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Turbulence

Big whirls have little whirls that feed on their
velocity, and little whirls have littler whirls and so on
to viscosity. . . [Richardson 1922]

• In 1941, Kolmogorov conjectured that the energy spectrum
of 3D incompressible turbulence exhibits a self-similar power-
law scaling characterized by a uniform cascade of energy to
molecular (viscous) scales:

E(k) = Cε2/3k−5/3.
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of 3D incompressible turbulence exhibits a self-similar power-
law scaling characterized by a uniform cascade of energy to
molecular (viscous) scales:

E(k) = Cε2/3k−5/3.E(k) = Cε2/3k−5/3.

•Here k is the Fourier wavenumber and E(k) is normalized so
that

∫
E(k) dk is the total energy.

•Here k is the Fourier wavenumber and E(k) is normalized so
that

∫
E(k) dk is the total energy.

•Kolmogorov suggested that C might be a universal constant.

•He hypothesized that the local energy flux in the inertial range is
independent of wavenumber, presumably due to an underlying
self-similarity.
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2D Turbulence in Fourier Space

•Navier–Stokes equation for vorticity ω
.
= ẑ·∇×u of an

incompressible (∇·u = 0) fluid:

∂ω

∂t
+ u·∇ω = ν∇2ω + f.
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2D Turbulence in Fourier Space

•Navier–Stokes equation for vorticity ω
.
= ẑ·∇×u of an

incompressible (∇·u = 0) fluid:

∂ω

∂t
+ u·∇ω = ν∇2ω + f.

• In Fourier space:

∂ωk

∂t
+ νkωk =

∫
dp

∫
dq

εkpq
q2

ω∗pω
∗
q + fk,

where νk
.
= νk2 and εkpq

.
= (ẑ·p×q) δ(k + p + q) is

antisymmetric under permutation of any two indices.
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∂ωk

∂t
+ νkωk =

∫
dp

∫
dq

εkpq
q2

ω∗pω
∗
q + fk,

•When ν = fk = 0,

enstrophy Z = 1
2

∫
|ωk|2 dk and energy E = 1

2

∫ |ωk|2
k2

dk are

conserved:

εkpq
q2

antisymmetric in k↔ p,

1

k2
εkpq
q2

antisymmetric in k↔ q.
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Forcing at k = 2, friction for k < 3, viscosity for
k ≥ kH = 300 (1023× 1023 dealiased modes)
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Transfer vs. Flux

•Distinguish between transfer and flux.
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•The mean rate of enstrophy transfer to [k,∞) is given by

Π(k) =

∫ ∞
k

T (k) dk = −
∫ k

0

T (k) dk.
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•The mean rate of enstrophy transfer to [k,∞) is given by

Π(k) =

∫ ∞
k

T (k) dk = −
∫ k

0

T (k) dk.Π(k) =

∫ ∞
k

T (k) dk = −
∫ k

0

T (k) dk.

• In a steady state, Π(k) will trivially be constant within a true
inertial range.
• In a steady state, Π(k) will trivially be constant within a true

inertial range.

•The statement of local wavenumber-independent inertial-
range energy flux is fundamentally different than the trivial
observation that the nonlocal energy transfer is independent
of wavenumber in the inertial range.

• In contrast, the enstrophy flux through a wavenumber k is
the amount of enstrophy transferred to small scales via triad
interactions involving mode k.
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Uniform flux

•Although the independence of the local inertial-range energy
flux with wavenumber is one of the key hypothesis underlying
Kolmogorov’s famous 5/3 power-law form for the kinetic
energy spectrum, it has never been directly tested, either
experimentally or numerically.
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•To validate Kolmogorov’s uniform flux hypothesis in a
high-resolution pseudospectral code, detailed wavenumber
constraints must be imposed on the convolution.

•To validate Kolmogorov’s uniform flux hypothesis in a
high-resolution pseudospectral code, detailed wavenumber
constraints must be imposed on the convolution.

•The key tool needed is the partial fast Fourier transform, where
the summation limits are restricted by a spatially-dependent
constraint.

•To this end, we have improved on previous attempts [Ying
2009] to develop a partial FFT based on the fractional Fourier
transform and Bluestein’s algorithm [Bluestein 1970].
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Flux Decomposition for a Single (k,p, q) Triad
E
(k
)

k

Tp

Tk

p

q

k

Lk=Tk
Sk=0

E
(k
)

k

−Tp

−Tq

p

q

k

Lk=−Tp
Sk=−Tq

E
(k
)

k

Tk

Tqp

q

k

Lk=0
Sk=Tk

•Note that energy is conserved: Lk+Sk = Tk = −Tp−Tq. Thus

Lk = Re
∑
|k|=k
|p|<k
|k−p|<k

Mk,p ωp ωk−p ω
∗
k − Re

∑
|k|=k
|p|<k
|k−p|>k

Mp,k−p ωk ωk−p ω
∗
p.
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Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑
p=0

FpGk−p,

where the vectors F and G have period N .
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Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑
p=0

FpGk−p,

where the vectors F and G have period N .where the vectors F and G have period N .

•Define the N th primitive root of unity:

ζN = exp

(
2πi

N

)
.ζN = exp

(
2πi

N

)
.

•The fast Fourier transform (FFT) method exploits the
properties that ζrN = ζN/r and ζNN = 1.

•However, the pseudospectral method requires a linear
convolution.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1∑
k=0

ζjkN Fk j = 0, . . . , N − 1.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1∑
k=0

ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑
j=0

ζ−kjN fj k = 0, . . . , N − 1.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1∑
k=0

ζjkN Fk j = 0, . . . , N − 1.fj
.
=

N−1∑
k=0

ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑
j=0

ζ−kjN fj k = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1∑
j=0

ζ`jN =


N if ` = sN for s ∈ Z,
1− ζ`NN
1− ζ`N

= 0 otherwise.
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Convolution Theorem

N−1∑
j=0

fjgjζ
−jk
N =

N−1∑
j=0

ζ−jkN

N−1∑
p=0

ζjpN Fp

N−1∑
q=0

ζjqNGq


=

N−1∑
p=0

N−1∑
q=0

FpGq

N−1∑
j=0

ζ
(−k+p+q)j
N

=N
∑
s

N−1∑
p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are aliases; we need to remove
them!
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• If only the firstm entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N ≥ 2m− 1.
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•The terms indexed by s 6= 0 are aliases; we need to remove
them!
•The terms indexed by s 6= 0 are aliases; we need to remove

them!

• If only the firstm entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N ≥ 2m− 1.

•Explicit zero padding prevents mode m− 1 from beating with
itself, wrapping around to contaminate mode N = 0 modN . 15



Implicit Dealiasing

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =

2m−1∑
k=0

ζjk2mFk.
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fj =
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k=0
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• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2`=
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k=0
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Implicit Dealiasing

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =

2m−1∑
k=0

ζjk2mFk.fj =

2m−1∑
k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2`=

m−1∑
k=0

ζ2`k2mFk =

m−1∑
k=0

ζ`kmFk,

f2`+1=

m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk, ` = 0, 1, . . .m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.

16



•Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.02) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/
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Fast Variably Restricted Dealiased Convolution

•We need a practical algorithm for computing many partial
Fourier transforms at once:

uj
.
=
∑
|k|<c(j)

ζk·jN Uk

where ζN = e2πi/N is the Nth primitive root of unity.
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Fast Variably Restricted Dealiased Convolution

•We need a practical algorithm for computing many partial
Fourier transforms at once:

uj
.
=
∑
|k|<c(j)

ζk·jN Uk

where ζN = e2πi/N is the Nth primitive root of unity.where ζN = e2πi/N is the Nth primitive root of unity.

•Here c(j) is a spatially-dependent constraint on the summation
limits.

•Goal: obtain a ‘fast’ computational scaling, following
Ying & Fomel [2009] but with a smaller overall coefficient.
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Partial 1D Fourier Transform

•Let ζα
.
= ζ1/a = e2πiα.
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Partial 1D Fourier Transform

•Let ζα
.
= ζ1/a = e2πiα.

•The unnormalized backward discrete partial Fourier transform
of a complex vector {Fk : k = 0, . . . , N − 1} is defined as

fj
.
=

c(j)∑
k=0

ζαjkFk, j = 0, . . . , N − 1.
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Special case of partial 1D FFT: c(j) = j

•Given inputs {Fk : k = 0, . . . , N − 1},

fj
.
=

j∑
k=0

ζαjkFk, j = 0, . . . , N − 1.
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•Given inputs {Fk : k = 0, . . . , N − 1},

fj
.
=

j∑
k=0

ζαjkFk, j = 0, . . . , N − 1.

• Since jk = 1
2

[
j2 + k2 − (j − k)2

]
, [Bluestein 1970]

fj =

j∑
k=0

ζ
α
2 [j2+k2−(j−k)2]Fk = ζαj

2/2

j∑
k=0

ζαk
2/2Fkζ

−α(j−k)2/2,
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Special case of partial 1D FFT: c(j) = j

•Given inputs {Fk : k = 0, . . . , N − 1},

fj
.
=

j∑
k=0

ζαjkFk, j = 0, . . . , N − 1.fj
.
=

j∑
k=0

ζαjkFk, j = 0, . . . , N − 1.

• Since jk = 1
2

[
j2 + k2 − (j − k)2

]
, [Bluestein 1970]

fj =

j∑
k=0

ζ
α
2 [j2+k2−(j−k)2]Fk = ζαj

2/2

j∑
k=0

ζαk
2/2Fkζ

−α(j−k)2/2,

•This can be written as the convolution of the two sequences

gj = ζαj
2

2 and hk = gkFk:

fj = gj

j∑
k=0

hkgj−k.
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Partial FFT: Special Case c(j) = (pj + s)/q

•Here p, q, and s are integers, with p 6= 0 and

fj
.
=

b(pj+s)/qc∑
k=0

ζαjkFk, j = 0, . . . ,M − 1.
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Partial FFT: Special Case c(j) = (pj + s)/q

•Here p, q, and s are integers, with p 6= 0 and

fj
.
=

b(pj+s)/qc∑
k=0

ζαjkFk, j = 0, . . . ,M − 1.

•Let pj + s = qn + r, with n = 0, . . . , N − 1. Then

fj =

n∑
k=0

ζα(qn+r−s)kp Fk

=

n∑
k=0

ζ
αq[n2+k2−(n−k)2]
2p ζα(r−s)kp Fk

=ζαqn
2

2p

n∑
k=0

ζ
−αq(n−k)2
2p ζαqk

2

2p ζα(r−s)kp Fk

21



•On setting gk = ζαqk
2

2p and hk = gkζ
α(r−s)k
p Fk, the result can be

written as a convolution of two sequences {hk} and {gk}:

fj = gn

n∑
k=0

hkgn−k, j = 0, . . . ,M − 1.
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•This general algorithm is only efficient when p = 1 or q = 1.
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•On setting gk = ζαqk
2

2p and hk = gkζ
α(r−s)k
p Fk, the result can be

written as a convolution of two sequences {hk} and {gk}:

fj = gn

n∑
k=0

hkgn−k, j = 0, . . . ,M − 1.fj = gn

n∑
k=0

hkgn−k, j = 0, . . . ,M − 1.

•This general algorithm is only efficient when p = 1 or q = 1.•This general algorithm is only efficient when p = 1 or q = 1.

•A similar procedure can be used to compute partial
convolutions.

•The technique can be readily extended to higher dimensions.
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Rectangular subdivision for c(j) = j
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Triangular subdivision for c(j) = j
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Rectangular subdivision for
c(j) = (N − 1) sinπj/(N − 1)
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Hybrid subdivision for
c(j) = (N − 1) sinπj/(N − 1)
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Casimir Invariants

• Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.
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• Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.

•Any continuously differentiable function of the (scalar) vorticity
is conserved by the nonlinearity:

d

dt

∫
f (ω) dx=

∫
f ′(ω)

∂ω

∂t
dx = −

∫
f ′(ω)u·∇ω dx

=−
∫

u·∇f (ω) dx =

∫
f (ω)∇·u dx = 0.
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Casimir Invariants

• Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.
• Inviscid unforced two dimensional turbulence has uncountably

many other Casimir invariants.

•Any continuously differentiable function of the (scalar) vorticity
is conserved by the nonlinearity:

d

dt

∫
f (ω) dx=

∫
f ′(ω)

∂ω

∂t
dx = −

∫
f ′(ω)u·∇ω dx

=−
∫

u·∇f (ω) dx =

∫
f (ω)∇·u dx = 0.

•Do these invariants also play a fundamental role in the turbulent
dynamics, in addition to the quadratic (energy and enstrophy)
invariants? Do they exhibit cascades?
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Conclusions

•One should distinguish between nonlocal transfer and flux.
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Conclusions

•One should distinguish between nonlocal transfer and flux.•One should distinguish between nonlocal transfer and flux.
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•Partial dealiased convolutions can be used to compute detailed
inertial-range flux profiles and for the first time verify a key
underpinning assumption of Kolmogorov’s famous power-law
conjecture for turbulence.

•This will allow us to verify and exploit inertial-range self-
similarity in 2D turbulence and study the flux locality profile.

•The locality profile can be used to infer the effective eddy
damping contribution from each of truncated (subgrid) modes,
allowing us to build a phenomenological dynamic subgrid model
that on average removes the right amount of energy from each
of the scales near the subgrid wavenumber cutoff.
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