evolves according to

$$
\frac{d \boldsymbol{x}}{d t}=\boldsymbol{f}(\boldsymbol{x}, t)
$$

with the initial condition $\boldsymbol{x}(0)=\boldsymbol{x}_{0}$.

- If $n=2 k$ and $\boldsymbol{x}=(\boldsymbol{q}, \boldsymbol{p})$ where $\boldsymbol{q}, \boldsymbol{p} \in \mathbb{R}^{k}$ satisfy

$$
\begin{aligned}
\frac{d \boldsymbol{q}}{d t} & =\frac{\partial H}{\partial \boldsymbol{p}} \\
\frac{d \boldsymbol{p}}{d t} & =-\frac{\partial H}{\partial \boldsymbol{q}}
\end{aligned}
$$

for some function $H(\boldsymbol{q}, \boldsymbol{p}, t): \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, we say that Eq. () is Hamiltonian.

- Often, the Hamiltonian H has no explicit dependence on t.

Structure-Preserving Discretizations

- Symplectic integration: conserves phase space structure of Hamilton's equations; the time step map is a canonical transformation. [Ruth 1983], [Channell \& Scovel 1990], [Sanz-Serna \& Calvo 1994]
- Conservative integration: conserves first integrals. [Bowman et al. 1997], [Shadwick et al. 1999], [Kotovych \& Bowman 2002]
- Positivity: preserves positive semi-definiteness of covariance matrices. [Bowman \& Krommes 1997]
- Unitary integration: conserves trace of probability density matrix. [Shadwick \& Buell 1997]
- Exponential integrators: Operator splitting yields exact evolution on linear time scale.

Symplectic vs. Conservative Integration

Theorem 1 (Ge and Marsden 1988) $A \quad C^{1} \quad$ symplectic map M with no explicit time-dependence will conserve a C^{1} time-independent Hamiltonian $H: \mathbb{R}^{n} \rightarrow \mathbb{R} \Longleftrightarrow M$ is identical to the exact evolution, up to a reparametrization of time.

Proof:

- A C^{1} symplectic scheme is a canonical map M corresponding to some approximate C^{1} Hamiltonian $\tilde{H}_{\tau}(\boldsymbol{x}, t): \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, where the label τ denotes the time step.
- If the mapping M does not depend explicitly on time, it can be generated by the approximate Hamiltonian $K(\boldsymbol{x})=\tilde{H}_{\tau}(\boldsymbol{x}, 0)$.
- Suppose the symplectic map conserves the true Hamiltonian H

$$
0=\frac{d H}{d t}=\frac{\partial H}{\partial q_{i}} \frac{d q_{i}}{d t}+\frac{\partial H}{\partial p_{i}} \frac{d p_{i}}{d t}+\frac{\partial H /}{\partial t t}=[H, K],
$$

where

$$
[H, K]=\frac{\partial H}{\partial q_{i}} \frac{\partial K}{\partial p_{i}}-\frac{\partial H}{\partial p_{i}} \frac{\partial K}{\partial q_{i}}
$$

- Implicit function theorem: in a neighbourhood of $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$
\exists a C^{1} function $\phi: \mathbb{R} \rightarrow \mathbb{R} \ni$

$$
H(\boldsymbol{x})=\phi(K(\boldsymbol{x})) \quad \text { or } \quad K(\boldsymbol{x})=\phi(H(\boldsymbol{x})) \Longleftrightarrow[H, K]=0 .
$$

- Consequently, the trajectories in \mathbb{R}^{n} generated by the Hamiltonians H and K coincide.
Q.E.D.

Conservative Integration

- Traditional numerical discretizations of nonlinear initial value problems are based on polynomial functions of the time step.
- They typically yield spurious secular drifts of nonlinear first integrals of motion (e.g. total energy).
\Rightarrow the numerical solution will not remain on the energy surface defined by the initial conditions!
- There exists a class of nontraditional explicit algorithms that exactly conserve nonlinear invariants to all orders in the time step (to machine precision).

Three-Wave Problem

- Truncated Fourier-transformed Euler equations for an inviscid 2D fluid:

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=f_{1}=M_{1} x_{2} x_{3}, \\
& \frac{d x_{2}}{d t}=f_{2}=M_{2} x_{3} x_{1}, \\
& \frac{d x_{3}}{d t}=f_{3}=M_{3} x_{1} x_{2},
\end{aligned}
$$

where $M_{1}+M_{2}+M_{3}=0$.

- Then

$$
\sum_{k} f_{k} x_{k}=0 \Rightarrow \text { energy } E \doteq \frac{1}{2} \sum_{k} x_{k}^{2} \text { is conserved. }
$$

Secular Energy Growth

- Energy is not conserved by conventional discretizations.
- The Euler method,

$$
x_{k}(t+\tau)=x_{k}(t)+\tau f_{k}
$$

yields a monotonically increasing new energy:

$$
\begin{aligned}
E(t+\tau) & =\frac{1}{2} \sum_{k}\left[x_{k}^{2}+2 \tau f_{k} x_{k}+\tau^{2} S_{k}^{2}\right] \\
& =E(t)+\frac{1}{2} \tau^{2} \sum_{k} S_{k}^{2}
\end{aligned}
$$

Conservative Euler Algorithm

- Determine a modification of the original equations of motion leading to exact energy conservation:

$$
\frac{d x_{k}}{d t}=f_{k}+g_{k}
$$

- Euler's method predicts the new energy

$$
\begin{aligned}
E(t+\tau) & =\frac{1}{2} \sum_{k}\left[x_{k}+\tau\left(f_{k}+g_{k}\right)\right]^{2} \\
& =E(t)+\frac{1}{2} \sum_{k} \underbrace{\left[2 \tau g_{k} x_{k}+\tau^{2}\left(f_{k}+g_{k}\right)^{2}\right]}_{\text {set to } 0} .
\end{aligned}
$$

- Solving for g_{k} yields the C-Euler discretization:

$$
x_{k}(t+\tau)=\operatorname{sgn} x_{k}(t+\tau) \sqrt{x_{k}^{2}+2 \tau f_{k} x_{k}} .
$$

- Reduces to Euler's method as $\tau \rightarrow 0$:

$$
\begin{aligned}
x_{k}(t+\tau) & =x_{k} \sqrt{1+2 \tau \frac{f_{k}}{x_{k}}} \\
& =x_{k}+\tau f_{k}+\mathcal{O}\left(\tau^{2}\right) .
\end{aligned}
$$

- C-Euler is just the usual Euler algorithm applied to

$$
\frac{d x_{k}^{2}}{d t}=2 f_{k} x_{k}
$$

Lemma 1 Let \boldsymbol{x} and \boldsymbol{c} be vectors in \mathbb{R}^{n}. If $\boldsymbol{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ has values orthogonal to \boldsymbol{c}, so that $I=\boldsymbol{c} \cdot \boldsymbol{x}$ is a linear invariant of

$$
\frac{d \boldsymbol{x}}{d t}=\boldsymbol{f}(\boldsymbol{x}, t)
$$

then each stage of the explicit m-stage discretization

$$
\boldsymbol{x}_{i}=\boldsymbol{x}_{0}+\tau \sum_{j=0}^{i-1} a_{i j} \boldsymbol{f}\left(\boldsymbol{x}_{j}, t+a_{i} \tau\right), \quad i=1, \ldots, m
$$

also conserves I, where τ is the time step and $a_{i j} \in \mathbb{R}$.

Higher-Order Conservative Integration

- Find a transformation $\boldsymbol{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that the nonlinear invariants are linear functions of $\xi=T(x)$.
- The new value of \boldsymbol{x} is then obtained by inverse transformation:

$$
\boldsymbol{x}(t+\tau)=\boldsymbol{T}^{-1}(\boldsymbol{\xi}(t+\tau))
$$

- Problem: T may not be invertible!
- Solution 1: Reduce the time step.
- Solution 2: Use a traditional integrator for that time step.
- Solution 3: Use an implicit backwards step [Shadwick \& Bowman SIAM J. Appl. Math. 59, 1112 (1999), Appendix A].
- Only the final corrector stage needs to be computed in the transformed space.

Error Analysis: 1D Autonomous Case

- Exact solution (everything on RHS evaluated at x_{0}):

$$
x(t+\tau)=x_{0}+\tau f+\frac{\tau^{2}}{2} f^{\prime} f+\frac{\tau^{3}}{6}\left(f^{\prime \prime} f^{2}+f^{\prime 2} f\right)+\mathcal{O}\left(\tau^{4}\right)
$$

- When $T^{\prime}\left(x_{0}\right) \neq 0$, C-PC yields the solution

$$
x(t+\tau)=x_{0}+\tau f+\frac{\tau^{2}}{2} f^{\prime} f+\frac{\tau^{3}}{4}\left(f^{\prime \prime} f^{2}+\frac{T^{\prime \prime \prime}}{3 T^{\prime}} f^{3}\right)+\mathcal{O}\left(\tau^{4}\right),
$$

where all of the derivatives are evaluated at x_{0}.

- On setting $T(x)=x$, the $\mathrm{C}-\mathrm{PC}$ solution reduces to the conventional PC.
- C-PC and PC are both accurate to second order in τ; for $T(x)=x^{2}$, they agree through third order in τ.

Singular Case

- When $T^{\prime}\left(x_{0}\right)=0$, the conservative corrector reduces to

$$
x(t+\tau)=T^{-1}\left(T\left(x_{0}\right)+\frac{\tau}{2} T^{\prime}(\tilde{x}) f(\tilde{x})\right)
$$

- If T and f are analytic, the existence of a solution is guaranteed as $\tau \rightarrow 0^{+}$if the points at which T^{\prime} vanishes are isolated.

Four-Body Choreography

PC, symplectic SKP, and C-PC solutions

Conservative Symplectic Integrators

- Conservative variational symplectic integrators based on explicitly time-dependent symplectic maps have been proposed for certain mechanics problems. [Kane, Marsden, and Ortiz 1999]
- These integrators circumvent the conditions of the Ge-Marsden theorem!

Exponential Integrators

- Typical stiff nonlinear initial value problem:

$$
\frac{d y}{d t}+\eta y=f(t, y), \quad y(0)=y_{0} .
$$

- Stiff: Nonlinearity f varies slowly in t compared with the value of the linear coefficient η :

$$
\left|\frac{1}{f} \frac{d f}{d t}\right| \ll|\eta|
$$

- Goal: Solve on the linear time scale exactly; avoid the linear time-step restriction $\eta \tau \ll 1$.
- In the presence of nonlinearity, straightforward integrating factor methods (cf. Lawson 1967) do not remove the explicit restriction on the linear time step τ.
- Instead, discretize the perturbed problem with a scheme that is exact on the time scale of the solvable part.

Exponential Euler Algorithm

- Express exact evolution of y in terms of $P(t)=e^{\eta t}$:

$$
y(t)=P^{-1}(t)\left(y_{0}+\int_{0}^{t} f P d \bar{t}\right)
$$

- Change variables: $P d \bar{t}=\eta^{-1} d P \Rightarrow$

$$
y(t)=P^{-1}(t)\left(y_{0}+\eta^{-1} \int_{1}^{P(t)} f d P\right)
$$

- Rectangular approximation of integral \Rightarrow Exponential Euler:

$$
y_{i+1}=P^{-1}\left(y_{i}+\frac{P-1}{\eta} f_{i}\right)
$$

where $P=e^{\eta \tau}$ and τ is the time step.

- The discretization is now with respect to P instead of t.

Exponential Euler Algorithm (E-Euler)

$$
y_{i+1}=e^{-\eta \tau} y_{i}+\frac{1-e^{-\eta \tau}}{\eta} f\left(y_{i}\right)
$$

- Also called Exponentially Fitted Euler, ETD Euler, filtered Euler, Lie-Euler.
- As $\tau \rightarrow 0$ the Euler method is recovered:

$$
y_{i+1}=y_{i}+\tau f\left(y_{i}\right)
$$

- If E-Euler has a fixed point, it must satisfy $y=\frac{f(y)}{\eta}$; this is then a fixed point of the ODE.
- In contrast, the popular Integrating Factor method (I-Euler).

$$
y_{i+1}=e^{-\eta \tau}\left(y_{i}+\tau f_{i}\right)
$$

can at best have an incorrect fixed point: $y=\frac{\tau f(y)}{e^{\eta \tau}-1}$.

Comparison of Euler Integrators

$$
\frac{d y}{d t}+y=\cos y, \quad y(0)=1 .
$$

History

- Certaine [1960]: Exponential Adams-Moulton
- Nørsett [1969]: Exponential Adams-Bashforth
- Verwer [1977] and van der Houwen [1977]: Exponential linear multistep method
- Friedli [1978]: Exponential Runge-Kutta
- Hochbruck et al. [1998]: Exponential integrators up to order 4
- Beylkin et al. [1998]: Exact Linear Part (ELP)
- Cox \& Matthews [2002]: ETDRK3, ETDRK4; worst case: stiff order 2
- Lu [2003]: Efficient Matrix Exponential
- Hochbruck \& Ostermann [2005a], Hochbruck \& Ostermann [2005b]: Explicit Exponential Runge-Kutta; stiff order conditions.

Generalization

- Let \mathcal{L} be a linear operator with a stationary Green's function $G\left(t, t^{\prime}\right)=G\left(t-t^{\prime}\right):$

$$
\frac{\partial G\left(t, t^{\prime}\right)}{\partial t}+\mathcal{L} G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right)
$$

- Let f be a continuous function of y. Then the ODE

$$
\frac{d y}{d t}+\mathcal{L} y=f(y), \quad y(0)=y_{0}
$$

has the formal solution

$$
y(t)=e^{-\int_{0}^{t} \mathcal{L} d t^{\prime}} y_{0}+\int_{0}^{t} G\left(t-t^{\prime}\right) f\left(y\left(t^{\prime}\right)\right) d t^{\prime}
$$

- Letting $s=t-t^{\prime}$:

$$
y(t)=e^{-\int_{0}^{t} \mathcal{L} d t^{\prime}} y_{0}+\int_{0}^{t} G(s) f(y(t-s)) d s
$$

- Change integration variable to $h=H(s)=\int_{0}^{s} G(\bar{s}) d \bar{s}$:

$$
y(t)=e^{-\int_{0}^{t} \mathcal{L} d t^{\prime}} y_{0}+\int_{1}^{H(t)} f\left(y\left(t-H^{-1}(h)\right)\right) d h
$$

- Rectangular rule \Rightarrow Predictor (Euler):

$$
\widetilde{y}(t) \approx e^{-\int_{0}^{t} \mathcal{L} d t^{\prime}} y_{0}+f(y(0)) H(t)
$$

- Trapezoidal rule \Rightarrow Corrector:

$$
y(t) \approx e^{-\int_{0}^{t} \mathcal{L} d t^{\prime}} y_{0}+\frac{f(y(0))+f(\widetilde{y}(t))}{2} H(t)
$$

Other Generalizations

- Higher-order exponential integrators: Hochbruck et al. [1998], Cox \& Matthews [2002], Hochbruck \& Ostermann [2005a], Bowman et al. [2006].
- Vector case (matrix exponential $\boldsymbol{P}=e^{\eta t}$).
- Exponential versions of Conservative Integrators [Bowman et al. 1997], [Shadwick et al. 1999], [Kotovych \& Bowman 2002].
- Lagrangian discretizations of advection equations are also exponential integrators:

$$
\frac{\partial u}{\partial t}+v \frac{\partial}{\partial x} u=f(x, t, u), \quad u(x, 0)=u_{0}(x)
$$

- η now represents the linear operator $v \frac{\partial}{\partial x}$
$\mathcal{P}^{-1} u=e^{-t v \frac{\partial}{\partial x}} u$ corresponds to the Taylor series of $u(x-v t)$.

Higher-Order Integrators

- General s-stage Runge-Kutta scheme:

$$
y_{i}=y_{0}+\tau \sum_{j=0}^{i-1} a_{i j} f\left(y_{j}, t+b_{j} \tau\right), \quad(i=1, \ldots, s)
$$

- Butcher Tableau ($\mathrm{s}=4$):

$$
\begin{array}{l|llll}
b_{0} & a_{10} & & & \\
b_{1} & a_{20} & a_{21} & & \\
b_{2} & a_{30} & a_{31} & a_{32} & \\
b_{3} & a_{40} & a_{41} & a_{42} & a_{43}
\end{array}
$$

Higher-Order Exponential Integrators

$$
\frac{d y}{d t}+\eta y=f(t, y), \quad y(0)=y_{0}
$$

- Let $x=e^{\eta t}, u=x y$. Then $d x / d t=\eta x$, so that

$$
\frac{d u}{d x}=\frac{d(x y)}{d x}=y+x \frac{d t}{d x} \frac{d y}{d t}=y+\frac{1}{\eta}(f-\eta y)=\frac{f}{\eta}
$$

- Apply conventional integrator to

$$
\frac{d u}{d x}=\frac{f}{\eta} .
$$

- When y is evolved from $t=0$ to $t=\tau$, the new independent variable goes from $x=1$ to $x=e^{\eta \tau}$.

Vector Case

- When \boldsymbol{y} is a vector, $\boldsymbol{\nu}$ is typically a matrix:

$$
\frac{d \boldsymbol{y}}{d t}+\boldsymbol{\nu} \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{y}) .
$$

- Let $\boldsymbol{z}=-\boldsymbol{\nu} \tau$. Discretization involves

$$
\varphi_{1}(\boldsymbol{z})=\boldsymbol{z}^{-1}\left(e^{\boldsymbol{z}}-\mathbf{1}\right)
$$

- Higher-order exponential integrators require

$$
\varphi_{j}(\boldsymbol{z})=\boldsymbol{z}^{-j}\left(e^{\boldsymbol{z}}-\sum_{k=0}^{j-1} \frac{\boldsymbol{z}^{k}}{k!}\right)
$$

- Exercise care when \boldsymbol{z} has an eigenvalue near zero!
- Although a variable time step requires re-evaluation of the matrix exponential, this is not an issue for problems where the evaluation of the nonlinear term dominates the computation.
- Pseudospectral turbulence codes: diagonal matrix exponential.

Charged Particle in Electromagnetic Fields

- Lorentz force:

$$
\frac{m}{q} \frac{d \boldsymbol{v}}{d t}=\frac{1}{c} \boldsymbol{v} \times \boldsymbol{B}+\boldsymbol{E} .
$$

- Efficiently compute the matrix exponential $\exp (\boldsymbol{\Omega})$, where

$$
\boldsymbol{\Omega}=-\frac{q}{m c} \tau\left(\begin{array}{ccc}
0 & B_{z} & -B_{y} \\
-B_{z} & 0 & B_{x} \\
B_{y} & -B_{x} & 0
\end{array}\right) .
$$

- Requires 2 trigonometric functions, 1 division, 1 square root, and 35 additions or multiplications.
- The other necessary matrix factor, $\boldsymbol{\Omega}^{-1}[\exp (\boldsymbol{\Omega})-\mathbf{1}]$ requires care, since $\boldsymbol{\Omega}$ is singular. Evaluate it as

$$
\lim _{\lambda \rightarrow 0}\left[(\boldsymbol{\Omega}+\lambda \mathbf{1})^{-1}\left(e^{\boldsymbol{\Omega}}-\mathbf{1}\right)\right]
$$

Motion Under Lorentz Force

Exact, PC, E-PC trajectories of a particle under Lorentz force.

Bogacki-Shampine $(3,2)$ Pair

- Embedded 4-stage pair [Bogacki \& Shampine 1989]:

- Since $f\left(y_{3}\right)$ is just f at the initial y_{0} for the next time step, no additional source evaluation is required to compute y_{4} [FSAL].

An Embedded 4-Stage (3,2) Exponential Pair

- Letting $\boldsymbol{z}=-\boldsymbol{\nu} \tau$ and $b_{4}=1$:

$$
\begin{aligned}
& \boldsymbol{y}_{i}=e^{-b_{i} \boldsymbol{\nu} \tau} \boldsymbol{y}_{0}+\tau \sum_{j=0}^{i-1} \boldsymbol{a}_{i j} f\left(\boldsymbol{y}_{j}, t+b_{j} \tau\right), \quad(i=1, \ldots, s) . \\
& \boldsymbol{a}_{10}=\frac{1}{2} \varphi_{1}\left(\frac{1}{2} \boldsymbol{z}\right), \\
& \boldsymbol{a}_{20}=\frac{3}{4} \varphi_{1}\left(\frac{3}{4} \boldsymbol{z}\right)-a_{21}, \boldsymbol{a}_{21}=\frac{9}{8} \varphi_{2}\left(\frac{3}{4} \boldsymbol{z}\right)+\frac{3}{8} \varphi_{2}\left(\frac{1}{2} \boldsymbol{z}\right), \\
& \boldsymbol{a}_{30}=\varphi_{1}(\boldsymbol{z})-\boldsymbol{a}_{31}-\boldsymbol{a}_{32}, \boldsymbol{a}_{31}=\frac{1}{3} \varphi_{1}(\boldsymbol{z}), \boldsymbol{a}_{32}=\frac{4}{3} \varphi_{2}(\boldsymbol{z})-\frac{2}{9} \varphi_{1}(\boldsymbol{z}), \\
& \boldsymbol{a}_{40}=\varphi_{1}(\boldsymbol{z})-\frac{17}{12} \varphi_{2}(\boldsymbol{z}), \boldsymbol{a}_{41}=\frac{1}{2} \varphi_{2}(\boldsymbol{z}), \boldsymbol{a}_{42}=\frac{2}{3} \varphi_{2}(\boldsymbol{z}), \boldsymbol{a}_{43}=\frac{1}{4} \varphi_{2}(\boldsymbol{z}) .
\end{aligned}
$$

- \boldsymbol{y}_{3} has stiff order 3 [Hochbruck and Ostermann 2005] (order is preserved even when $\boldsymbol{\nu}$ is a general unbounded linear operator).
- \boldsymbol{y}_{4} provides a second-order estimate for adjusting the time step.
- $\boldsymbol{\nu} \rightarrow \mathbf{0}$: reduces to $[3,2]$ Bogacki-Shampine Runge-Kutta pair.

Application to GOY Turbulence Shell Model

Conclusions

- Numerical discretizations that preserve physically relevant structure or known analytic properties are desirable.
- Traditional numerical discretizations of conservative systems generically yield artificial secular drifts of nonlinear invariants.
- New exactly conservative but explicit integration algorithms have been developed.
- The transformation technique is relevant to integrable and nonintegrable Hamiltonian systems and even to nonHamiltonian systems such as force-dissipative turbulence.
- Exponential integrators are explicit schemes for ODEs with a stiff linearity.
- When the nonlinear source is constant, the time-stepping algorithm is precisely the analytical solution to the corresponding first-order linear ODE.
- Unlike integrating factor methods, exponential integrators have the correct fixed point behaviour.
- We present an efficient adaptive embedded 4-stage $(3,2)$ exponential pair.
- Work is under way to develop an embedded 6-stage $(5,4)$ exponential pair.
- Care must be exercised when evaluating φ_{j} near 0. Accurate optimized double precision routines for evaluating these functions are available at
www.math.ualberta.ca/~bowman/phi.h

Asymptote: 2D \& 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince
http://asymptote.sf.net
(freely available under the GNU public license)

Asymptote Lifts TEX to 3D

Acknowledgements: Orest Shardt (U. Alberta)

References

[Beylkin et al. 1998]
[Bogacki \& Shampine 1989]
[Bowman \& Krommes 1997]
[Bowman et al. 1993]
[Bowman et al. 1997]
[Bowman et al. 2006]
[Certaine 1960]
[Channell \& Scovel 1990]
[Cox \& Matthews 2002]
[Friedli 1978]
[Ge Zhong \& Marsden 1988]
G. Beylkin, J. M. Keiser, \& L. Vozovoi, J. Comp. Phys., 147:362, 1998.
P. Bogacki \& L. F. Shampine, Appl. Math. Letters, 2:1, 1989.
J. C. Bowman \& J. A. Krommes, Phys. Plasmas, 4:3895, 1997.
J. C. Bowman, J. A. Krommes, \& M. Ottaviani, Phys. Fluids B, 5:3558, 1993.
J. C. Bowman, B. A. Shadwick, \& P. J. Morrison, "Exactly conservative integrators," in 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, edited by A. Sydow, volume 2, pp. 595-600, Berlin, 1997, Wissenschaft \& Technik.
J. C. Bowman, C. R. Doering, B. Eckhardt, J. Davoudi, M. Roberts, \& J. Schumacher, Physica D, 218:1, 2006.
J. Certaine, Math. Meth. Dig. Comp., p. 129, 1960.
P. J. Channell \& J. C. Scovel, Nonlinearity, 3:231, 1990.
S. Cox \& P. Matthews, J. Comp. Phys., 176:430, 2002.
A. Friedli, Lecture Notes in Mathematics, 631:214, 1978.

Ge Zhong \& J. E. Marsden, Phys. Lett. A, 133:134, 1988.
[Hochbruck \& Ostermann 2005a] M. Hochbruck \& A. Ostermann, SIAM J. Numer. Anal., 43:1069, 2005.
[Hochbruck \& Ostermann 2005b] M. Hochbruck \& A. Ostermann, Appl. Numer. Math., 53:323, 2005.
[Hochbruck et al. 1998]
[Kane et al. 1999]
[Kotovych \& Bowman 2002]
[Lu 2003]
[Nørsett 1969]
M. Hochbruck, C. Lubich, \& H. Selfhofer, SIAM J. Sci. Comput., 19:1552, 1998.
C. Kane, J. E. Marsden, \& M. Ortiz, J. Math. Phys., 40:3353, 1999.
O. Kotovych \& J. C. Bowman, J. Phys. A.: Math. Gen., 35:7849, 2002.
Y. Y. Lu, J. Comput. Appl. Math., 161:203, 2003.
S. Nørsett, Lecture Notes in Mathematics, 109:214, 1969.
[Ruth 1983]
[Sanz-Serna \& Calvo 1994]
[Shadwick \& Buell 1997]
[Shadwick et al. 1999]
[van der Houwen 1977]
[Verwer 1977]
R. D. Ruth, IEEE Trans. Nucl. Sci., NS-30:2669, 1983.
J. M. Sanz-Serna \& M. P. Calvo, Numerical Hamiltonian Problems, volume 7 of Applied Mathematics and Mathematical Computation, Chapman and Hall, London, 1994.
B. A. Shadwick \& W. F. Buell, Phys. Rev. Lett., 79:5189, 1997.
B. A. Shadwick, J. C. Bowman, \& P. J. Morrison, SIAM J. Appl. Math., 59:1112, 1999.
P. J. van der Houwen, Construction of integration formulas for initial value problems, NorthHolland Publishing Co., Amsterdam, 1977, North-Holland Series in Applied Mathematics and Mechanics, Vol. 19.
J. Verwer, Numer. Math., 27:143, 1977.

