Using Partial Fourier Transforms to Study Kolmogorov's Inertial-Range Flux

John C. Bowman and Zayd Ghoggali
Department of Mathematical and Statistical Sciences
University of Alberta

June 28, 2016

www.math.ualberta.ca/~bowman/talks

Turbulence

Big whirls have little whirls that feed on their velocity, and little whirls have littler whirls and so on to viscosity... [Richardson 1922]

- In 1941, Kolmogorov conjectured that the energy spectrum of 3D incompressible turbulence exhibits a self-similar powerlaw scaling characterized by a uniform cascade of energy to molecular (viscous) scales:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3} .
$$

Turbulence

Big whirls have little whirls that feed on their velocity, and little whirls have littler whirls and so on to viscosity... [Richardson 1922]

- In 1941, Kolmogorov conjectured that the energy spectrum of 3D incompressible turbulence exhibits a self-similar powerlaw scaling characterized by a uniform cascade of energy to molecular (viscous) scales:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

- Here k is the Fourier wavenumber and $E(k)$ is normalized so that $\int E(k) d k$ is the total energy.

Turbulence

Big whirls have little whirls that feed on their velocity, and little whirls have littler whirls and so on to viscosity... [Richardson 1922]

- In 1941, Kolmogorov conjectured that the energy spectrum of 3D incompressible turbulence exhibits a self-similar powerlaw scaling characterized by a uniform cascade of energy to molecular (viscous) scales:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

- Here k is the Fourier wavenumber and $E(k)$ is normalized so that $\int E(k) d k$ is the total energy.
- Kolmogorov suggested that C might be a universal constant.

Turbulence

Big whirls have little whirls that feed on their velocity, and little whirls have littler whirls and so on to viscosity... [Richardson 1922]

- In 1941, Kolmogorov conjectured that the energy spectrum of 3D incompressible turbulence exhibits a self-similar powerlaw scaling characterized by a uniform cascade of energy to molecular (viscous) scales:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

- Here k is the Fourier wavenumber and $E(k)$ is normalized so that $\int E(k) d k$ is the total energy.
- Kolmogorov suggested that C might be a universal constant.
- He hypothesized that the local energy flux in the inertial range is independent of wavenumber, presumably due to an underlying self-similarity.

2D Turbulence in Fourier Space

- Navier-Stokes equation for vorticity $\omega \doteq \hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{u}$ of an incompressible $(\boldsymbol{\nabla} \cdot \boldsymbol{u}=0)$ fluid:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{u} \cdot \nabla \omega=\nu \nabla^{2} \omega+f
$$

2D Turbulence in Fourier Space

- Navier-Stokes equation for vorticity $\omega \doteq \hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{u}$ of an incompressible $(\boldsymbol{\nabla} \cdot \boldsymbol{u}=0)$ fluid:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{u} \cdot \nabla \omega=\nu \nabla^{2} \omega+f
$$

- In Fourier space:

$$
\frac{\partial \omega_{k}}{\partial t}+\nu_{k} \omega_{\boldsymbol{k}}=\int d \boldsymbol{p} \int d \boldsymbol{q} \frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}} \omega_{\boldsymbol{p}}^{*} \omega_{\boldsymbol{q}}^{*}+f_{\boldsymbol{k}}
$$

where $\quad \nu_{\boldsymbol{k}} \doteq \nu k^{2} \quad$ and $\quad \epsilon_{k p q} \doteq(\hat{z} \cdot \boldsymbol{p} \times \boldsymbol{q}) \delta(\boldsymbol{k}+\boldsymbol{p}+\boldsymbol{q}) \quad$ is antisymmetric under permutation of any two indices.

$$
\frac{\partial \omega_{k}}{\partial t}+\nu_{k} \omega_{k}=\int d \boldsymbol{p} \int d \boldsymbol{q} \frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}} \omega_{p}^{*} \omega_{q}^{*}+f_{k}
$$

- When $\nu=f_{k}=0$,
enstrophy $Z=\frac{1}{2} \int\left|\omega_{\boldsymbol{k}}\right|^{2} d \boldsymbol{k}$ and energy $E=\frac{1}{2} \int \frac{\left|\omega_{k}\right|^{2}}{k^{2}} d \boldsymbol{k}$ are conserved:

$$
\begin{array}{rlr}
\frac{\epsilon_{k p q}}{q^{2}} & \text { antisymmetric in } & \boldsymbol{k} \leftrightarrow \boldsymbol{p}, \\
\frac{1}{k^{2}} \frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}} & \text { antisymmetric in } & \boldsymbol{k} \leftrightarrow \boldsymbol{q} .
\end{array}
$$

Forcing at $k=2$, friction for $k<3$, viscosity for $k \geq k_{H}=300$ (1023×1023 dealiased modes)

$$
\begin{aligned}
k_{H} & =300 \\
k_{H} & =0
\end{aligned}
$$

Cutoff viscosity $\left(k \geq k_{H}=300\right)$

Cutoff viscosity ($k \geq k_{H}=300$)

Molecular viscosity ($k \geq k_{H}=0$)

Transfer vs. Flux

- Distinguish between transfer and flux.

Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to $[k, \infty)$ is given by

$$
\Pi(k)=\int_{k}^{\infty} T(k) d k=-\int_{0}^{k} T(k) d k
$$

Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to $[k, \infty)$ is given by

$$
\Pi(k)=\int_{k}^{\infty} T(k) d k=-\int_{0}^{k} T(k) d k
$$

- In a steady state, $\Pi(k)$ will trivially be constant within a true inertial range.

Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to $[k, \infty)$ is given by

$$
\Pi(k)=\int_{k}^{\infty} T(k) d k=-\int_{0}^{k} T(k) d k
$$

- In a steady state, $\Pi(k)$ will trivially be constant within a true inertial range.
- The statement of local wavenumber-independent inertialrange energy flux is fundamentally different than the trivial observation that the nonlocal energy transfer is independent of wavenumber in the inertial range.

Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to $[k, \infty)$ is given by

$$
\Pi(k)=\int_{k}^{\infty} T(k) d k=-\int_{0}^{k} T(k) d k
$$

- In a steady state, $\Pi(k)$ will trivially be constant within a true inertial range.
- The statement of local wavenumber-independent inertialrange energy flux is fundamentally different than the trivial observation that the nonlocal energy transfer is independent of wavenumber in the inertial range.
- In contrast, the enstrophy flux through a wavenumber k is the amount of enstrophy transferred to small scales via triad interactions involving mode k.

Uniform flux

- Although the independence of the local inertial-range energy flux with wavenumber is one of the key hypothesis underlying Kolmogorov's famous $5 / 3$ power-law form for the kinetic energy spectrum, it has never been directly tested, either experimentally or numerically.

Uniform flux

- Although the independence of the local inertial-range energy flux with wavenumber is one of the key hypothesis underlying Kolmogorov's famous $5 / 3$ power-law form for the kinetic energy spectrum, it has never been directly tested, either experimentally or numerically.
- To validate Kolmogorov's uniform flux hypothesis in a high-resolution pseudospectral code, detailed wavenumber constraints must be imposed on the convolution.

Uniform flux

- Although the independence of the local inertial-range energy flux with wavenumber is one of the key hypothesis underlying Kolmogorov's famous $5 / 3$ power-law form for the kinetic energy spectrum, it has never been directly tested, either experimentally or numerically.
- To validate Kolmogorov's uniform flux hypothesis in a high-resolution pseudospectral code, detailed wavenumber constraints must be imposed on the convolution.
- The key tool needed is the partial fast Fourier transform, where the summation limits are restricted by a spatially-dependent constraint.

Uniform flux

- Although the independence of the local inertial-range energy flux with wavenumber is one of the key hypothesis underlying Kolmogorov's famous $5 / 3$ power-law form for the kinetic energy spectrum, it has never been directly tested, either experimentally or numerically.
- To validate Kolmogorov's uniform flux hypothesis in a high-resolution pseudospectral code, detailed wavenumber constraints must be imposed on the convolution.
- The key tool needed is the partial fast Fourier transform, where the summation limits are restricted by a spatially-dependent constraint.
- To this end, we have improved on previous attempts [Ying 2009] to develop a partial FFT based on the fractional Fourier transform and Bluestein's algorithm [Bluestein 1970].

Flux Decomposition for a Single $(\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q})$ Triad

$$
\begin{gathered}
L_{k}=T_{k} \\
S_{k}=0
\end{gathered}
$$

$L_{k}=-T_{p}$
$S_{k}=-T_{q}$

$$
\begin{gathered}
L_{k}=0 \\
S_{k}=T_{k}
\end{gathered}
$$

- Note that energy is conserved: $L_{k}+S_{k}=T_{k}=-T_{p}-T_{q}$. Thus

$$
L_{k}=\operatorname{Re} \sum_{\substack{|\boldsymbol{k}|=k \\|\boldsymbol{p}|<k \\|k-\boldsymbol{p}|<k}} M_{\boldsymbol{k}, \boldsymbol{p}} \omega_{\boldsymbol{p}} \omega_{\boldsymbol{k}-\boldsymbol{p}} \omega_{\boldsymbol{k}}^{*}-\operatorname{Re} \sum_{\substack{|k|=k \\|\boldsymbol{p}|<k \\|\boldsymbol{k}-\boldsymbol{p}|>k}} M_{\boldsymbol{p}, \boldsymbol{k}-\boldsymbol{p}} \omega_{\boldsymbol{k}} \omega_{\boldsymbol{k}-\boldsymbol{p}} \omega_{\boldsymbol{p}}^{*}
$$

Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the discrete cyclic convolution

$$
\sum_{p=0}^{N-1} F_{p} G_{k-p}
$$

where the vectors F and G have period N.

Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the discrete cyclic convolution

$$
\sum_{p=0}^{N-1} F_{p} G_{k-p}
$$

where the vectors F and G have period N.

- Define the N th primitive root of unity:

$$
\zeta_{N}=\exp \left(\frac{2 \pi i}{N}\right)
$$

Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the discrete cyclic convolution

$$
\sum_{p=0}^{N-1} F_{p} G_{k-p}
$$

where the vectors F and G have period N.

- Define the N th primitive root of unity:

$$
\zeta_{N}=\exp \left(\frac{2 \pi i}{N}\right)
$$

- The fast Fourier transform (FFT) method exploits the properties that $\zeta_{N}^{r}=\zeta_{N / r}$ and $\zeta_{N}^{N}=1$.

Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the discrete cyclic convolution

$$
\sum_{p=0}^{N-1} F_{p} G_{k-p}
$$

where the vectors F and G have period N.

- Define the N th primitive root of unity:

$$
\zeta_{N}=\exp \left(\frac{2 \pi i}{N}\right)
$$

- The fast Fourier transform (FFT) method exploits the properties that $\zeta_{N}^{r}=\zeta_{N / r}$ and $\zeta_{N}^{N}=1$.
- However, the pseudospectral method requires a linear convolution.
- The unnormalized backwards discrete Fourier transform of $\left\{F_{k}: k=0, \ldots, N\right\}$ is

$$
f_{j} \doteq \sum_{k=0}^{N-1} \zeta_{N}^{j k} F_{k} \quad j=0, \ldots, N-1
$$

- The unnormalized backwards discrete Fourier transform of $\left\{F_{k}: k=0, \ldots, N\right\}$ is

$$
f_{j} \doteq \sum_{k=0}^{N-1} \zeta_{N}^{j k} F_{k} \quad j=0, \ldots, N-1
$$

- The corresponding forward transform is

$$
F_{k} \doteq \frac{1}{N} \sum_{j=0}^{N-1} \zeta_{N}^{-k j} f_{j} \quad k=0, \ldots, N-1
$$

- The unnormalized backwards discrete Fourier transform of $\left\{F_{k}: k=0, \ldots, N\right\}$ is

$$
f_{j} \doteq \sum_{k=0}^{N-1} \zeta_{N}^{j k} F_{k} \quad j=0, \ldots, N-1
$$

- The corresponding forward transform is

$$
F_{k} \doteq \frac{1}{N} \sum_{j=0}^{N-1} \zeta_{N}^{-k j} f_{j} \quad k=0, \ldots, N-1
$$

- The orthogonality of this transform pair follows from

$$
\sum_{j=0}^{N-1} \zeta_{N}^{\ell j}= \begin{cases}N & \text { if } \ell=s N \text { for } s \in \mathbb{Z} \\ \frac{1-\zeta_{N}^{\ell N}}{1-\zeta_{N}^{\ell}}=0 & \text { otherwise }\end{cases}
$$

Convolution Theorem

$$
\begin{aligned}
\sum_{j=0}^{N-1} f_{j} g_{j} \zeta_{N}^{-j k} & =\sum_{j=0}^{N-1} \zeta_{N}^{-j k}\left(\sum_{p=0}^{N-1} \zeta_{N}^{j p} F_{p}\right)\left(\sum_{q=0}^{N-1} \zeta_{N}^{j q} G_{q}\right) \\
& =\sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_{p} G_{q} \sum_{j=0}^{N-1} \zeta_{N}^{(-k+p+q) j} \\
& =N \sum_{s} \sum_{p=0}^{N-1} F_{p} G_{k-p+s N}
\end{aligned}
$$

- The terms indexed by $s \neq 0$ are aliases; we need to remove them!

Convolution Theorem

$$
\begin{aligned}
\sum_{j=0}^{N-1} f_{j} g_{j} \zeta_{N}^{-j k} & =\sum_{j=0}^{N-1} \zeta_{N}^{-j k}\left(\sum_{p=0}^{N-1} \zeta_{N}^{j p} F_{p}\right)\left(\sum_{q=0}^{N-1} \zeta_{N}^{j q} G_{q}\right) \\
& =\sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_{p} G_{q} \sum_{j=0}^{N-1} \zeta_{N}^{(-k+p+q) j} \\
& =N \sum_{s} \sum_{p=0}^{N-1} F_{p} G_{k-p+s N}
\end{aligned}
$$

- The terms indexed by $s \neq 0$ are aliases; we need to remove them!
- If only the first m entries of the input vectors are nonzero, aliases can be avoided by zero padding input data vectors of length m to length $N \geq 2 m-1$.

Convolution Theorem

$$
\begin{aligned}
\sum_{j=0}^{N-1} f_{j} g_{j} \zeta_{N}^{-j k} & =\sum_{j=0}^{N-1} \zeta_{N}^{-j k}\left(\sum_{p=0}^{N-1} \zeta_{N}^{j p} F_{p}\right)\left(\sum_{q=0}^{N-1} \zeta_{N}^{j q} G_{q}\right) \\
& =\sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_{p} G_{q} \sum_{j=0}^{N-1} \zeta_{N}^{(-k+p+q) j} \\
& =N \sum_{s} \sum_{p=0}^{N-1} F_{p} G_{k-p+s N}
\end{aligned}
$$

- The terms indexed by $s \neq 0$ are aliases; we need to remove them!
- If only the first m entries of the input vectors are nonzero, aliases can be avoided by zero padding input data vectors of length m to length $N \geq 2 m-1$.
- Explicit zero padding prevents mode $m-1$ from beating with itself, wrapping around to contaminate mode $N=0 \bmod N$.

Implicit Dealiasing

- Let $N=2 m$. For $j=0, \ldots, 2 m-1$ we want to compute

$$
f_{j}=\sum_{k=0}^{2 m-1} \zeta_{2 m}^{j k} F_{k}
$$

Implicit Dealiasing

- Let $N=2 m$. For $j=0, \ldots, 2 m-1$ we want to compute

$$
f_{j}=\sum_{k=0}^{2 m-1} \zeta_{2 m}^{j k} F_{k}
$$

- If $F_{k}=0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$
\begin{aligned}
f_{2 \ell} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{2 \ell k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} F_{k} \\
f_{2 \ell+1} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{(2 \ell+1) k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} \zeta_{2 m}^{k} F_{k}, \quad \ell=0,1, \ldots m-1
\end{aligned}
$$

Implicit Dealiasing

- Let $N=2 m$. For $j=0, \ldots, 2 m-1$ we want to compute

$$
f_{j}=\sum_{k=0}^{2 m-1} \zeta_{2 m}^{j k} F_{k}
$$

- If $F_{k}=0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$
\begin{aligned}
f_{2 \ell} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{2 \ell k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} F_{k}, \\
f_{2 \ell+1} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{(2 \ell+1) k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} \zeta_{2 m}^{k} F_{k}, \quad \ell=0,1, \ldots m-1 .
\end{aligned}
$$

- This requires computing two subtransforms, each of size m, for an overall computational scaling of order $2 m \log _{2} m=$ $N \log _{2} m$.
- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v 2.02) on top of the FFTW library under the Lesser GNU Public License:
http://fftwpp.sourceforge.net/

Fast Variably Restricted Dealiased Convolution

- We need a practical algorithm for computing many partial Fourier transforms at once:

$$
u_{\boldsymbol{j}} \doteq \sum_{|\boldsymbol{k}|<c(\boldsymbol{j})} \zeta_{N}^{\boldsymbol{k} \cdot \boldsymbol{j}} U_{\boldsymbol{k}}
$$

where $\zeta_{N}=e^{2 \pi i / N}$ is the N th primitive root of unity.

Fast Variably Restricted Dealiased Convolution

- We need a practical algorithm for computing many partial Fourier transforms at once:

$$
u_{j} \doteq \sum_{|\boldsymbol{k}|<c(\boldsymbol{j})} \zeta_{N}^{\boldsymbol{k} \cdot \boldsymbol{j}} U_{k}
$$

where $\zeta_{N}=e^{2 \pi i / N}$ is the N th primitive root of unity.

- Here $c(\boldsymbol{j})$ is a spatially-dependent constraint on the summation limits.

Fast Variably Restricted Dealiased Convolution

- We need a practical algorithm for computing many partial Fourier transforms at once:

$$
u_{j} \doteq \sum_{|\boldsymbol{k}|<c(\boldsymbol{j})} \zeta_{N}^{\boldsymbol{k} \cdot \boldsymbol{j}} U_{k}
$$

where $\zeta_{N}=e^{2 \pi i / N}$ is the N th primitive root of unity.

- Here $c(\boldsymbol{j})$ is a spatially-dependent constraint on the summation limits.
- Goal: obtain a 'fast' computational scaling, following Ying \& Fomel [2009] but with a smaller overall coefficient.

Partial 1D Fourier Transform

- Let $\zeta^{\alpha} \doteq \zeta_{1 / a}=e^{2 \pi i \alpha}$.

Partial 1D Fourier Transform

- Let $\zeta^{\alpha} \doteq \zeta_{1 / a}=e^{2 \pi i \alpha}$.
- The unnormalized backward discrete partial Fourier transform of a complex vector $\left\{F_{k}: k=0, \ldots, N-1\right\}$ is defined as

$$
f_{j} \doteq \sum_{k=0}^{c(j)} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, N-1
$$

Special case of partial 1D FFT: $c(j)=j$

- Given inputs $\left\{F_{k}: k=0, \ldots, N-1\right\}$,

$$
f_{j} \doteq \sum_{k=0}^{j} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, N-1
$$

Special case of partial 1D FFT: $c(j)=j$

- Given inputs $\left\{F_{k}: k=0, \ldots, N-1\right\}$,

$$
f_{j} \doteq \sum_{k=0}^{j} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, N-1 .
$$

- Since $j k=\frac{1}{2}\left[j^{2}+k^{2}-(j-k)^{2}\right],[$ Bluestein 1970]

$$
f_{j}=\sum_{k=0}^{j} \zeta^{\frac{\alpha}{2}\left[j^{2}+k^{2}-(j-k)^{2}\right]} F_{k}=\zeta^{\alpha j^{2} / 2} \sum_{k=0}^{j} \zeta^{\alpha k^{2} / 2} F_{k} \zeta^{-\alpha(j-k)^{2} / 2}
$$

Special case of partial 1D FFT: $c(j)=j$

- Given inputs $\left\{F_{k}: k=0, \ldots, N-1\right\}$,

$$
f_{j} \doteq \sum_{k=0}^{j} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, N-1 .
$$

- Since $j k=\frac{1}{2}\left[j^{2}+k^{2}-(j-k)^{2}\right],[$ Bluestein 1970]

$$
f_{j}=\sum_{k=0}^{j} \zeta^{\frac{\alpha}{2}\left[j^{2}+k^{2}-(j-k)^{2}\right]} F_{k}=\zeta^{\alpha j^{2} / 2} \sum_{k=0}^{j} \zeta^{\alpha k^{2} / 2} F_{k} \zeta^{-\alpha(j-k)^{2} / 2}
$$

- This can be written as the convolution of the two sequences $g_{j}=\zeta_{2}^{\alpha j^{2}}$ and $h_{k}=g_{k} F_{k}$:

$$
f_{j}=g_{j} \sum_{k=0}^{j} h_{k} \bar{g}_{j-k}
$$

Partial FFT: Special Case $c(j)=(p j+s) / q$

- Here p, q, and s are integers, with $p \neq 0$ and

$$
f_{j} \doteq \sum_{k=0}^{\lfloor(p j+s) / q\rfloor} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, M-1
$$

Partial FFT: Special Case $c(j)=(p j+s) / q$

- Here p, q, and s are integers, with $p \neq 0$ and

$$
f_{j} \doteq \sum_{k=0}^{\lfloor(p j+s) / q\rfloor} \zeta^{\alpha j k} F_{k}, \quad j=0, \ldots, M-1
$$

- Let $p j+s=q n+r$, with $n=0, \ldots, N-1$. Then

$$
\begin{aligned}
f_{j} & =\sum_{k=0}^{n} \zeta_{p}^{\alpha(q n+r-s) k} F_{k} \\
& =\sum_{k=0}^{n} \zeta_{2 p}^{\alpha q\left[n^{2}+k^{2}-(n-k)^{2}\right]} \zeta_{p}^{\alpha(r-s) k} F_{k} \\
& =\zeta_{2 p}^{\alpha q n^{2}} \sum_{k=0}^{n} \zeta_{2 p}^{-\alpha q(n-k)^{2}} \zeta_{2 p}^{\alpha q k^{2}} \zeta_{p}^{\alpha(r-s) k} F_{k}
\end{aligned}
$$

- On setting $g_{k}=\zeta_{2 p}^{\alpha q k^{2}}$ and $h_{k}=g_{k} \zeta_{p}^{\alpha(r-s) k} F_{k}$, the result can be written as a convolution of two sequences $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$:

$$
f_{j}=g_{n} \sum_{k=0}^{n} h_{k} \bar{g}_{n-k}, \quad j=0, \ldots, M-1
$$

- On setting $g_{k}=\zeta_{2 p}^{\alpha q k^{2}}$ and $h_{k}=g_{k} \zeta_{p}^{\alpha(r-s) k} F_{k}$, the result can be written as a convolution of two sequences $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$:

$$
f_{j}=g_{n} \sum_{k=0}^{n} h_{k} \bar{g}_{n-k}, \quad j=0, \ldots, M-1
$$

- This general algorithm is only efficient when $p=1$ or $q=1$.
- On setting $g_{k}=\zeta_{2 p}^{\alpha q k^{2}}$ and $h_{k}=g_{k} \zeta_{p}^{\alpha(r-s) k} F_{k}$, the result can be written as a convolution of two sequences $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$:

$$
f_{j}=g_{n} \sum_{k=0}^{n} h_{k} \bar{g}_{n-k}, \quad j=0, \ldots, M-1
$$

- This general algorithm is only efficient when $p=1$ or $q=1$.
- A similar procedure can be used to compute partial convolutions.
- On setting $g_{k}=\zeta_{2 p}^{\alpha q k^{2}}$ and $h_{k}=g_{k} \zeta_{p}^{\alpha(r-s) k} F_{k}$, the result can be written as a convolution of two sequences $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$:

$$
f_{j}=g_{n} \sum_{k=0}^{n} h_{k} \bar{g}_{n-k}, \quad j=0, \ldots, M-1
$$

- This general algorithm is only efficient when $p=1$ or $q=1$.
- A similar procedure can be used to compute partial convolutions.
- The technique can be readily extended to higher dimensions.

Rectangular subdivision for $c(j)=j$

Triangular subdivision for $c(j)=j$

> Rectangular subdivision for $c(j)=(N-1) \sin \pi j /(N-1)$

$$
\begin{gathered}
\text { Hybrid subdivision for } \\
c(j)=(N-1) \sin \pi j /(N-1)
\end{gathered}
$$

Computation time

Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.

Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.
- Any continuously differentiable function of the (scalar) vorticity is conserved by the nonlinearity:

$$
\begin{aligned}
\frac{d}{d t} \int f(\omega) d \boldsymbol{x} & =\int f^{\prime}(\omega) \frac{\partial \omega}{\partial t} d \boldsymbol{x}=-\int f^{\prime}(\omega) \boldsymbol{u} \cdot \nabla \omega d \boldsymbol{x} \\
& =-\int \boldsymbol{u} \cdot \boldsymbol{\nabla} f(\omega) d \boldsymbol{x}=\int f(\omega) \boldsymbol{\nabla} \cdot \boldsymbol{u} d \boldsymbol{x}=0
\end{aligned}
$$

Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.
- Any continuously differentiable function of the (scalar) vorticity is conserved by the nonlinearity:

$$
\begin{aligned}
\frac{d}{d t} \int f(\omega) d \boldsymbol{x} & =\int f^{\prime}(\omega) \frac{\partial \omega}{\partial t} d \boldsymbol{x}=-\int f^{\prime}(\omega) \boldsymbol{u} \cdot \boldsymbol{\nabla} \omega d \boldsymbol{x} \\
& =-\int \boldsymbol{u} \cdot \boldsymbol{\nabla} f(\omega) d \boldsymbol{x}=\int f(\omega) \boldsymbol{\nabla} \cdot \boldsymbol{u} d \boldsymbol{x}=0
\end{aligned}
$$

- Do these invariants also play a fundamental role in the turbulent dynamics, in addition to the quadratic (energy and enstrophy) invariants? Do they exhibit cascades?

Conclusions

- One should distinguish between nonlocal transfer and flux.

Conclusions

- One should distinguish between nonlocal transfer and flux.
- To compute this decomposition efficiently, one needs a partial convolution.

Conclusions

- One should distinguish between nonlocal transfer and flux.
- To compute this decomposition efficiently, one needs a partial convolution.
- Partial dealiased convolutions can be used to compute detailed inertial-range flux profiles and for the first time verify a key underpinning assumption of Kolmogorov's famous power-law conjecture for turbulence.

Conclusions

- One should distinguish between nonlocal transfer and flux.
- To compute this decomposition efficiently, one needs a partial convolution.
- Partial dealiased convolutions can be used to compute detailed inertial-range flux profiles and for the first time verify a key underpinning assumption of Kolmogorov's famous power-law conjecture for turbulence.
- This will allow us to verify and exploit inertial-range selfsimilarity in 2D turbulence and study the flux locality profile.

Conclusions

- One should distinguish between nonlocal transfer and flux.
- To compute this decomposition efficiently, one needs a partial convolution.
- Partial dealiased convolutions can be used to compute detailed inertial-range flux profiles and for the first time verify a key underpinning assumption of Kolmogorov's famous power-law conjecture for turbulence.
- This will allow us to verify and exploit inertial-range selfsimilarity in 2D turbulence and study the flux locality profile.
- The locality profile can be used to infer the effective eddy damping contribution from each of truncated (subgrid) modes, allowing us to build a phenomenological dynamic subgrid model that on average removes the right amount of energy from each of the scales near the subgrid wavenumber cutoff.

References

[Bluestein 1970] L. I. Bluestein, IEEE Trans. Audio and Electroacoustics, 18:451, 1970.
[Bowman \& Roberts 2011] J. C. Bowman \& M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.
[Roberts \& Bowman 2016] M. Roberts \& J. C. Bowman, submitted to SIAM J. Sci. Comput., 2016.
[Ying \& Fomel 2009] L. Ying \& S. Fomel, Multiscale Modeling and Simulation, 8:110, 2009.

