The Partial Fourier Transform
 John C. Bowman and Zayd Ghoggali
 Department of Mathematical and Statistical Sciences
 University of Alberta

July 19, 2017

www.math.ualberta.ca/~bowman/talks

Partial Fourier Transform

- The backward 1D discrete partial Fourier transform of a complex vector $\left\{F_{k}: k=0, \ldots, N-1\right\}$ is defined as

$$
f_{j} \doteq \sum_{k=0}^{c(j)} \zeta_{N}^{j k} F_{k}, \quad j=0, \ldots, N-1
$$

where $\zeta_{N}=e^{2 \pi i / N}$ denotes the N th primitive root of unity.

- The partial Fourier transform has applications in seismology.
- It can also be used to decompose turbulent inertial-range transfers into nonlocal and local contributions.
- The special case $c(j)=N-1$ reduces to the usual 1D DFT:

$$
f_{j} \doteq \sum_{k=0}^{N-1} \zeta_{N}^{j k} F_{k}, \quad j=0, \ldots, N-1
$$

DFT Conventions

- The backward discrete Fourier transform of $\left\{F_{k}: k=0, \ldots, N-1\right\}$ is

$$
f_{j} \doteq \sum_{k=0}^{N-1} \zeta_{N}^{j k} F_{k} \quad j=0, \ldots, N-1
$$

- The corresponding forward transform is

$$
F_{k} \doteq \frac{1}{N} \sum_{j=0}^{N-1} \zeta_{N}^{-k j} f_{j} \quad k=0, \ldots, N-1
$$

- The orthogonality of this transform pair follows from

$$
\sum_{j=0}^{N-1} \zeta_{N}^{\ell j}= \begin{cases}N & \text { if } \ell=s N \text { for } s \in \mathbb{Z} \\ \frac{1-\zeta_{N}^{\ell N}}{1-\zeta_{N}^{\ell}}=0 & \text { otherwise }\end{cases}
$$

Fractional-Phase Fourier Transform

- Consider the partial fractional-phase Fourier transform:

$$
f_{j} \doteq \sum_{k=0}^{c(j)} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, N-1
$$

where $\zeta \doteq \zeta_{1}=e^{2 \pi i}$ and $\alpha \in \mathbb{R}$.

Special Case of Partial DFT: $c(j)=j$

- Given inputs $\left\{F_{k}: k=0, \ldots, N-1\right\}$,

$$
f_{j} \doteq \sum_{k=0}^{j} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, N-1 .
$$

- Use $j k=\frac{1}{2}\left[j^{2}+k^{2}-(j-k)^{2}\right]$: [Bluestein 1970]

$$
f_{j}=\sum_{k=0}^{j} \zeta^{\frac{\alpha}{[j}\left[j^{2}+k^{2}-(j-k)^{2}\right]} F_{k}=\zeta^{\alpha j^{2} / 2} \sum_{k=0}^{j} \zeta^{\alpha k^{2} / 2} F_{k} \zeta^{-\alpha(j-k)^{2} / 2} .
$$

- This can be written as the convolution of the two sequences $g_{j} \doteq \zeta^{\alpha j^{2} / 2}$ and $h_{k} \doteq g_{k} F_{k}:$

$$
f_{j}=g_{j} \sum_{k=0}^{j} h_{k} \bar{g}_{j-k}
$$

Evaluating the Partial Convolution

- We wish to compute the (partial) convolution

$$
\sum_{k=0}^{j} h_{k} \bar{g}_{j-k} .
$$

- Prepend N zeros to the sequences $\left\{g_{k}\right\}$ and $\left\{h_{k}\right\}$, indexed as $k=-N,-N+1, \ldots,-1$, so that

$$
\sum_{k=0}^{j} h_{k} \bar{g}_{j-k}=\sum_{k=-N}^{N-1} h_{k} \bar{g}_{j-k}
$$

- The added zeros also avoid aliases when using the cyclic DFT to compute a linear convolution.
- The convolution can then be efficiently computed using a cyclic discrete Fourier transform of length $2 N$:

$$
\begin{aligned}
\sum_{k=-N}^{N-1} h_{k} \bar{g}_{j-k} & =\frac{1}{(2 N)^{2}} \sum_{k=-N}^{N-1} \sum_{\ell=0}^{2 N-1} \zeta_{2 N}^{-k \ell} H_{\ell} \sum_{m=0}^{2 N-1} \zeta_{2 N}^{-(j-k) m} G_{m} \\
& =\frac{1}{(2 N)^{2}} \sum_{\ell=0}^{2 N-1} \sum_{m=0}^{2 N-1} \zeta_{2 N}^{-j m} H_{\ell} G_{m} \sum_{k=-N}^{N-1} \zeta_{2 N}^{k(m-\ell)} \\
& =\frac{1}{(2 N)^{2}} \sum_{\ell=0}^{2 N-1} \sum_{m=0}^{2 N-1} \zeta_{2 N}^{-j m} H_{\ell} G_{m} 2 N \delta_{\ell m} \\
& =\frac{1}{2 N} \sum_{\ell=0}^{2 N-1} \zeta_{2 N}^{-j \ell} H_{\ell} G_{\ell}
\end{aligned}
$$

where $H_{\ell}=\sum_{k=-N}^{N-1} \zeta_{2 N}^{\ell k} h_{k}$ and $G_{m}=\sum_{k=-N}^{N-1} \zeta_{2 N}^{m k} \bar{g}_{k}$ are the discrete Fourier transforms of $\left\{h_{k}\right\}$ and $\left\{\bar{g}_{k}\right\}$.

Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the discrete cyclic convolution

$$
\sum_{p=0}^{N-1} F_{p} G_{k-p}
$$

where the vectors F and G have period N.

- The fast Fourier transform (FFT) method exploits the properties that $\zeta_{N}^{r}=\zeta_{N / r}$ and $\zeta_{N}^{N}=1$.

Convolution Theorem

$$
\begin{aligned}
\sum_{j=0}^{N-1} f_{j} g_{j} \zeta_{N}^{-j k} & =\sum_{j=0}^{N-1} \zeta_{N}^{-j k}\left(\sum_{p=0}^{N-1} \zeta_{N}^{j p} F_{p}\right)\left(\sum_{q=0}^{N-1} \zeta_{N}^{j q} G_{q}\right) \\
& =\sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_{p} G_{q} \sum_{j=0}^{N-1} \zeta_{N}^{(-k+p+q) j} \\
& =N \sum_{s} \sum_{p=0}^{N-1} F_{p} G_{k-p+s N}
\end{aligned}
$$

- The terms indexed by $s \neq 0$ are aliases; we need to remove them!
- If only the first m entries of the input vectors are nonzero, aliases can be avoided by zero padding input data vectors of length m to length $N \geq 2 m-1$.
- Explicit zero padding prevents mode $m-1$ from beating with itself, wrapping around to contaminate mode $N=0 \bmod N$.

Implicit Dealiasing

- Let $N=2 m$. For $j=0, \ldots, 2 m-1$ we want to compute

$$
f_{j}=\sum_{k=0}^{2 m-1} \zeta_{2 m}^{j k} F_{k}
$$

- If $F_{k}=0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$
\begin{aligned}
f_{2 \ell} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{2 \ell k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} F_{k}, \\
f_{2 \ell+1} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{(2 \ell+1) k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} \zeta_{2 m}^{k} F_{k}, \quad \ell=0,1, \ldots m-1 .
\end{aligned}
$$

- This requires computing two subtransforms, each of size m, for an overall computational scaling of order $2 m \log _{2} m=$ $N \log _{2} m$.
- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v 2.05) on top of the FFTW library under the Lesser GNU Public License:
http://fftwpp.sourceforge.net/
$\left\{F_{k}\right\}_{k=0}^{m-1}$
$\left\{G_{k}\right\}_{k=0}^{m-1}$
- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v 2.05) on top of the FFTW library under the Lesser GNU Public License:
http://fftwpp.sourceforge.net/

- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v 2.05) on top of the FFTW library under the Lesser GNU Public License:
http://fftwpp.sourceforge.net/

- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v 2.05) on top of the FFTW library under the Lesser GNU Public License:
http://fftwpp.sourceforge.net/

Full Fractional-Phase Fourier Transform

- We will also need the full fractional-phase Fourier transform

$$
f_{j} \doteq \sum_{k=0}^{N-1} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, N-1 .
$$

- On defining two sequences $g_{j} \doteq \zeta^{\alpha j^{2} / 2}$ and $h_{k} \doteq g_{k} F_{k}$, this can be computed just like the partial Fourier transform, except the condition $g_{j-k}=0$ when $j-k<0$ is now replaced by $g_{j-k}=g_{k-j}$.
- This symmetry can be enforced by precomputing the inverse FFTs:

$$
\begin{gathered}
\left\{G_{j}\right\}_{j=0}^{N-1}=\operatorname{fft}^{-1}\left(\left\{\zeta^{-\alpha k^{2} / 2}+\zeta^{-\alpha(k-N)^{2} / 2}\right\}_{k=0}^{N-1}\right) \\
\left\{V_{j}\right\}_{j=0}^{N-1}=\operatorname{fft}^{-1}\left(\left\{\zeta_{2 N}^{k}\left[\zeta^{-\alpha k^{2} / 2}-\zeta^{-\alpha(k-N)^{2} / 2}\right]\right\}_{k=0}^{N-1}\right)
\end{gathered}
$$

- Then f_{j} can be calculated as the product of g_{j} and the j th output of the following function applied to the sequence $\left\{h_{k}\right\}_{k=0}^{N-1}$.

Input: vector f
Output: vector f
for $k=0$ to $N-1$ do
$\mathrm{u}[k] \leftarrow \zeta_{2 N}^{k} \mathrm{f}[k] ;$
end
$\mathrm{f} \leftarrow \mathrm{fft}\left(\mathrm{fft}^{-1}(\mathrm{f}) * \mathrm{G}\right) ;$
$\mathrm{u} \leftarrow \mathrm{fft}\left(\mathrm{fft}^{-1}(\mathrm{u}) * \mathrm{~V}\right)$;
for $k=0$ to $N-1$ do
$\mathrm{f}[k] \leftarrow \mathbf{f}[k]+\zeta_{2 N}^{-k} \mathbf{u}[k] ;$
end
return $\mathrm{f} /(2 \mathrm{~N})$;

- In the above pseudocode, an asterisk $(*)$ denotes an element-by-element (vector) multiply.

Partial FFT: Special Case $c(j)=(p j+s) / q$

- Here p, q, and s are integers, with $p \neq 0$ and

$$
f_{j} \doteq \sum_{k=0}^{\lfloor(p j+s) / q\rfloor} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, M-1
$$

- Let $p j+s=q n+r$, with $n=0, \ldots, N-1$. Then

$$
\begin{aligned}
f_{j} & =\sum_{k=0}^{n} \zeta_{p}^{\alpha(q n+r-s) k} F_{k} \\
& =\sum_{k=0}^{n} \zeta_{2 p}^{\alpha q\left[n^{2}+k^{2}-(n-k)^{2}\right]} \zeta_{p}^{\alpha(r-s) k} F_{k} \\
& =\zeta_{2 p}^{\alpha q n^{2}} \sum_{k=0}^{n} \zeta_{2 p}^{-\alpha q(n-k)^{2}} \zeta_{2 p}^{\alpha q k^{2}} \zeta_{p}^{\alpha(r-s) k} F_{k}
\end{aligned}
$$

- On setting $g_{k} \doteq \zeta_{2 p}^{\alpha q k^{2}}$ and $h_{k} \doteq g_{k} \zeta_{p}^{\alpha(r-s) k} F_{k}$, the result can be written as a convolution of two sequences $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$:

$$
f_{j}=g_{n} \sum_{k=0}^{n} h_{k} \bar{g}_{n-k}, \quad j=0, \ldots, M-1
$$

- This general algorithm is only efficient when $p=1$ or $q=1$.
- The technique can be readily extended to higher dimensions.

Rectangular subdivision for $c(j)=j$

Triangular subdivision for $c(j)=j$

Rectangular: $c(j)=(N-1) \sin \frac{\pi j}{N-1}$

Hybrid: $c(j)=(N-1) \sin \frac{\pi j}{N-1}$

Computation time

Application: Kolmogorov Theory of Turbulence

- Although the independence of the local inertial-range energy flux with wavenumber is one of the key hypothesis underlying Kolmogorov's famous $5 / 3$ power-law form for the kinetic energy spectrum, it has never been directly tested, either experimentally or numerically.
- To validate Kolmogorov's uniform flux hypothesis in a high-resolution pseudospectral code, detailed wavenumber constraints must be imposed on the convolution.
- The key tool needed is the partial fast Fourier transform, where the summation limits are restricted by a spatially-dependent constraint.
- To this end, we have improved on previous attempts [Ying 2009] to develop a partial FFT based on the fractional-phase Fourier transform and Bluestein's algorithm [Bluestein 1970].

Flux Decomposition for a Single $(\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q})$ Triad

$$
\begin{gathered}
L_{k}=T_{k} \\
S_{k}=0
\end{gathered}
$$

$L_{k}=-T_{p}$
$S_{k}=-T_{q}$

$$
\begin{gathered}
L_{k}=0 \\
S_{k}=T_{k}
\end{gathered}
$$

- Note that energy is conserved: $L_{k}+S_{k}=T_{k}=-T_{p}-T_{q}$. Thus

$$
L_{k}=\operatorname{Re} \sum_{\substack{|k|=k \\|p-k k\\| k-p \mid<k}} M_{\boldsymbol{k}, \boldsymbol{p}} \omega_{\boldsymbol{p}} \omega_{\boldsymbol{k}-\boldsymbol{p}} \omega_{\boldsymbol{k}}^{*}-\operatorname{Re} \sum_{\substack{|k|=k \\|p|<k \\|k-p|>k}} M_{\boldsymbol{p}, \boldsymbol{k}-\boldsymbol{p}} \omega_{\boldsymbol{k}} \omega_{\boldsymbol{k}-\boldsymbol{p}} \omega_{\boldsymbol{p}}^{*} .
$$

Conclusions

- A fast $\mathcal{O}(N \log N)$ algorithm for computing the partial fast Fourier transform is available, but with a relatively large coefficient.
- Improving on the work of Ying \& Fomel [2009], we obtained a fast computational scaling, but with a smaller overall coefficient.
- The partial Fourier transform has applications in decomposing turbulent transfers into nonlocal and local fluxes.
- These techniques can be used to compute detailed inertial-range flux profiles and for the first time verify a key underpinning assumption of Kolmogorov's famous power-law conjecture for turbulence.
- This will allow us to verify and exploit inertial-range selfsimilarity in 2D turbulence and study the flux locality profile.

References

[Bluestein 1970] L. I. Bluestein, IEEE Trans. Audio and Electroacoustics, 18:451, 1970.
[Bowman \& Roberts 2011] J. C. Bowman \& M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.
[Roberts \& Bowman 2017] M. Roberts \& J. C. Bowman, Submitted to Journal of Computational Physics, 2017.
[Ying \& Fomel 2009] L. Ying \& S. Fomel, Multiscale Modeling and Simulation, 8:110, 2009.

