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Initial Value Problems
Givenf : R

n+1 → R
n, supposex ∈ R

n evolves according to

dx

dt
= f(x, t), (1)

with the initial conditionx(0) = x0.

If n = 2k andx = (q,p) whereq,p ∈ R
k satisfy

dq

dt
=

∂H

∂p
,

dp

dt
= −

∂H

∂q
,

for some functionH(q,p, t) : R
n+1 → R, we say that (1) is

Hamiltonian.

Often, theHamiltonianH hasno explicit dependence ont.



Structure-Preserving Discretizations
Symplectic integration:conservesphase spacestructure of
Hamilton’s equations; the time step map is a canonical
transformation. [Ruth 1983, Channell & Scovel 1990,
Sanz-Serna & Calvo 1994]

Conservative integration:conservesfirst integrals.
[Bowmanet al. 1997, Shadwicket al. 1999,
Kotovych & Bowman 2002]

Exponential integrators:Operator splitting yieldsexact
evolution on linear time scale.



Symplectic vs. Conservative Integration

Theorem 1 (Ge and Marsden 1988): A C1 symplectic map M

with no explicit time-dependence will conserve a C1

time-independent Hamiltonian H : R
n → R ⇐⇒ M is identical

to the exact evolution, up to a reparametrization of time.

Proof:

A C1 symplectic scheme is a canonical mapM corresponding
to some approximateC1 HamiltonianH̃τ (x, t) : R

n+1 → R,
where the labelτ denotes the time step.

If the mappingM does not depend explicitly on time, it can be
generated by the approximate HamiltonianK(x) = H̃τ (x, 0).



Suppose the symplectic map conserves the true HamiltonianH:

0 =
dH

dt
=

∂H

∂qi

dqi

dt
+

∂H

∂pi

dpi

dt
+

∂H

∂t

/

= [H,K],

where

[H,K] =
∂H

∂qi

∂K

∂pi
−

∂H

∂pi

∂K

∂qi
.

Implicit function theorem: in a neighbourhood ofx0 ∈ R
n

∃ aC1 functionφ : R → R ∋

H(x) = φ(K(x)) or K(x) = φ(H(x)) ⇐⇒ [H,K] = 0.

Consequently, the trajectories inR
n generated by the

HamiltoniansH andK coincide.
Q.E.D.



Conservative Integration
Traditional numerical discretizations of nonlinear initial value
problems are based onpolynomial functions of the time step.

They typically yield spurious secular drifts of nonlinear first
integrals of motion (e.g. total energy).

⇒ the numerical solution willnot remain on the energy surface
defined by the initial conditions!

There exists a class of nontraditionalexplicit algorithms that
exactly conservenonlinear invariants toall orders in the time
step (to machine precision).



Three-Wave Problem
Truncated Fourier-transformed Euler equations for an inviscid
2D fluid:

dx1

dt
= f1 = M1x2x3,

dx2

dt
= f2 = M2x3x1,

dx3

dt
= f3 = M3x1x2,

whereM1 + M2 + M3 = 0.

Then
∑

k

fkxk = 0 ⇒ energyE .
=

1

2

∑

k

x2
k is conserved.



Secular Energy Growth
Energy is not conserved by conventional discretizations.

The Euler method,

xk(t + τ) = xk(t) + τfk,

yields a monotonically increasing new energy:

E(t + τ) =
1

2

∑

k

[
x2

k + 2τfkxk + τ2S2
k

]

= E(t) +
1

2
τ2

∑

k

S2
k .



Conservative Euler Algorithm
Determine a modification of the original equations of motion
leading toexact energy conservation:

dxk

dt
= fk + gk.

Euler’s method predicts the new energy

E(t + τ) =
1

2

∑

k

[xk + τ(fk + gk)]
2

= E(t) +
1

2

∑

k

[
2τgkxk + τ2(fk + gk)

2
]

︸ ︷︷ ︸

set to0

.



Solving forgk yields theC–Eulerdiscretization:

xk(t + τ) = sgn xk(t + τ)
√

x2
k + 2τfkxk.

Reduces to Euler’s method asτ → 0:

xk(t + τ) = xk

√

1 + 2τ
fk

xk

= xk + τfk + O(τ2).

C–Euler is just the usual Euler algorithm applied to

dx2
k

dt
= 2fkxk.



Lemma 1: Let x and c be vectors in R
n. If f : R

n+1 → R
n has

values orthogonal to c, so that I = c · x is a linear invariant of

dx

dt
= f(x, t),

then each stage of the explicit m-stage discretization

xi = x0 + τ

i−1∑

j=0

aijf(xj , t + aiτ), i = 1, . . . ,m,

also conserves I, where τ is the time step and aij ∈ R.



Higher-Order Conservative Integration
Find atransformationT : R

n → R
n such that the nonlinear

invariants are linear functions ofξ = T (x).

The new value ofx is then obtained by inverse transformation:

x(t + τ) = T−1(ξ(t + τ)).

Problem:T may not be invertible!
Solution 1:Reduce the time step.
Solution 2:Switch to a traditional integrator for that time step.
Solution 3:Use an implicit backwards step [Shadwick &
Bowman SIAM J. Appl. Math.59, 1112 (1999), Appendix A].

Only thefinal corrector stageneeds to be computed in the
transformed space.



Error Analysis: 1D Autonomous Case
Exact solution (everything on RHS evaluated atx0):

x(t + τ) = x0 + τf +
τ2

2
f ′f +

τ3

6
(f ′′f2 + f ′2f) + O(τ4);

WhenT ′(x0) 6= 0, C–PC yields the solution

x(t + τ) = x0 + τf +
τ2

2
f ′f +

τ3

4

(

f ′′f2 +
T ′′′

3T ′
f3

)

+ O(τ4),

where all of the derivatives are evaluated atx0.

On settingT (x) = x, the C–PC solution reduces to the
conventional PC.

C–PC and PC are both accurate to second order inτ ;
for T (x) = x2, they agree through third order inτ .



Singular Case
WhenT ′(x0) = 0, the conservative corrector reduces to

x(t + τ) = T−1
(

T (x0) +
τ

2
T ′(x̃)f(x̃)

)

,

If T andf are analytic, the existence of a solution is guaranteed
asτ → 0+ if the points at whichT ′ vanishes are isolated.



Four-Body Choreography
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Conservative Symplectic Integrators
Conservative variational symplectic integrators based on
explicitly time-dependentsymplectic maps have been proposed
for certain mechanics problems. [Kane, Marsden, and Ortiz
1999]

These integrators circumvent the conditions of the Ge–Marsden
theorem!



Exponential Integrators
Typical stiff nonlinear initial value problem:

dx

dt
+ η x = f(t, x), x(0) = x0.

Stiff: Nonlinearityf varies slowly int compared with the value
of the linear coefficientη:

∣
∣
∣
∣

1

f

df

dt

∣
∣
∣
∣
≪ |η| .

Goal: Solve on the linear time scale exactly; avoid the linear
time-step restrictionητ ≪ 1.

In the presence of nonlinearity,straightforward integrating
factor methods do not remove the explicit restriction on the
linear time stepτ .



Exponential Euler Algorithm
Exact evolution ofx:

x(t0 + τ) = P−1(t0 + τ)

[

x(t0) +

∫ t0+τ

t0

dt P (t)f(t)

]

,

whereP (t) = eη(t−t0).

Change variables:dt P = η−1dP ⇒

x(t0 + τ) = P−1(t0 + τ)

[

x(t0) + η−1

∫ P (t0+τ)

1
dP f

]

.

Rectangular approximation of integral⇒ Exponential Euler
algorithm:

xi+1 = P−1
i+1

[
xi + η−1(Pi+1 − 1)fi

]
.

The discretization is now with respect toP instead oft.

Also known as theExponentially Fitted Eulermethod.



Generalizations
Higher-order exponential integrators:
[Hochbruck and Lubich 1997, Cox and Matthews 2004,
Hochbruck and Ostermann 2005, Bowman 2005].

Vector case(matrix exponentialP = eηt).

Gaussian Quadrature with respect toweight functionP .

Conservative Exponential Integrators

Can replace linear Green’s functioneη(t−t′) by anystationary

Green’s functionG(t − t′).

Lagrangian discretizations ofadvection equationsare also
exponential integrators:

∂u

∂t
+ v

∂

∂x
u = f(x, t, u), u(x, 0) = u0(x).

η now represents the linear operatorv ∂
∂x andP−1u = e−tv ∂

∂x u

corresponds to the Taylor series ofu(x − vt).



Charged Particle in Electromagnetic Fields
Lorentz force:

m

q

dv

dt
=

1

c
v×B + E.

Efficiently compute thematrix exponentialexp(Ω), where

Ω = −
q

mc
t






0 Bz −By

−Bz 0 Bx

By −Bx 0




 .

Requires 2 trigonometric functions, 1 division, 1 square root,
and 35 additions or multiplications.

The other necessary matrix factor,Ω−1[exp(Ω) − 1] requires
care, sinceΩ is singular. Evaluate it as

lim
λ→0

[(Ω + λ1)−1(eΩ − 1)].



Motion under Lorentz force
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Higher-Order Exponential Integrators
Vector case:

dx

dt
+ ηx = f(x).

Autonomous Runge–Kutta scheme:

xi = x0 + τ

i−1∑

j=0

aijf(xj), (i = 1, . . . , s).

Matrix functions

ϕ1(x) = x−1(ex − 1)

and
ϕ2(x) = x−2(ex − 1 − x).

Exercise care when evaluatingϕ1 andϕ2 near zero!



An Embedded 4-Stage (3,2) Exponential Pair

a10=
1

2
ϕ1

(
1

2
x

)

,

a20=
3

4
ϕ1

(
3

4
x

)

− a21, a21 =
9

8
ϕ2

(
3

4
x

)

+
3

8
ϕ2

(
1

2
x

)

,

a30=ϕ1(x) − a31 − a32, a31 =
1

3
ϕ1(x),a32 =

4

3
ϕ2(x) −

2

9
ϕ1(x),

a40=ϕ1(x) −
17

12
ϕ2(x), a41 =

1

2
ϕ2(x), a42 =

2

3
ϕ2(x), a43 =

1

4
ϕ2(x),

x3 hasstiff order 3[Hochbruck and Ostermann 2005].

x4 provides a second-order estimate for adjusting the time step.

Sincef(x3) is justf at the initialx0 for the next time step,no
additional source evaluationis required to computex4 [FSAL].

η → 0: reduces to [3,2] Bogacki–Shampine Runge–Kutta pair.



Asymptote: The Vector Graphics Language

symptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptote

http://asymptote.sf.net

(freely available under the GNU public license)
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