
Casimir Cascades in Two-Dimensional
Turbulence

John C. Bowman (University of Alberta)

Acknowledgements:
Jahanshah Davoudi (University of Toronto)
Malcolm Roberts (University of Alberta)

September 24, 2010

www.math.ualberta.ca/∼bowman/talks
1



2



Incompressible Turbulence

•Navier–Stokes equation:

∂u

∂t
+ (u·∇)u

︸ ︷︷ ︸

advection

= −
1

ρ
∇P

︸ ︷︷ ︸

force/mass

+ ν∇2 u
︸ ︷︷ ︸

dissipation

+ F︸︷︷︸
external force

,
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Incompressible Turbulence

•Navier–Stokes equation:
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external force

,

•Continuity :

∂ρ

∂t
+∇·(ρu) = 0.

∂ρ

∂t
+∇·(ρu) = 0.

• Incompressibility :

∂ρ

∂t
+ (u·∇)ρ = 0.

•Continuity and incompressibility⇒∇·u = 0.
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• If u is continuously differentiable on a simply connected domain
(free of holes), it can be expressed in terms of a vector potential :
∇·u = 0 ⇐⇒ u = ∇×A with∇·A = 0 (Coulomb gauge).
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• If u is continuously differentiable on a simply connected domain
(free of holes), it can be expressed in terms of a vector potential :
∇·u = 0 ⇐⇒ u = ∇×A with∇·A = 0 (Coulomb gauge).

• Incompressibility: uniform initial density remains unchanged;
choose mass units so that ρ = 1.
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Energy

•Rewrite the Navier–Stokes equation as

∂u

∂t
+
1

2
∇u2 − u×(∇×u) = −∇P + ν∇2u + F ,
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Energy

•Rewrite the Navier–Stokes equation as

∂u

∂t
+
1

2
∇u2 − u×(∇×u) = −∇P + ν∇2u + F ,

•When the flow is inviscid (ν = 0) and forcing is absent (F = 0),
the energy (mean-squared velocity)E

.
= 1

2

∫
u2 dx is conserved:

dE

dt
=

∫

u·
∂u

∂t
dx = −

∫

u·

[

∇

(
u2

2
+ P

)

− u×(∇×u)

]

dx

=

∫ (
u2

2
+ P

)

∇·u dx = 0,

given zero boundary conditions at infinity (or periodic boundary
conditions).
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Pressure

•Divergence of Navier–Stokes⇒ equation for the pressure P :

∇2P = ∇·[F − (u·∇)u].
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Pressure

•Divergence of Navier–Stokes⇒ equation for the pressure P :

∇2P = ∇·[F − (u·∇)u].

•Alternative: eliminate P by taking the curl of the Navier–Stokes
equation, using ∇·u = 0 and the vector identity

∇×

[
1

2
∇u2 − u×(∇×u)

]

= −∇×(u×w) = u·∇w −w·∇u,

where the vorticity w
.
= ∇×u measures rotation in the flow.
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•Divergence of Navier–Stokes⇒ equation for the pressure P :

∇2P = ∇·[F − (u·∇)u].∇2P = ∇·[F − (u·∇)u].

•Alternative: eliminate P by taking the curl of the Navier–Stokes
equation, using ∇·u = 0 and the vector identity

∇×

[
1

2
∇u2 − u×(∇×u)

]

= −∇×(u×w) = u·∇w −w·∇u,

where the vorticity w
.
= ∇×u measures rotation in the flow.

•Take the curl of the Navier–Stokes equation:

∂u

∂t
+
1

2
∇u2 − u×(∇×u) = −∇P + ν∇2u + F

⇒
∂w

∂t
+ (u·∇)w = (w·∇)u

︸ ︷︷ ︸

vortex stretching

+ ν∇2w +∇×F .
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•Taylor–Proudman theorem: A fluid rotating rapidly about an
axis ẑ at frequency Ω tends to become uniform along that axis,
due to the Coriolis force F = −2Ω ẑ×u:

0 = ∇×(ẑ×u) = u· ∇ẑ︸︷︷︸
=0

−ẑ·∇u.
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•Taylor–Proudman theorem: A fluid rotating rapidly about an
axis ẑ at frequency Ω tends to become uniform along that axis,
due to the Coriolis force F = −2Ω ẑ×u:

0 = ∇×(ẑ×u) = u· ∇ẑ︸︷︷︸
=0

−ẑ·∇u.

•The predominant features of the flow are thus confined to 2D
planes perpendicular to the axis of rotation.
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2D Turbulence

• If u = (u, v, 0), with no dependence on the z coordinate, then
w = ωẑ and the vortex-stretching term w·∇u will vanish:

⇒
∂w

∂t
+ (u·∇)w = ν∇2w +∇×F .
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2
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2
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• If u = (u, v, 0), with no dependence on the z coordinate, then
w = ωẑ and the vortex-stretching term w·∇u will vanish:
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∫
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(
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=

∫

ω
∂ω

∂t
dx = −

∫

u·∇

(
w2

2

)

dx =

∫ (
ω2

2

)

∇·u dx = 0.

• In 2D, u and w are always perpendicular, so that the helicity
H

.
= 1

2

∫
u·w dx vanishes.

• In three dimensions, the helicity may have a nonzero value, but
that value is still conserved by the inviscid dynamics.

8



Stream Function

• In 2D, the vorticity vector is perpendicular to the plane of
motion:

ωẑ = ∇×(∇×A) = ∇(∇·A)−∇2A = −∇2A.
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Stream Function

• In 2D, the vorticity vector is perpendicular to the plane of
motion:

ωẑ = ∇×(∇×A) = ∇(∇·A)−∇2A = −∇2A.ωẑ = ∇×(∇×A) = ∇(∇·A)−∇2A = −∇2A.

•Given suitable boundary conditions, one can take Ax = Ay = 0.•Given suitable boundary conditions, one can take Ax = Ay = 0.

•Define the stream function : ψ
.
= −Az, so that

ω = ∇2ψω = ∇2ψ

•Hence

u = ∇×A = ẑ×∇ψ = ẑ×∇∇−2ψ.

• 2D turbulence may thus be cast in terms of a single scalar field ψ,
or equivalently, ω.
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2D Turbulence in Fourier Space

•Navier–Stokes equation for vorticity ω = ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −ν∇2ω + f.

10



2D Turbulence in Fourier Space

•Navier–Stokes equation for vorticity ω = ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −ν∇2ω + f.

• In Fourier space:

∂ωk

∂t
= Sk − νk

2ωk + fk,

where Sk =
∑

p

ẑ×p·k

p2
ω∗p ω

∗
−k−p.
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2D Turbulence in Fourier Space

•Navier–Stokes equation for vorticity ω = ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −ν∇2ω + f.

∂ω

∂t
+ u·∇ω = −ν∇2ω + f.

• In Fourier space:

∂ωk

∂t
= Sk − νk

2ωk + fk,

where Sk =
∑

p

ẑ×p·k

p2
ω∗p ω

∗
−k−p.

•When ν = 0 and fk = 0:

energy E = 1
2

∑

k

|ωk|
2

k2
and enstrophy Z = 1

2

∑

k

|ωk|
2 are

conserved.
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Fjørtoft Dual Cascade Scenario

k1 k2 k3
. . . Z1

E1

Z3

E3

Z2E2

. . .

E2 = E1 + E3, Z2 = Z1 + Z3, Zi ≈ k2iEi.

•When k1 = k, k2 = 2k, and k3 = 4k:

E1 ≈
4

5
E2, Z1 ≈

1

5
Z2, E3 ≈

1

5
E2, Z3 ≈

4

5
Z2.
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•When k1 = k, k2 = 2k, and k3 = 4k:

E1 ≈
4

5
E2, Z1 ≈

1

5
Z2, E3 ≈

1

5
E2, Z3 ≈

4

5
Z2.

•Fjørtoft [1953]: energy cascades to large scales and enstrophy
cascades to small scales.
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Kraichnan–Leith–Batchelor Theory

• In an infinite domain
[Kraichnan 1967], [Leith 1968], [Batchelor 1969]:

– large-scale k−5/3 energy cascade;

– small-scale k−3 enstrophy cascade.
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Kraichnan–Leith–Batchelor Theory

• In an infinite domain
[Kraichnan 1967], [Leith 1968], [Batchelor 1969]:

– large-scale k−5/3 energy cascade;

– small-scale k−3 enstrophy cascade.

• In a bounded domain, the situation may be quite different. . .
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Long-Time Behaviour in a Bounded Domain

Tran and Bowman, PRE 69, 036303, 1–7 (2004).
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Casimir Invariants

• Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.
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∫
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d

dt

∫

f(ω) dx=

∫

f ′(ω)
∂ω

∂t
dx = −

∫

f ′(ω)u·∇ω dx

=−

∫

u·∇f(ω) dx =

∫

f(ω)∇·u dx = 0.

•Do these invariants also play a fundamental role in the turbulent
dynamics, in addition to the quadratic (energy and enstrophy)
invariants? Do they exhibit cascades?

•Polyakov [1992] has suggested that the higher-order Casimir
invariants cascade to large scales, while Eyink [1996] suggests
that they might cascade to small scales.
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High-Wavenumber Truncation

•Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).

∂ωk

∂t
=
∑

p,q

ǫkpq
q2

ω∗p ω
∗
q.

where ǫkpq = (ẑ·p×q) δ(k + p + q).
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•Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).

∂ωk

∂t
=
∑

p,q

ǫkpq
q2

ω∗p ω
∗
q.

where ǫkpq = (ẑ·p×q) δ(k + p + q).

•Enstrophy evolution:

d

dt

∑

k

|ωk|
2 =

∑

k,p,q

ǫkpq
q2

ω∗kω
∗
p ω
∗
q = 0.
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• Invariance of Z3 =
∫
ω3 dx follows from:

0 =
∑

k,r,s

[
∑

p,q

ǫkpq
q2

ω∗p ω
∗
qω
∗
rω
∗
s + 2 other similar terms

]

.
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]

.

•The absence of an explicit ωk in the first term means that setting
ωl = 0 for ℓ > K breaks the symmetry in the summations!
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•However, since the missing terms involve ωp and ωq for p and q
higher than the truncation wavenumber K, one might expect
almost exact invariance of Z3 for a well-resolved simulation.
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•The absence of an explicit ωk in the first term means that setting
ωl = 0 for ℓ > K breaks the symmetry in the summations!

•This means that high-wavenumber truncation destroys the
invariance of Z3.
•This means that high-wavenumber truncation destroys the
invariance of Z3.

•However, since the missing terms involve ωp and ωq for p and q
higher than the truncation wavenumber K, one might expect
almost exact invariance of Z3 for a well-resolved simulation.

•We find that this is indeed the case.
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Enstrophy Balance

∂ωk

∂t
+ νk2ωk = Sk + fk,

•Multiply by ω∗k and integrate over wavenumber angle ⇒
enstrophy spectrum Z(k) evolves as:

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) +G(k),

where T (k) and G(k) are the corresponding angular averages of
Re 〈Skω

∗
k〉 and Re 〈fkω

∗
k〉.
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Nonlinear Enstrophy Transfer Function

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) +G(k).

•Let

Π(k)
.
= 2

∫ ∞

k

T (p) dp

represent the nonlinear transfer of enstrophy into [k,∞).
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Nonlinear Enstrophy Transfer Function

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) +G(k).

•Let

Π(k)
.
= 2

∫ ∞

k

T (p) dp

represent the nonlinear transfer of enstrophy into [k,∞).

• Integrate from k to∞:

d

dt

∫ ∞

k

Z(p) dp = Π(k)− ǫZ(k),

where ǫZ(k)
.
= 2ν

∫ ∞

k

p2Z(p) dp −

∫ ∞

k

G(p) dp is the

total enstrophy transfer, via dissipation and forcing, out of
wavenumbers higher than k.
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•A positive (negative) value for Π(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.
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0

T (p) dp.
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so that

Π(k) = 2
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k

T (p) dp = −2

∫ k

0

T (p) dp.Π(k) = 2

∫ ∞

k

T (p) dp = −2

∫ k

0

T (p) dp.

•Note that Π(0) = Π(∞) = 0.

• In a steady state, Π(k) = ǫZ(k).
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•A positive (negative) value for Π(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

•When ν = 0 and fk = 0:

0 =
d

dt

∫ ∞
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Z(p) dp = 2

∫ ∞

0

T (p) dp,

so that
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T (p) dp = −2

∫ k

0

T (p) dp.Π(k) = 2

∫ ∞

k

T (p) dp = −2

∫ k

0

T (p) dp.

•Note that Π(0) = Π(∞) = 0.•Note that Π(0) = Π(∞) = 0.

• In a steady state, Π(k) = ǫZ(k).

•This provides an excellent numerical diagnostic for when a
steady state has been reached.

19



Forcing at k = 2, friction for k < 3, viscosity for
k ≥ kH = 300 (1023× 1023 dealiased modes)
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Vorticity Field with Molecular Viscosity
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Vorticity Field with Viscosity Cutoff
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Vorticity Surface Plot with Molecular Viscosity
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Nonlinear Casimir Transfer

•Fourier decompose the fourth-order Casimir invariant

Z4 = N 3
∑

j

ω4(xj) in terms of N spatial collocation points xj:

Z4 =
∑

k,p,q

ωk ωp ωq ω−k−p−q.

d

dt
Z4=

∑

k



Sk

∑

p,q

ωp ωq ω−k−p−q + 3ωk

∑

p,q

Sp ωq ω−k−p−q





d

dt
Z4=N

2
∑

k



Sk

∑

j

ω3(xj)e
2πij·k/N + 3ωk

∑

j

S(xj)ω
2(xj)e

2πij·k/N





.
=
∑

k

T4(k). Here Sk is the nonlinear source term in ∂
∂tωk.

28



Downscale Transfer of Z4
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Nonlinear transfer Π4 of Z4 averaged over t ∈ [250, 740].
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Dealiasing: Explicit 2/4 Zero Padding

•Computing the transfer of Z4 requires a ternary convolution:
the Fourier transform of the cubic quantity ω3.
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Dealiasing: Explicit 2/4 Zero Padding

•Computing the transfer of Z4 requires a ternary convolution:
the Fourier transform of the cubic quantity ω3.

•Dealiasing a ternary convolution requires a 2/4 zero padding
rule (instead of the usual 2/3 rule for a quadratic convolution).

⇒ even though a 2048×2048 pseudospectral simulation was used,
the maximum physical wavenumber retained in each direction was
512.
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Dealiasing: Explicit 2/4 Zero Padding

•Computing the transfer of Z4 requires a ternary convolution:
the Fourier transform of the cubic quantity ω3.
•Computing the transfer of Z4 requires a ternary convolution:
the Fourier transform of the cubic quantity ω3.

•Dealiasing a ternary convolution requires a 2/4 zero padding
rule (instead of the usual 2/3 rule for a quadratic convolution).

⇒ even though a 2048×2048 pseudospectral simulation was used,
the maximum physical wavenumber retained in each direction was
512.

• Instead, use implicit padding: roughly twice as fast, 1/2 of the
memory required by conventional explicit padding.
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Discrete Convolutions

•Discrete linear convolution sums based on the fast
Fourier transform (FFT) algorithm [Gauss 1866],
[Cooley & Tukey 1965] have become important tools for:

– image filtering;

– digital signal processing;

– correlation analysis;

– pseudospectral simulations.
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Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑

p=0

FpGk−p,

where the vectors F and G have period N .
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•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑

p=0

FpGk−p,

where the vectors F and G have period N .

•Define the N th primitive root of unity:

ζN = exp

(
2πi

N

)

.
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Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑

p=0

FpGk−p,

where the vectors F and G have period N .where the vectors F and G have period N .

•Define the N th primitive root of unity:

ζN = exp

(
2πi

N

)

.

•The fast Fourier transform method exploits the properties that
ζrN = ζN/r and ζ

N
N = 1.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1∑

k=0

ζjkN Fk j = 0, . . . , N − 1.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1∑

k=0

ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑

j=0

ζ−kjN fj k = 0, . . . , N − 1.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
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=
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k=0

ζjkN Fk j = 0, . . . , N − 1.fj
.
=

N−1∑

k=0

ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑

j=0

ζ−kjN fj k = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1∑

j=0

ζℓjN =







N if ℓ = sN for s ∈ Z,
1− ζℓNN
1− ζℓN

= 0 otherwise.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
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.
=
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ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑

j=0

ζ−kjN fj k = 0, . . . , N − 1.Fk
.
=

1

N

N−1∑

j=0

ζ−kjN fj k = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1∑

j=0

ζℓjN =







N if ℓ = sN for s ∈ Z,
1− ζℓNN
1− ζℓN

= 0 otherwise.

•The pseudospectral method requires a linear convolution .
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Convolution Theorem

N−1∑

j=0

fjgjζ
−jk
N =

N−1∑

j=0

ζ−jkN





N−1∑

p=0

ζjpN Fp









N−1∑

q=0

ζjqNGq





=

N−1∑

p=0

N−1∑

q=0

FpGq

N−1∑

j=0

ζ
(−k+p+q)j
N

=N
∑

s

N−1∑

p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are aliases; we need to remove
them by ensuring that Gk−p+sN = 0 whenever s 6= 0.
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FpGk−p+sN .

•The terms indexed by s 6= 0 are aliases; we need to remove
them by ensuring that Gk−p+sN = 0 whenever s 6= 0.

• If Fp and Gk−p+sN are nonzero only for 0 ≤ p ≤ m − 1 and
0 ≤ k − p + sN ≤ m− 1, then we want k + sN ≤ 2m− 2 to
have no solutions for positive s.
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•The terms indexed by s 6= 0 are aliases; we need to remove
them by ensuring that Gk−p+sN = 0 whenever s 6= 0.
•The terms indexed by s 6= 0 are aliases; we need to remove
them by ensuring that Gk−p+sN = 0 whenever s 6= 0.

• If Fp and Gk−p+sN are nonzero only for 0 ≤ p ≤ m − 1 and
0 ≤ k − p + sN ≤ m− 1, then we want k + sN ≤ 2m− 2 to
have no solutions for positive s.

•This can be achieved by choosing N ≥ 2m− 1.
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•That is, one must zero pad input data vectors of length m to
length N ≥ 2m− 1:

{Fk}
m−1
k=0 {Gk}

m−1
k=0
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•Explicit zero padding prevents mode m− 1 from beating with
itself, wrapping around to contaminate mode N = 0modN .
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•Explicit zero padding prevents mode m− 1 from beating with
itself, wrapping around to contaminate mode N = 0modN .

• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m.
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Pruned FFTs

•Although explicit padding seems like an obvious waste of
memory and computation, the conventional wisdom on avoiding
this waste is well summed up by Steven G. Johnson, coauthor
of the FFTW (“Fastest Fourier Transform in the West”) library
[Frigo & Johnson ]:

The most common case where people seem to want
a pruned FFT is for zero-padded convolutions, where
roughly 50% of your inputs are zero (to get a linear
convolution from an FFT-based cyclic convolution).
Here, a pruned FFT is hardly worth thinking about, at
least in one dimension. In higher dimensions, matters
change (e.g. for a 3d zero-padded array about 1/8 of
your inputs are non-zero, and one can fairly easily
save a factor of two or so simply by skipping 1d sub-
transforms that are zero).
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Implicit Padding

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =
2m−1∑

k=0

ζjk2mFk.
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Implicit Padding

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =
2m−1∑

k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2ℓ=
m−1∑

k=0

ζ2ℓk2mFk =
m−1∑

k=0

ζℓkmFk,

f2ℓ+1=

m−1∑

k=0

ζ
(2ℓ+1)k
2m Fk =

m−1∑

k=0

ζℓkm ζ
k
2mFk, ℓ = 0, 1, . . . m− 1.
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Implicit Padding

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =
2m−1∑

k=0

ζjk2mFk.fj =
2m−1∑

k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2ℓ=
m−1∑

k=0

ζ2ℓk2mFk =
m−1∑

k=0

ζℓkmFk,

f2ℓ+1=

m−1∑

k=0

ζ
(2ℓ+1)k
2m Fk =

m−1∑

k=0

ζℓkm ζ
k
2mFk, ℓ = 0, 1, . . . m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.
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•Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2mFk=

2m−1∑

j=0

ζ−kj2m fj =

m−1∑

ℓ=0

ζ−k2ℓ2m f2ℓ +

m−1∑

ℓ=0

ζ
−k(2ℓ+1)
2m f2ℓ+1

=

m−1∑

ℓ=0

ζ−kℓm f2ℓ + ζ−k2m

m−1∑

ℓ=0

ζ−kℓm f2ℓ+1 k = 0, . . . ,m− 1.
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•Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:
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ζ−kℓm f2ℓ+1 k = 0, . . . ,m− 1.

•No bit reversal is required at the highest level.
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•No bit reversal is required at the highest level.

•An implicitly padded convolution is implemented as in our
FFTW++ library (version 1.07) as cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution of two complex vectors
f and g using two temporary vectors u and v, each of length m.
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•No bit reversal is required at the highest level.•No bit reversal is required at the highest level.

•An implicitly padded convolution is implemented as in our
FFTW++ library (version 1.07) as cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution of two complex vectors
f and g using two temporary vectors u and v, each of length m.

•This in-place convolution requires six out-of-place transforms,
thereby avoiding bit reversal at all levels.
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Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do

f[k]← ζk2mf[k];
g[k]← ζk2mg[k];

end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;

f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do

f[k]← f[k] + ζ−k2mu[k];
end

return f/(2m);
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2D Binary Convolution: Implicit 2/3 Zero
Padding
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2D Ternary Convolution: Implicit 2/4 Zero
Padding
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Conclusions

•Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.
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require by conventional explicit padding.
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•Numerical evidence suggests that in the enstrophy inertial range
there is a direct cascade of the globally integrated ω4 inviscid
invariant to small scales.

•Memory savings: in d dimensions implicit padding
asymptotically uses (2/3)d−1 or (1/2)d−1 of the memory
require by conventional explicit padding.

•Highly optimized versions of these routines have been
implemented as a software layer FFTW++ on top of the FFTW

library and released under the Lesser GNU Public License.
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•Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.
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•Memory savings: in d dimensions implicit padding
asymptotically uses (2/3)d−1 or (1/2)d−1 of the memory
require by conventional explicit padding.

•Highly optimized versions of these routines have been
implemented as a software layer FFTW++ on top of the FFTW

library and released under the Lesser GNU Public License.

•With the advent of this FFTW++ library, writing a high-
performance dealiased pseudospectral code is now a relatively
straightforward exercise. 42
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