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Initial Value Problems
Givenf : R

n+1 → R
n, supposex ∈ R

n evolves according to

dx

dt
= f(x, t), (1)

with the initial conditionx(0) = x0.

If n = 2k andx = (p, q) wherep, q ∈ R
k satisfy

dq

dt
=

∂H

∂p
,

dp

dt
= −

∂H

∂q
,

for some functionH(p, q, t) : R
n+1 → R, we say that (1) is

Hamiltonian.

Often, theHamiltonianH hasno explicit dependence ont.



Structure-Preserving Discretizations
Symplectic integration:conservesphase spacestructure of
Hamilton’s equations; the time step map is acanonical
transformation.[Ruth 1983, Channell & Scovel 1990,
Sanz-Serna & Calvo 1994]

Conservative integration:conservesfirst integrals.
[Bowmanet al. 1997, Shadwicket al. 1999,
Kotovych & Bowman 2002]

Positivity: preservespositive semi-definitenessof covariance
matrices. [Bowmanet al. 1993, Bowman & Krommes 1997]

Unitary integration:conservestraceof probability density
matrix. [Shadwick & Buell 1997]

Operator splitting:e.g. to yieldexact evolution on linear time
scale.



Symplectic vs. Conservative Integration

Theorem 1 (Ge and Marsden 1988): A C1 symplectic map M

with no explicit time-dependence will conserve a C1

time-independent Hamiltonian H : R
n → R ⇐⇒ M is identical

to the exact evolution, up to a reparametrization of time.

Proof:

A C1 symplectic scheme is a canonical mapM corresponding
to some approximateC1 HamiltonianH̃τ (x, t) : R

n+1 → R,
where the labelτ denotes the time step.

If the mappingM does not depend explicitly on time, it can be
generated by the approximate HamiltonianK(x) = H̃τ (x, 0).



Suppose the symplectic map conserves the true HamiltonianH:

0 =
dH

dt
=

∂H

∂qi

dqi

dt
+

∂H

∂pi

dpi

dt
+

∂H

∂t

/

= [H,K],

where

[H,K] =
∂H

∂qi

∂K

∂pi
−

∂H

∂pi

∂K

∂qi
.

Implicit function theorem: in a neighbourhood ofx0 ∈ R
n

∃ aC1 functionφ : R → R ∋

H(x) = φ(K(x)) or K(x) = φ(H(x)) ⇐⇒ [H,K] = 0.

Consequently, the trajectories inR
n generated by the

HamiltoniansH andK coincide.
Q.E.D.



Conservative Integration
Traditional numerical discretizations of nonlinear initial value
problems, based onpolynomial functions of the time step,
typically yield spurious secular drifts of nonlinear first integrals
of motion (such as the total energy).
⇒ the numerical solution willnot remain on the energy surface
defined by the initial conditions!

There exists a class of nontraditionalexplicit algorithms that
exactly conservenonlinear invariants toall orders in the time
step (to machine precision).



Three-Wave Problem
Truncated Fourier-transformed Euler equations for an inviscid
2D fluid:

dx1

dt
= f1 = M1x2x3,

dx2

dt
= f2 = M2x3x1,

dx3

dt
= f3 = M3x1x2,

whereM1 + M2 + M3 = 0.

Then
∑

k

fkxk = 0 ⇒ energyE .
=

1

2

∑

k

x2
k is conserved.



Secular Energy Growth
Energy is not conserved by conventional discretizations
like Euler, Predictor–Corrector, Runge–Kutta, . . . .

The Euler method,

xk(t + τ) = xk(t) + τfk,

yields a monotonically increasing new energy:

E(t + τ) =
1

2

∑

k

[
x2

k + 2τfkxk + τ2S2
k

]

= E(t) +
1

2
τ2

∑

k

S2
k .



Conservative Euler Algorithm
Try to determine a modification of the original equations of
motion that will lead toexact energy conservation:

dxk

dt
= fk + gk.

Euler’s method predicts the new energy

E(t + τ) =
1

2

∑

k

[xk + τ(fk + gk)]
2

= E(t) +
1

2

∑

k

[
2τgkxk + τ2(fk + gk)

2
]

︸ ︷︷ ︸

set to0

.



Solving forgk yields theC–Eulerdiscretization:

xk(t + τ) = sgn xk(t + τ)
√

x2
k + 2τfkxk,

which conserves energy exactly.

As τ → 0, this reduces to Euler’s method:

xk(t + τ) = xk

√

1 + 2τ
fk

xk

= xk + τfk + O(τ2).

C–Euler is just the usual Euler algorithm applied to

dx2
k

dt
= 2fkxk.



Lemma 1: Let x and c be vectors in R
n. If f : R

n+1 → R
n has

values orthogonal to c, so that I = c · x is a linear invariant of

dx

dt
= f(x, t),

then each stage of the explicit m-stage discretization

xj = x0 + τ

j−1
∑

k=0

bjkf(xk, t + ajτ), j = 1, . . . ,m,

also conserves I, where τ is the time step and bjk ∈ R.

Proof.For j = 1, . . . ,m, we have

c · xj = c · x0 + τ

j−1
∑

k=0

bjkc · f(xk, t + ajτ) = c · x0.



Predictor–Corrector (PC) Algorithm
This second-order predictor–corrector(2-stage) scheme:

x̃ = x0 + τf(x0, t),

x(t + τ) = x0 +
τ

2
[f(x0, t) + f(x̃, t + τ)],

conserves any invariantI that is a linear function ofx.

Integration algorithms that conserve nonlinear invariants may
be constructed by finding atransformationT : R

n → R
n such

that the nonlinear invariants are linear functions ofξ = T (x).

Retaining theoriginal predictor

x̃ = x0 + τf(x0, t),

one computes thecorrector in the transformed space,

ξ(t + τ) = ξ0 +
τ

2
[T ′(x0)f(x0, t) + T ′(x̃)f(x̃, t + τ)].

whereT ′ denotes the derivative ofT .



Conservative Predictor–Corrector (C–PC) Algorithm
The new value ofx is then obtained by inverse transformation:

x(t + τ) = T−1(ξ(t + τ)).

Problem:T may not be invertible!
Solution 1:Reduce the time step.
Solution 2:Switch to a traditional integrator for that time step.
Solution 3:Use an implicit backwards step [Shadwick &
Bowman SIAM J. Appl. Math.59, 1112 (1999), Appendix A].

Higher-orderconservative integration algorithms are obtained
by doing thefinal corrector stagein the transformed space:

ξ(t + τ) = ξ0 + τ

m−1∑

k=0

bmkT
′(xk)f(xk, t + ajτ).



Error Analysis: 1D Autonomous Case
Exact solution (everything on RHS evaluated atx0):

x(t + τ) = x0 + τf +
τ2

2
f ′f +

τ3

6
(f ′′f2 + f ′2f) + O(τ4);

WhenT ′(x0) 6= 0, C–PC yields the solution

x(t + τ) = x0 + τf +
τ2

2
f ′f +

τ3

4

(

f ′′f2 +
T ′′′

3T ′
f3

)

+ O(τ4),

where all of the derivatives are evaluated atx0.

On settingT (x) = x, the C–PC solution reduces to the
conventional PC.

C–PC and PC are both accurate to second order inτ ;
for T (x) = x2, they agree through third order inτ .



Singular Case
WhenT ′(x0) = 0, the conservative corrector reduces to

x(t + τ) = T−1
(

T (x0) +
τ

2
T ′(x̃)f(x̃)

)

,

If T andf are analytic, the existence of a solution is guaranteed
for sufficiently small positiveτ , provided the points at whichT ′

vanishes are isolated.



Example: Gravitational n-Body Problem
Massmi is located atri, i = 1, . . . , n.

Let Ci be the center of mass of the firsti bodies.

Enforce center of mass and linear momentum constraints: use
Jacobi coordinatesto obtain areduced system ofn− 1 bodiesat

ρi = ri − Ci−1, i = 2, . . . , n,

with center of mass at the origin.

Let Mj =
∑j−1

k=1 mk and define thereduced masses

gi =
miMi−1

Mi
, i = 2, . . . , n.



Hamiltonian Formulation
The Hamiltonian is

H =
1

2

n∑

i=2

(
p2
i

gi
+

ℓ2
i

giρ
2
i

)

+ V,

wherepi andℓi are thelinearandangular momentumof theith
reduced mass and

V = −

n∑

i,j=1

i<j

Gmimj

|ri − rj |
.



Equations of Motion
Both theenergyH and thetotal angular momentum
L =

∑n
i=2 ℓi are conserved by Hamilton’s equations:

ρ̇i =
∂H

∂pi
=

pi

gi
,

θ̇i =
∂H

∂ℓi
=

ℓi

giρ
2
i

,

ṗi = −
∂H

∂ρi
=

ℓ2
i

giρ
3
i

−
∂V

∂ρi
,

ℓ̇i = −
∂H

∂θi
= −

∂V

∂θi
,

wherei = 2, . . . , n and the dots denote time derivatives.



Transformation
We chooseT to be the transformation
[Kotovych & Bowman 2002]:

ζ2 = V,

ζi = ρi, i = 3, . . . , n,

ηi =
p2
i

2gi
+

ℓ2
i

2giρ
2
i

, i = 2, . . . , n.

H =
∑n

i=2 ηi + ζ2 andL =
∑n

i=2 ℓi arelinear functions of the
transformed variables.



Corrector Equations
The 2nd-ordercorrector equationsare given by

ζi(t + τ) = ζi +
τ

2
(ζ̇i + ˙̃

ζi), θi(t + τ) = θi +
τ

2
(θ̇i + ˙̃

θi),

ηi(t + τ) = ηi +
τ

2
(η̇i + ˙̃ηi), ℓi(t + τ) = ℓi +

τ

2
(ℓ̇i + ˙̃

ℓi),

where

ζ̇2 =
n∑

i=2

(
∂V

∂ρi
ρ̇i +

∂V

∂θi
θ̇i

)

,

ζ̇i = ρ̇i, i = 3, . . . , n,

η̇i =
piṗi

gi
+

ℓiρ
2
i ℓ̇i − ρiℓ

2
i ρ̇i

giρ
4
i

, i = 2, . . . , n.



One theninvertsto get the original variables as functions of the
temporary transformed variables:

ρi = ζi, i = 3, . . . , n,

ρ2 = g(ζ2, ρ3, . . . , ρn,θ),

pi = sgn(p̃i)

√

2gi

(

ηi −
ℓ2
i

2giρ
2
i

)

, i = 2, . . . , n.

The value of the inverse functiong defined by

V (g(ζ2, ρ3, . . . , ρn,θ), ρ3, . . . , ρn,θ) = ζ2

is determined at fixedρ3, . . . , ρn, θ with aNewton–Raphson
method,using the predicted valuẽρ2 as aninitial guess.



Four-body choreography
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Conservative Symplectic Integrators
Conservative variational symplectic integrators based on
explicitly time-dependentsymplectic maps have recently been
developed for certain problems in mechanics.

This allows one to circumvent the conditions of the
Ge–Marsden theorem [Kane, Marsden, and Ortiz 1999].



Operator Splitting
Typical stiff nonlinear initial value problem:

∂x

∂t
+ η x = S(t, x), x(0) = x0.

Stiff: NonlinearityS has a slow variation int compared with
the value of the linear coefficientη:

∣
∣
∣
∣

1

S

dS

dt

∣
∣
∣
∣
≪ |η| .

Goal: Solve on the linear time scale exactly; avoid the linear
time-step restrictionητ ≪ 1.

In the presence of nonlinearity,straightforward integrating
factor methods do not remove the explicit restriction on the
linear time stepτ .



Exponential Euler Algorithm
Exact evolution ofx:

x(t0 + τ) = P−1(t0 + τ)

[

x(t0) +

∫ t0+τ

t0

dt P (t)S(t)

]

,

whereP (t) = eη(t−t0).

Change variables:dt P = η−1
0 dP ⇒

x(t0 + τ) = P−1(t0 + τ)

[

x(t0) + η−1
0

∫ P (t0+τ)

1
dP S

]

.

Rectangular approximation of integral⇒ Exponential Euler
algorithm:

xi+1 = P−1
i+1

[
xi + η−1

0 (Pi+1 − 1)Si

]
.

The discretization is now with respect toP instead oft.

Also known as theExponentially Fitted Eulermethod.



Generalizations
Higher-order versions (Predictor–Corrector, Runga–Kutta) are
called exponential integrators [Hochbruck and Lubich, 1997].

Straightforward generalization tovector case(matrix
exponentialP = etη).

Gaussian Quadrature with respect toweight functionP .

Conservative Exponential Integrators

Can replace linear Green’s functioneη(t−t′) by anystationary

Green’s functionG(t − t′).

Another interesting generalization leads to Lagrangian
discretizations (e.g., of the PPM type) foradvection equations:

du

dt
+ v

∂

∂x
u = S(x, t, u), u(x, 0) = u0(x).

η now represents the linear operatorv ∂
∂x andP−1u = e−tv ∂

∂x u

corresponds to the Taylor series ofu(x − vt).



Charged Particle in Electromagnetic Fields
Lorentz force:

m

q

dv

dt
=

1

c
v×B + E.

Efficiently compute thematrix exponentialexp(Ω), where

Ω = −
q

mc
t






0 Bz −By

−Bz 0 Bx

By −Bx 0




 .

Requires 2 trigonometric functions, 1 division, 1 square root,
and 35 additions or multiplications.

The other necessary matrix factor,[exp(Ω) − 1]Ω−1 requires
care, sinceΩ is singular. Evaluate it as

lim
λ→0

[(eΩ − 1)(Ω + λ1)−1].



Motion under Lorentz force
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Conclusions
Traditional numerical discretizations of conservative systems
generically yieldartificial secular driftsof nonlinear invariants.

Newexactly conservativebutexplicit integration algorithms
have been developed.

The transformation technique is relevant tointegrableand
nonintegrableHamiltonian systems and even to
non-Hamiltonian systems such as force-dissipative turbulence.

Discretizations that preserve physically relevant structure or
known analytic properties are becoming of wide interest.
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