Structure-Preserving and Exponential Discretizations of Initial-Value Problems

John C. Bowman, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

http://www.math.ualberta.ca/~bowman/talks

October 15, 2005.

Outline

- **1** Structure-Preserving Discretizations
- 2 Symplectic Integrators
- **3** Conservative Integrators
- **4** Exponential Integrators
- **5** Conclusions

Initial Value Problems

• Given $\boldsymbol{f} : \mathbb{R}^{n+1} \to \mathbb{R}^n$, suppose $\boldsymbol{x} \in \mathbb{R}^n$ evolves according to $\frac{d\boldsymbol{x}}{dt} = \boldsymbol{f}(\boldsymbol{x}, t), \qquad (1)$

with the initial condition $\boldsymbol{x}(0) = \boldsymbol{x}_0$.

• If n = 2k and $\boldsymbol{x} = (\boldsymbol{q}, \boldsymbol{p})$ where $\boldsymbol{q}, \boldsymbol{p} \in \mathbb{R}^k$ satisfy

$$\frac{d\boldsymbol{q}}{dt} = \frac{\partial \boldsymbol{H}}{\partial \boldsymbol{p}},$$
$$\frac{d\boldsymbol{p}}{dt} = -\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{q}},$$

for some function $H(q, p, t) : \mathbb{R}^{n+1} \to \mathbb{R}$, we say that (1) is Hamiltonian.

• Often, the Hamiltonian H has no explicit dependence on t.

Structure-Preserving Discretizations

- Symplectic integration: conserves phase space structure of Hamilton's equations; the time step map is a canonical transformation. [Ruth 1983, Channell & Scovel 1990, Sanz-Serna & Calvo 1994]
- Conservative integration: conserves first integrals. [Bowman et al. 1997, Shadwick et al. 1999, Kotovych & Bowman 2002]
- Exponential integrators: Operator splitting yields exact evolution on linear time scale.

Symplectic vs. Conservative Integration

Theorem 1 (Ge and Marsden 1988): $A \ C^1$ symplectic map Mwith no explicit time-dependence will conserve a C^1 time-independent Hamiltonian $H : \mathbb{R}^n \to \mathbb{R} \iff M$ is identical to the exact evolution, up to a reparametrization of time.

Proof:

- A C^1 symplectic scheme is a canonical map M corresponding to some approximate C^1 Hamiltonian $\tilde{H}_{\tau}(\boldsymbol{x}, t) : \mathbb{R}^{n+1} \to \mathbb{R}$, where the label τ denotes the time step.
- If the mapping M does not depend explicitly on time, it can be generated by the approximate Hamiltonian $K(\mathbf{x}) = \tilde{H}_{\tau}(\mathbf{x}, 0)$.

• Suppose the symplectic map conserves the true Hamiltonian *H*:

$$0 = \frac{dH}{dt} = \frac{\partial H}{\partial q_i} \frac{dq_i}{dt} + \frac{\partial H}{\partial p_i} \frac{dp_i}{dt} + \frac{\partial H}{\partial t} = [H, K],$$

where

$$[H, K] = \frac{\partial H}{\partial q_i} \frac{\partial K}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial K}{\partial q_i}$$

- Implicit function theorem: in a neighbourhood of $x_0 \in \mathbb{R}^n$ $\exists a \ C^1 \text{ function } \phi : \mathbb{R} \to \mathbb{R} \ni$ $H(x) = \phi(K(x)) \text{ or } K(x) = \phi(H(x)) \iff [H, K] = 0.$
- Consequently, the trajectories in \mathbb{R}^n generated by the Hamiltonians H and K coincide.

Q.E.D.

Conservative Integration

- Traditional numerical discretizations of nonlinear initial value problems are based on polynomial functions of the time step.
- They typically yield spurious secular drifts of nonlinear first integrals of motion (e.g. total energy).

 \Rightarrow the numerical solution will *not* remain on the energy surface defined by the initial conditions!

• There exists a class of nontraditional explicit algorithms that exactly conserve nonlinear invariants to *all orders* in the time step (to machine precision).

Three-Wave Problem

Truncated Fourier-transformed Euler equations for an inviscid 2D fluid:

$$\frac{dx_1}{dt} = f_1 = M_1 x_2 x_3,$$
$$\frac{dx_2}{dt} = f_2 = M_2 x_3 x_1,$$
$$\frac{dx_3}{dt} = f_3 = M_3 x_1 x_2,$$

where $M_1 + M_2 + M_3 = 0$.

• Then

$$\sum_{k} f_k x_k = 0 \Rightarrow \text{ energy } E \doteq \frac{1}{2} \sum_{k} x_k^2 \text{ is conserved.}$$

Secular Energy Growth

- Energy is not conserved by conventional discretizations.
- The Euler method,

$$x_k(t+\tau) = x_k(t) + \tau f_k,$$

yields a monotonically increasing new energy:

$$E(t+\tau) = \frac{1}{2} \sum_{k} \left[x_k^2 + 2\tau f_k x_k + \tau^2 S_k^2 \right]$$
$$= E(t) + \frac{1}{2} \tau^2 \sum_{k} S_k^2.$$

Conservative Euler Algorithm

• Determine a modification of the original equations of motion leading to *exact* energy conservation:

$$\frac{dx_k}{dt} = f_k + g_k.$$

• Euler's method predicts the new energy

$$E(t + \tau) = \frac{1}{2} \sum_{k} [x_k + \tau (f_k + g_k)]^2$$

= $E(t) + \frac{1}{2} \sum_{k} \underbrace{[2\tau g_k x_k + \tau^2 (f_k + g_k)^2]}_{\text{set to } 0}.$

• Solving for g_k yields the C–Euler discretization:

$$x_k(t+\tau) = \operatorname{sgn} x_k(t+\tau) \sqrt{x_k^2 + 2\tau f_k x_k}.$$

- Reduces to Euler's method as $\tau \to 0$: $x_k(t + \tau) = x_k \sqrt{1 + 2\tau \frac{f_k}{x_k}}$ $= x_k + \tau f_k + \mathcal{O}(\tau^2).$
- C–Euler is just the usual Euler algorithm applied to

$$\frac{dx_k^2}{dt} = 2f_k x_k.$$

Lemma 1: Let \boldsymbol{x} and \boldsymbol{c} be vectors in \mathbb{R}^n . If $\boldsymbol{f} : \mathbb{R}^{n+1} \to \mathbb{R}^n$ has values orthogonal to \boldsymbol{c} , so that $\boldsymbol{I} = \boldsymbol{c} \cdot \boldsymbol{x}$ is a linear invariant of

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{f}(\boldsymbol{x}, t),$$

then each stage of the explicit *m*-stage discretization

$$x_i = x_0 + \tau \sum_{j=0}^{i-1} a_{ij} f(x_j, t + a_i \tau), \qquad i = 1, \dots, m,$$

also conserves I, where τ is the time step and $a_{ij} \in \mathbb{R}$.

Higher-Order Conservative Integration

- Find a transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ such that the nonlinear invariants are linear functions of $\boldsymbol{\xi} = T(\boldsymbol{x})$.
- The new value of x is then obtained by inverse transformation:

$$\boldsymbol{x}(t+\tau) = \boldsymbol{T}^{-1}(\boldsymbol{\xi}(t+\tau)).$$

 Problem: T may not be invertible! Solution 1: Reduce the time step.
Solution 2: Switch to a traditional integrator for that time step.
Solution 3: Use an implicit backwards step [Shadwick & Bowman SIAM J. Appl. Math. 59, 1112 (1999), Appendix A].

• Only the final corrector stage needs to be computed in the transformed space.

Error Analysis: 1D Autonomous Case

• Exact solution (everything on RHS evaluated at x_0):

$$x(t+\tau) = x_0 + \tau f + \frac{\tau^2}{2}f'f + \frac{\tau^3}{6}(f''f^2 + f'^2f) + \mathcal{O}(\tau^4);$$

• When $T'(x_0) \neq 0$, C–PC yields the solution

$$x(t+\tau) = x_0 + \tau f + \frac{\tau^2}{2}f'f + \frac{\tau^3}{4}\left(f''f^2 + \frac{T'''}{3T'}f^3\right) + \mathcal{O}(\tau^4),$$

where all of the derivatives are evaluated at x_0 .

- On setting T(x) = x, the C–PC solution reduces to the conventional PC.
- C–PC and PC are both accurate to second order in τ ; for $T(x) = x^2$, they agree through third order in τ .

Singular Case

• When $T'(x_0) = 0$, the conservative corrector reduces to

$$x(t+\tau) = T^{-1} \left(T(x_0) + \frac{\tau}{2} T'(\tilde{x}) f(\tilde{x}) \right),$$

• If T and f are analytic, the existence of a solution is guaranteed as $\tau \to 0^+$ if the points at which T' vanishes are isolated.

Four-Body Choreography

PC, symplectic SKP, and C–PC solutions

Conservative Symplectic Integrators

- Conservative variational symplectic integrators based on explicitly time-dependent symplectic maps have been proposed for certain mechanics problems. [Kane, Marsden, and Ortiz 1999]
- These integrators circumvent the conditions of the Ge–Marsden theorem!

Exponential Integrators

• Typical stiff nonlinear initial value problem:

$$\frac{dx}{dt} + \eta x = f(t, x), \qquad x(0) = x_0.$$

• Stiff: Nonlinearity f varies slowly in t compared with the value of the linear coefficient η :

$$\left|\frac{1}{f}\frac{df}{dt}\right| \ll |\eta|$$

- Goal: Solve on the linear time scale exactly; avoid the linear time-step restriction $\eta \tau \ll 1$.
- In the presence of nonlinearity, straightforward integrating factor methods do not remove the explicit restriction on the linear time step τ .

Exponential Euler Algorithm

• Exact evolution of *x*:

$$x(t_0 + \tau) = P^{-1}(t_0 + \tau) \left[x(t_0) + \int_{t_0}^{t_0 + \tau} dt \, P(t) f(t) \right],$$

where $P(t) = e^{\eta(t-t_0)}$.

• Change variables: $dt P = \eta^{-1} dP \Rightarrow$

$$x(t_0 + \tau) = P^{-1}(t_0 + \tau) \left[x(t_0) + \eta^{-1} \int_1^{P(t_0 + \tau)} dP f \right]$$

Rectangular approximation of integral \Rightarrow Exponential Euler algorithm:

$$x_{i+1} = P_{i+1}^{-1} \left[x_i + \eta^{-1} (P_{i+1} - 1) f_i \right].$$

- The discretization is now with respect to P instead of t.
- Also known as the Exponentially Fitted Euler method.

Generalizations

- Higher-order exponential integrators: [Hochbruck and Lubich 1997, Cox and Matthews 2004, Hochbruck and Ostermann 2005, Bowman 2005].
- Vector case (matrix exponential $P = e^{\eta t}$).
- Gaussian Quadrature with respect to weight function *P*.
- Conservative Exponential Integrators
- Can replace linear Green's function $e^{\eta(t-t')}$ by any *stationary* Green's function G(t t').
- Lagrangian discretizations of advection equations are also exponential integrators:

$$\frac{\partial u}{\partial t} + v \frac{\partial}{\partial x} u = f(x, t, u), \qquad u(x, 0) = u_0(x).$$

• η now represents the linear operator $v \frac{\partial}{\partial x}$ and $\mathcal{P}^{-1}u = e^{-tv \frac{\partial}{\partial x}}u$ corresponds to the Taylor series of u(x - vt).

Charged Particle in Electromagnetic Fields

• Lorentz force:

$$\frac{m}{q}\frac{d\boldsymbol{v}}{dt} = \frac{1}{c}\boldsymbol{v} \times \boldsymbol{B} + \boldsymbol{E}.$$

• Efficiently compute the matrix exponential $exp(\Omega)$, where

$$\mathbf{\Omega} = -\frac{q}{mc} t \begin{pmatrix} 0 & B_z & -B_y \\ -B_z & 0 & B_x \\ B_y & -B_x & 0 \end{pmatrix}$$

- Requires 2 trigonometric functions, 1 division, 1 square root, and 35 additions or multiplications.
- The other necessary matrix factor, Ω⁻¹[exp(Ω) 1] requires care, since Ω is singular. Evaluate it as

$$\lim_{\lambda \to 0} [(\mathbf{\Omega} + \lambda \mathbf{1})^{-1} (e^{\mathbf{\Omega}} - \mathbf{1})].$$

Motion under Lorentz force

Higher-Order Exponential Integrators

• Vector case:

$$\frac{d\boldsymbol{x}}{dt} + \boldsymbol{\eta}\boldsymbol{x} = \boldsymbol{f}(\boldsymbol{x}).$$

• Autonomous Runge–Kutta scheme:

$$x_i = x_0 + \tau \sum_{j=0}^{i-1} a_{ij} f(x_j), \quad (i = 1, \dots, s).$$

• Matrix functions

$$\varphi_1(\boldsymbol{x}) = \boldsymbol{x}^{-1}(e^{\boldsymbol{x}} - \boldsymbol{1})$$

and

$$\varphi_2(\boldsymbol{x}) = \boldsymbol{x}^{-2}(e^{\boldsymbol{x}} - \boldsymbol{1} - \boldsymbol{x}).$$

• Exercise care when evaluating φ_1 and φ_2 near zero!

An Embedded 4-Stage (3,2) Exponential Pair

$$\begin{aligned} \mathbf{a}_{10} &= \frac{1}{2}\varphi_1\left(\frac{1}{2}\mathbf{x}\right), \\ \mathbf{a}_{20} &= \frac{3}{4}\varphi_1\left(\frac{3}{4}\mathbf{x}\right) - a_{21}, \ \mathbf{a}_{21} &= \frac{9}{8}\varphi_2\left(\frac{3}{4}\mathbf{x}\right) + \frac{3}{8}\varphi_2\left(\frac{1}{2}\mathbf{x}\right), \\ \mathbf{a}_{30} &= \varphi_1(\mathbf{x}) - \mathbf{a}_{31} - \mathbf{a}_{32}, \ \mathbf{a}_{31} &= \frac{1}{3}\varphi_1(\mathbf{x}), \mathbf{a}_{32} &= \frac{4}{3}\varphi_2(\mathbf{x}) - \frac{2}{9}\varphi_1(\mathbf{x}), \\ \mathbf{a}_{40} &= \varphi_1(\mathbf{x}) - \frac{17}{12}\varphi_2(\mathbf{x}), \ \mathbf{a}_{41} &= \frac{1}{2}\varphi_2(\mathbf{x}), \ \mathbf{a}_{42} &= \frac{2}{3}\varphi_2(\mathbf{x}), \ \mathbf{a}_{43} &= \frac{1}{4}\varphi_2(\mathbf{x}), \end{aligned}$$

- x_3 has stiff order 3 [Hochbruck and Ostermann 2005].
- x_4 provides a second-order estimate for adjusting the time step.
- Since $f(x_3)$ is just f at the initial x_0 for the next time step, no additional source evaluation is required to compute x_4 [FSAL].
- $\eta \rightarrow 0$: reduces to [3,2] Bogacki–Shampine Runge–Kutta pair.

Asymptote: The Vector Graphics Language

http://asymptote.sf.net

(freely available under the GNU public license)

References

[Bowman et al. 1997] J. C. Bowman,

B. A. Shadwick, & P. J. Morrison, "Exactly conservative integrators," in 15th IMACS World Congress onScientific Computation, Modelling and Applied Math*ematics*, edited by A. Sydow, volume 2, pp. 595-600, Berlin, 1997, Wissenschaft & Technik.

[Channell	&	Scovel	1990]	Р	J.	Chan	nell	&
				J. (D. S	Scovel	l, No	on-
				line	eari	ty,	3 :23	31,
				199	0.			

- [Ge Zhong & Marsden 1988] Ge Zhong & J. E. Marsden, Phys. Lett. A, **133**:134, 1988.
 - [Kane *et al.* 1999] C. Kane, J. E. Marsden, & M. Ortiz, J. Math. Phys., **40**:3353, 1999.
- [Kotovych & Bowman 2002] O. Kotovych & J. C. Bowman, J. Phys. A.: Math. Gen., **35**:7849, 2002.
 - [Ruth 1983] R. D. Ruth, IEEE Trans. Nucl. Sci., **NS-30**:2669, 1983.
 - [Sanz-Serna & Calvo 1994] J. M. Sanz-Serna & M. P. Calvo, *Numerical Hamiltonian Problems*,

volume 7 of Applied Mathematics and Mathematical Computation, Chapman and Hall, London, 1994. [Shadwick et al. 1999] B. A. Shadwick, J. C. Bowman, & P. J. Morrison, SIAM J. Appl. Math., **59**:1112, 1999.