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Incompressible Turbulence

e Navier—Stokes equation:

ou 1 )
E—I—QUIY)’% = —;VP + .V.V ’u, + F :
advection ~—— dissipation external force
force/mass
e Continuity:
dp
V- = 0.
e Incompressibility:
30
-V)p

e Continuity and incompressibility = V-.u = 0.



e If u is continuously differentiable on a simply connected domain

(free of holes), it can be expressed in terms of a vector potential:
Viu=0 < u=VXAwith V-A =0 (Coulomb gauge).



e If u is continuously differentiable on a simply connected domain

(free of holes), it can be expressed in terms of a vector potential:
Viu=0 < u=VXAwith V-A =0 (Coulomb gauge).

e Incompressibility: uniform initial density remains unchanged:;
choose mass units so that p = 1.
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Energy

e Rewrite the Navier—Stokes equation as

0 1
8_1:+ “Vu® —uX(VXxu)=—-VP+vVu+F,

e When the flow is inviscid (v = 0) and forcing is absent (F' = 0),
the energy (mean-squared velocity) E = % | u? dz is conserved:

/u—dm——/U°[V(%2—|—P> —uX(VXu)
_/<2 +P)V-uda:—0,

given zero boundary conditions at infinity (or periodic boundary
conditions).

dx
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Pressure

e Divergence of Navier-Stokes = equation for the pressure P:

V?P = V:[F — (u-V)u].

e Alternative: eliminate P by taking the curl of the Navier—Stokes
equation, using V-u = 0 and the vector identity

1
V X §Vu2 —uX(VXu)| = -VX(uXw)=uVw — w-Vu,

where the vorticity w = V Xu measures rotation in the flow.

e Take the curl of the Navier—Stokes equation:

0 1
a_": +5V0' —ux(Vxu) = ~VP+vVu+ F
ow 2

vortex stretching



e Taylor—Proudman theorem: A fluid rotating rapidly about an
axis z at frequency () tends to become uniform along that axis,
due to the Coriolis force F' = —2() 2z X u:

0=VX(ZXu)=u-Vz—-2-Vu.
=0



e Taylor—Proudman theorem: A fluid rotating rapidly about an
axis z at frequency () tends to become uniform along that axis,
due to the Coriolis force F' = —2() 2z X u:

0=VX(ZXu)=u-Vz—-2-Vu.
=0

e The predominant features of the flow are thus confined to 2D
planes perpendicular to the axis of rotation.



2D Turbulence

o If u = (u,v,0), with no dependence on the z coordinate, then
w = wz and the vortex-stretching term w-Vw will vanish:
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2D Turbulence

o [f u = (u,v,0), with no dependence on the z coordinate, then
w = wz and the vortex-stretching term w-Vwu will vanish:

= %—1; + (u-V)w = vV*w + VXF.

e In 2D there thus exists an additional inviscid invariant, the
enstrophy (mean-squared vorticity) Z = % [ w? de:

dz ow w? w?

e In 2D, u and w are always perpendicular, so that the helicity
H = 1 [ u-w dx vanishes.

e In three dimensions, the helicity may have a nonzero value, but
that value is still conserved by the inviscid dynamics.
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Stream Function

e In 2D, the vorticity vector is perpendicular to the plane of
motion:

wz=VX(VxA)=V(V-A) - V*A=-V*A

e Given suitable boundary conditions, one can take A, = A, = 0.

e Define the stream function: 1 = —A,, so that

w = V4

e Hence
u=VXA=2xViy=2xVV %

e 2D turbulence may thus be cast in terms of a single scalar field 1.
or equivalently, w.



2D Turbulence in Fourier Space

e Navier—Stokes equation for vorticity w = 2-V Xu:

g—j +u-Vw=—vVw+f
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2D Turbulence in Fourier Space

e Navier—Stokes equation for vorticity w = 2-V Xu:

Ow

— +u-Vw=—vViw+f

ot

e In Fourier space:
ﬁwk
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2D Turbulence in Fourier Space

e Navier—Stokes equation for vorticity w = 2-V Xu:

Ow

— +u-Vw=—-vVuw+f

ot

e In Fourier space:
5’&)].3
= = S — vk wy + fr,
o k k+ Sk
here .S g ZXpk W w
where Si = -

P2 p p

p

e When v =0 and f = 0:

Jwn|”
energy L = %Z 10
k

conserved.

and enstrophy Z = %Z \wk\Q
k

are
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Fjortoft Dual Cascade Scenario
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Fjortoft Dual Cascade Scenario

£y L
- kq - ko > ks ———
Zl ZS
Ey| Zs

Ey=FE\+E;, Zy=71+25, Zi~kE;

e When ki = k, ky = 2k, and k3 = 4k:

4 1 1 4
F,~-F AR EFe~—-F Lo 2 —.
1 5 25 1 5 25 3 5 29 3 5 2

e Fjortoft [1953]: energy cascades to large scales and enstrophy
cascades to small scales.
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Kraichnan—Leith—Batchelor Theory

e In an infinite domain

Kraichnan 1967], [Leith 1968], [Batchelor 1969):

~ large-scale k£~°/3 energy cascade:

— small-scale k73 enstrophy cascade.
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Kraichnan—Leith—Batchelor Theory

e In an infinite domain

Kraichnan 1967], [Leith 1968], [Batchelor 1969):

~ large-scale k£~°/3 energy cascade:

— small-scale k73 enstrophy cascade.

e In a bounded domain, the situation may be quite different. ..
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Long-Time Behaviour in a Bounded Domain
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Tran and Bowman, PRE 69, 036303, 1-7 (2004).



Casimir Invariants

e Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.
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Casimir Invariants

e Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.

e Any continuously differentiable function of the (scalar) vorticity
is conserved by the nonlinearity:

/f )dx = /f —da:— /f’(w)u-deac

/u V f(w) dz = /f(w)V-u dz =0,

e Do these invariants also play a fundamental role in the turbulent
dynamics, in addition to the quadratic (energy and enstrophy)
invariants? Do they exhibit cascades?”

e Polyakov [1992] has suggested that the higher-order Casimir
invariants cascade to large scales, while Eyink [1996] suggests
that they might cascade to small scales.
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High-Wavenumber Truncation

e Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).

0wy 3 e
— =) W w
Ot q2 pP—q
p.q

where €xpq = (2:pXq)d(k+p+q).

15



High-Wavenumber Truncation

e Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).

0wy 3 e
— =) W w
Ot q2 pP—q
p.q

where €xpq = (2:pXq)d(k+p+q).

e Enstrophy evolution:

pm Z we|” = Z mwiw wg = 0.

k.p,q q

15



e Invariance of 75 =

-3 |

kr.s - pq

f w? dx follows from:

€kpq «
5 WpWyq

q

wrwy, + 2 other similar terms| .
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e [nvariance of 75 = f w? dx follows from:
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e The absence of an explicit wg in the first term means that setting
wy; = 0 for £ > K breaks the symmetry in the summations!
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e This means that high-wavenumber truncation destroys the
invariance of Zs.

e However, since the missing terms involve wy, and wq for p and ¢
higher than the truncation wavenumber K, one might expect
almost exact invariance of Z3 for a well-resolved simulation.
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e [nvariance of 75 = f w? dx follows from:

€
0= Z [Z %w; WawWywy + 2 other similar terms|.
P.q

k.r.s

e The absence of an explicit wg, in the first term means that setting
wy; = 0 for £ > K breaks the symmetry in the summations!

e This means that high-wavenumber truncation destroys the
invariance of Zs.

e However, since the missing terms involve wy, and wq for p and ¢
higher than the truncation wavenumber K, one might expect
almost exact invariance of Z3 for a well-resolved simulation.

e We find that this is indeed the case.
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Enstrophy Balance

% + vk*wi = Sk + fr,

e Multiply by wp and integrate over wavenumber angle =
enstrophy spectrum Z (k) evolves as:

% Z(k) + k> Z(k) = 2T(k) + G(k),

where T'(k) and G(k) are the corresponding angular averages of

Re (Skwy) and Re (frwy,).

17



Nonlinear Enstrophy Transter Function

%Z(k) +2vk*Z(k) = 2T(k) + G(k).

o et

represent the nonlinear transfer of enstrophy into [k, c0).
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Nonlinear Enstrophy Transter Function

%Z(k) +2vk*Z(k) = 2T(k) + G(k).

o |.ct

represent the nonlinear transfer of enstrophy into [k, c0).

e Integrate from k to oo:

—/ p)dp = TI(k) — e4(k),

where ez(k) = QV/ p*Z(p)dp — /OOG(p)dp is the

k k
total enstrophy transfer, via dissipation and forcing, out of

wavenumbers higher than k.

18



e A positive (negative) value for II(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.
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e A positive (negative) value for II(k) represents a flow of
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e When v =0 and f = 0:
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)= —
dt J,
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so that
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e A positive (negative) value for II(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

e When v =0 and f = 0:

d ©.9)

)= —
dt J,

Z(p)dp—Z/OOOT@)dp,
so that
00 k
H(’@)ZQ/]C T(p)dPZ—Z/O T(p) dp.

e Note that I1(0) = I1(co) = 0.
e [n a steady state, [I(k) = ez(k).

e This provides an excellent numerical diagnostic for when a
steady state has been reached.



Forcing at k = 2. friction for k < 3, viscosity for
k > ky =300 (1023 x 1023 dealiased modes)

10~1
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logarithmic slope of E(k)
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Cumulative energy transfer
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Vorticity Field with Molecular Viscosity
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Vorticity Field with Viscosity Cutoft
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Vorticity Surtace Plot with Molecular Viscosity
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Nonlinear Casimir Transfer

e Fourier decompose the fourth-order Casimir invariant
Z, = N° Z w(z;) in terms of N spatial collocation points x;:
J

Z Sk Z Wp Wq W—k—p—q T Wk Z SpWqW_k—p—q

— E W Wp Wq W—k—p—q-
k.p.q

p q p.q

Sk, Zw 27mg k/N + ka Z S mj (ZL‘j)@

J

Here Sg is the nonlinear source term in

8
ot

2mig-k/N

Wk -

28



Downscale Transter of Z,
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Dealiasing: Explicit 2/4 Zero Padding

e Computing the transter of Z, requires a ternary convolution:
the Fourier transform of the cubic quantity w?.
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the Fourier transform of the cubic quantity w?.

e Dealiasing a ternary convolution requires a 2/4 zero padding
rule (instead of the usual 2/3 rule for a quadratic convolution).

= even though a 2048 x 2048 pseudospectral simulation was used,
the maximum physical wavenumber retained in each direction was

H12.
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Dealiasing: Explicit 2/4 Zero Padding

e Computing the transfer of Z, requires a ternary convolution:
the Fourier transform of the cubic quantity w?.

e Dealiasing a ternary convolution requires a 2/4 zero padding
rule (instead of the usual 2/3 rule for a quadratic convolution).

= even though a 2048 x 2048 pseudospectral simulation was used,
the maximum physical wavenumber retained in each direction was

H12.

e Instead, use implicit padding: roughly twice as fast, 1/2 of the
memory required by conventional explicit padding.
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Discrete Convolutions

e Discrete linear convolution sums based on the

fast

Fourier  transform  (FFT)  algorithm  |Gauss 1866,

(Cooley & Tukey 1965] have become important tools for:
— image filtering;
— digital signal processing;
— correlation analysis;

— pseudospectral simulations.

31



Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N—-1
> Gy
p=0

where the vectors F' and G have period N.
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(N = €exp (%)
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Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N—-1
> Gy
p=0

where the vectors F' and G have period N.
e Define the Nth primative root of unaty:

(N = €exp (%)

e The fast Fourier transform method exploits the properties that
Gy = Cxgrand G = 1

32



e The unnormalized backwards discrete Fourier transform of

{Fkikzo,...,N}iS

N—1
=Y \F  j=0,...,N—1
k=0
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e The unnormalized backwards discrete Fourier transform of

{Fk:k:O,...,N} 1S
N-1
=Y \F  j=0,...,N—-1.
k=0
e The corresponding forward transform is

N—-1
. 12 _kj
Fk:NOCN]f] k:O7...7N_1.
j:

e The orthogonality of this transform pair follows from

(N if { =sN for s € Z,

— (N
G 1 —
Z N = 4 ]Z = (0 otherwise.
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e The unnormalized backwards discrete Fourier transform of

{Fk:k:O,...,N} 1S
N-1
=Y \F  j=0,...,N—-1.
k=0
e The corresponding forward transform is

N—-1
1 —kj
Fk:NEOCN]fj k=0,...,N —1.
]:

e The orthogonality of this transform pair follows from

N-1 (N if ¢ =sN for s € Z,
Z C@ —{ 1- ]@N .

_ N — = 0 otherwise.

7=0 X 1 — CN

e The pseudospectral method requires a linear convolution.
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Convolution Theorem
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e The terms indexed by s # 0 are aliases; we need to remove
them by ensuring that G_,+sny = 0 whenever s # 0.
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e The terms indexed by s # 0 are aliases; we need to remove
them by ensuring that G_,+sny = 0 whenever s # 0.

o If F, and Gj_p4sn are nonzero only for 0 < p < m — 1 and
0<k—p+sN <m—1, then we want kK + sN < 2m — 2 to
have no solutions for positive s.
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Convolution Theorem

N—-1 N—-1 N—1 N—-1
—Jjk __ —Jjk Jp Jq
Ji9iCn —E :CN E :CNFP E :CNGQ
j=0 7=0 p=0 q=0
N—1N-1 N—1
_ (—k+p+q)J
— Fqu CN
p=0 ¢=0 7=0
N—1
=N E E Fka—p—i—sN
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them by ensuring that Gy_,4+sny = 0 whenever s # 0.

o If F, and Gj_ptsn are nonzero only for 0 < p < m — 1 and
0<k—p+sN <m—1, then we want kK + sN < 2m — 2 to
have no solutions for positive s.

e This can be achieved by choosing N > 2m — 1.

34
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length N > 2m — 1:
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e That is, one must zero pad input data vectors of length m to

length N > 2m — 1:

FFT

{F* G}
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e That is, one must zero pad input data vectors of length m to
length N > 2m — 1:

{Fki?ol {Gki‘?ol
{F}ico {0}y {Gilisy {0}y
FFT_1'2 : FFT_1'2 :
{fj jg()_ {gj jZO_

¢

{fi9;}7%"

FFT

{F* G}

¢

FxG

e [iaplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = O mod V.
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e That is, one must zero pad input data vectors of length m to
length N > 2m — 1:

{Fki?ol {Gki‘?ol
{F}ico {0}y {Gilisy {0}y
FFT—1,2 1 FFT‘1'2 1
{fj jg()_ {gj jZO_

¢

{fi9;}725"

FFT

{F* G}

¢

FxG

e [Laplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = O mod V.

e Since FEF'T sizes with small prime factors in practice yield

the most efficient implementations, the padding is normally
extended to N = 2m.
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Pruned FFT's

e Although explicit padding seems like an obvious waste of
memory and computation, the conventional wisdom on avoiding
this waste is well summed up by Steven . Johnson, coauthor
of the FFTW (“Fastest Fourier Transform in the West”) library
[Frigo & Johnson |:

The most common case where people seem to want
a pruned FFT 1s for zero-padded convolutions, where
roughly 50% of your inputs are zero (to get a linear
convolution from an FFT-based cyclic convolution).
Here, a pruned FF'T is hardly worth thinking about, at
least in one dimension. In higher dimensions, matters
change (e.q. for a 3d zero-padded array about 1/8 of
your wnpults are non-zero, and one can fairly easily
save a factor of two or so simply by skipping 1d sub-
transforms that are zero).
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Implicit Padding
eLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1
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Implicit Padding

e lLet N =2m. For y =0,...,2m — 1 we want to compute
2m—1
'k
k=0

olf [, = 0 for k > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f%_z 2k — ZCMF

f%H_Z (I g, — Z CReE By £=0,1,...m—1.
k=0
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Implicit Padding
e lLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1
fi=> Guk
k=0

olf [, = 0 for k > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
fze—ZCMF = > (L
k=0

m—1
(2¢
f2€+1—z G R =T B 0=0,1, . om - 1
k=0

e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlog,m =
N log, m.
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e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2m—1

2m by = Z Cg_n]?f] Z C2n/§2€f2€ + Z C_k 20D f2€+1

J= 0 =
m—

Z k€f25+§2n’§ZC * forin k=0,...,m—1.
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e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2m—1

2m by = Z Cg_n]?f] Z C2n/§2€f2€ + Z C_k 20D f2€+1

J= 0 =
m—

Z k€f25+§2n’§ZC * forin k=0,...,m—1.

/=0

e No bit reversal is required at the highest level.
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e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2m—1

2mF= " (o’ fj = Z Com™ foe + Z B fo 1

J= 0 =
m—

e S

/=0

e No bit reversal is required at the highest level.

e An implicitly padded convolution is implemented as in our
FFTW++ library (version 1.07) as cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution of two complex vectors
f and g using two temporary vectors u and v, each of length m.
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e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2m—1

2mF= " (o’ fj = Z Com™ foe + Z B fo 1

J= 0 =
m—

e S

/=0

e No bit reversal is required at the highest level.

e An implicitly padded convolution is implemented as in our
FFTW++ library (version 1.07) as cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution of two complex vectors
f and g using two temporary vectors u and v, each of length m.

e This in-place convolution requires six out-of-place transforms,
thereby avoiding bit reversal at all levels.
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Input: vector f, vector g

Output: vector f

u <+ fft1(f):

v« £fft 71 (g):

U< UV,

for k=0tom—1do
fk] < G5, f[K];
glk] < G5,8k];

end

v« £t 1(f);

f«— £ft7Y(g);

V < Vv xf;

f < f£ft(u);

u< fft(v);

for k=0tom—1do

fIK] = f[K] + GoopulK];

end

return f/(2m);
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2D Binary Convolution: Implicit 2/3 Zero

time/(m? log, m?) (ns)

Padding
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2D Ternary Convolution: Implicit 2/4 Zero

Padding
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— o —explicit /
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Conclusions

e Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.
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library and released under the Lesser GNU Public License.
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Conclusions

e Eiven though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.

e Numerical evidence suggests that in the enstrophy inertial range
there is a direct cascade of the globally integrated w* inviscid
invariant to small scales.

e Memory savings: in d dimensions implicit padding
asymptotically uses (2/3)%! or (1/2)%! of the memory
require by conventional explicit padding.

e Highly optimized versions of these routines have been
implemented as a software layer FFTW++ on top of the FFTW
library and released under the Lesser GNU Public License.

e With the advent of this FFTW++ library, writing a high-
performance dealiased pseudospectral code is now a relatively
straightforward exercise.
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Asymptote: 2D & 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)
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Asymptote Lifts TEX to 3D

+00 ,
e dr =

http://asymptote.sf.net
Acknowledgements: Orest Shardt (U. Alberta)
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