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Statistical Closures
Fundamental nonlinear equation:

(
∂

∂t
+ νk

)
ψk(t) =

1

2

∫

∆k

dp dqMkpqψp
∗ψq

∗,

where
∫
∆k

dp dq
.
=

∫
dp dq δ(k + p+ q).

Symmetrize the mode-coupling coefficientsMkpq:

Mkpq =Mkqp.

For certain real time-independent factorsσk:

σkMkpq + σpMpqk + σqMqkp = 0.



Moments
Define thetwo-time correlation

Ck(t, t
′)
.
=

〈
ψk(t)ψk

∗(t′)
〉

andone-time correlation

Ck(t)
.
= Ck(t, t) =

〈
|ψk(t)|

2
〉
.

Thenonlinear Green’s functionGk(t, t
′) is the infinitesimal

response to an added source functionηk:

Gk(t, t
′)
.
=

〈
δψk(t)

δηk(t′)

〉∣∣∣∣
ηk=0

.



Example: ψ =2D stream function
Let

Mkpq =
ẑ·p×q

k2
(q2 − p2)

Conservation ofenergy

E =
1

2

∑

k

k2Ck(t)

andenstrophy

Z =
1

2

∑

k

k4Ck(t)

follow, usingσk = k2 andσk = k4 in

σkMkpq + σpMpqk + σqMqkp = 0.



Closure Tutorial
Fundamental equation

∂ψ

∂t
+ νψ =Mψψ.

Second moment:
∂ 〈ψψ〉

∂t
= 2

〈
∂ψ

∂t
ψ

〉
= −2ν 〈ψψ〉+ 2M 〈ψψψ〉 .

Gaussian approximation〈ψψψ〉 = 0 ⇒ linear theory!

Instead, formulate the equation for〈ψψψ〉:

∂

∂t
〈ψψψ〉+ 3ν 〈ψψψ〉 = 3M 〈ψψψψ〉 .



Quasinormal Closure
Adopt Gaussian initial conditions att = 0. Lettingψ .

= ψ(t),

〈ψψψ〉 = 3M

∫ t

0

dt e−3ν(t−t)
〈
ψψψψ

〉
,

Make thequasinormalapproximation:
〈
ψψψψ

〉
= 3

〈
ψψ

〉 〈
ψψ

〉

For Gaussian statistics, this holds exactly.

We arrive at thequasinormal closure:

∂

∂t
〈ψψ〉+ 2ν 〈ψψ〉 = 18MM

∫ t

0

dt e−3ν(t−t)
〈
ψψ

〉 〈
ψψ

〉
.

[Ogura 1963], [Orszag 1977]: the quasinormal closure can
incorrectly predictnegative energies!



Renormalization
Better torenormalize: replace the linear Green’s function

G(0)(t, t) ≡ e−3ν(t−t)H(t− t),

whereH is the Heaviside step function, by the statistical
meanG of theperturbednonlinear Green’s functioñG:

∂

∂t
G̃+ νG̃− 2MψG̃ = δ(t− t).

The equations forC .
= 〈ψψ〉 andG take on the form

∂

∂t
C + 2νC = 18MM

∫ t

0

dtGC C,

∂

∂t
G+ νG = 9MM

∫ t

0

dtGC G+ δ(t− t).



General form of a closure:

(
∂

∂t
+ νk

)
Ck(t, t

′)+

nonlinear (eddy) damping︷ ︸︸ ︷∫ t

0

dtΣk(t, t)Ck(t, t
′) =

nonlinear noise︷ ︸︸ ︷∫ t′

0

dtFk(t, t)G
∗
k(t

′, t),

(
∂

∂t
+ νk

)
Gk(t, t

′) +

∫ t

t′
dtΣk(t, t)Gk(t, t

′) = δ(t− t′).

Direct-interaction approximation (DIA):

Σk(t, t) = −

∫

∆k

dp dqMkpqM
∗
pqkG

∗
p(t, t)C

∗
q(t, t),

Fk(t, t) =
1

2

∫

∆k

dp dqMkpqM
∗
kpqC

∗
p(t, t)C

∗
q(t, t).



Advantages of the DIA
Reduces correctly to perturbation theory.

Produces two-time spectral information.

The DIA can be formally written as

Ck = Gk FkG
†
k
,

WheneverFk is a positive definite matrix
〈
fk(t)f

∗
k(t

′)
〉
, the

DIA is the exact statistical solution for thegeneralized
Langevin equation

(
∂

∂t
+ νk

)
ψk(t) +

∫ t

0

dtΣk(t, t)ψk(t) = fk(t),



Disadvantages of the DIA
Kramer, Majda, and Vanden-Eijnden [2003] have apparently
found a case of passive scalar advection with a fluctuating
random sweep whererealizability is violateddespite the fact
that [Kraichnan 1958b] claims the DIA is the exact solution to
a random coupling model.

Violates random Galilean invariance.

Predicts an energy rangeE(k) ∼ k−3/2 instead ofk−5/3.

Predicts a 2D enstrophy rangeE(k) ∼ k−5/2 instead ofk−3.

Contains time-history integrals: nontrivial to compute.

Only handles second-order statistics; mistreats higher-order
coherent structures.



Eddy-Damped QuasiNormal Markovian closure
The EDQNM approximates the DIA time-history convolutions
in favour of a triad interaction time.

Advantages:

Much faster than DIA.

In the absence of wave phenomena,it is realizable: it predicts
the exact statistics of an underlying Langevin equation.

Disadvantages:

Assumes a Fluctuation–Dissipation relation.

Only predicts one-time spectral information.

Does not take account of time-history effects accurately.

Proof of realizabilitybreaks downin the presence ofRossby or
drift waves.

No general multiple-field formulation.



Nonrealizability of the EDQNM



The DIA-based EDQNM
The DIA equation for the one-time correlation function still
contains unknown two-time correlation functions inFk.

In thermal equilibrium, theFluctuation–Dissipation(FD)
theorem holds:

Ck(t, t
′) = Gk(t, t

′)Ck(∞) (t > t′).

In thermal equilibrium, statistical quantities are stationary,
soCk(t, t

′) = Ck(t− t′). HenceCk(t) = Ck(0) = Ck(t
′).

So we must replace the FD theorem by either

Ck(t, t
′) = Gk(t, t

′)Ck(t) (t > t′)

or
Ck(t, t

′) = Gk(t, t
′)Ck(t

′) (t > t′).

EDQNM adopts the1stform: unlike the2ndform this leads to
a realizable closure [Orszag 1977] in theabsence of waves.



In terms of thetriad interaction time

θkpq(t)
.
=

∫ t

0

dtGk(t, t)Gp(t, t)Gq(t, t).

the Markovianized DIA can be written in the compact form
(
∂

∂t
+ 2Re νk

)
Ck(t) + 2Re η̂k(t)Ck(t) = 2Fk(t)

by defining anonlinear damping rate,

η̂k(t)
.
= −

∫

∆k

dp dqMkpqM
∗
pqkθ

∗
kpq(t)Cq(t),

and anonlinear noise term,

Fk(t)
.
=

1

2
Re

∫

∆k

dp dq
∣∣Mkpq

∣∣2 θ∗kpq(t)Cp(t)Cq(t).



EDQNM
Replace the Green’s function equation by the Markovian form

∂

∂t
Gk(t, t

′) + ηk(t)Gk(t, t
′) = δ(t− t′),

whereηk(t)
.
= νk + η̂k(t). What results is the EDQNM:

∂

∂t
Ck(t) + 2Re ηk(t)Ck(t) = 2Fk(t),

ηk(t)
.
= νk −

∫

∆k

dp dqMkpqM
∗
pqkθ

∗
kpq(t)Cq(t),

Fk(t)
.
=

1

2
Re

∫

∆k

dp dq
∣∣Mkpq

∣∣2 θ∗kpq(t)Cp(t)Cq(t),

∂

∂t
θkpq + (ηk + ηp + ηq)θkpq = 1, θkpq(0) = 0.

The computational scaling of this system with timeT is OT , a
vast improvement over theOT 3 scaling of the DIA.



Test-Field Model (TFM)
The test-field model [Kraichnan 1971, Kraichnan 1972] also
approximates the DIA time-history convolutions.

Advantages:

Invariant to random Galilean transformations.

Predicts a 2D enstrophy range spectrumk−3.

Much faster than DIA.

Disadvantages:

Heuristic construction.

Only predicts one-time spectral information.

Does not take account of time-history effects accurately.

Assumes a Fluctuation–Dissipation relation.

Can predict negative energies if wave effects are present!



Nonrealizability of the EDQNM and TFM
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Realizable Markovian Closure (RMC)
Goal: Replace the FD Ansatz with a relation that reduces to the
FD theorem in a steady state.

EDQNM FD Ansatz:

Ck(t, t
′)

Ck(t)
= Gk(t, t

′) (t ≥ t′),

Langevin statistics:

Ck(t, t
′)

Ck(t′)
= Gk(t, t

′) (t ≥ t′).

Thermal equilibrium:

Ck(t, t
′)

Ck(∞)
= Gk(t, t

′) (t ≥ t′).



Modified Fluctuation–Dissipation Ansatz
In a non stationary state, (19) should be restated as a balance
between thecorrelation coefficientand the response function
(for t ≥ t′):

finite amplitude︷ ︸︸ ︷
Ck(t, t

′)

C
1/2
k

(t)C
1/2
k

(t′)︸ ︷︷ ︸
correlation coefficient

=

infinitesimal︷ ︸︸ ︷
Gk(t, t

′)︸ ︷︷ ︸
response function

.

Time scales ofamplitude decorrelationanddecay of
infinitesimal disturbancesshould be equal, since these
processes both occur by interaction with the turbulent
background.



Realizability
For unrestricted time argumentst andt′:

Ck(t, t
′) = C

1/2
k

(t)
[
Gk(t, t

′) +G∗
k(t

′, t)
]
C

1/2
k

∗(t′).

Ck(t, t
′) positive-semidefinite⇐⇒

Gh
k(t, t

′)
.
= Gk(t, t

′) +G∗
k(t

′, t) is positive-semidefinite.
We employ the following theorem [Bowmanet al. 1993]:

Theorem 1: Let Re ηk(t) be continuous almost everywhere.

The Hermitian function Gh
k defined by

Gh
k(t, t

′)
.
=

{
e−

∫
t

t′
ηk(t)dt, for t ≥ t′;

e−
∫
t
′

t
η∗

k(t)dt, for t < t′,

is positive-semidefinite ⇐⇒ Re ηk(t) ≥ 0 for almost all t.



Subject to the restrictionRe ηk ≥ 0, it follows that

Ck(t, t) =

∫
dt dtGk(t, t)Fk(t, t)G

∗
k(t, t) ≥ 0,

is real and non-negative, provided that the initial condition is
non-negative.



Realizable Markovian Closure (RMC)
Applying the modified FD Ansatz yields the RMC:

∂

∂t
Ck(t) + 2Re ηk(t)Ck(t) = 2Fk(t)

ηk(t)
.
= νk −

∑

k+p+q=0

MkpqM
∗
pqkΘ

∗
pqk(t)C

1/2
q (t)C

−1/2
k

(t)

2Fk(t)
.
= Re

∑

k+p+q=0

∣∣Mkpq

∣∣2Θkpq(t)C
1/2
p (t)C

1/2
q (t)

∂

∂t
Θkpq + [ηk + P(ηp) + P(ηq)]Θkpq = C

1/2
p C

1/2
q ,

whereP(η)
.
= Re η H(Re η) + i Im η andH is the Heaviside

unit step function.

Although the steady-state EDQNM and RMC equations are
identical, the RMC provides arealizable evolution to this state.



Realizable Test-Field Model (RTFM)
Similarly, we have constructed a Realizable Test-Field Model
[Bowman & Krommes 1997].

Even for wave-free turbulence, the RMC and RTFM appear to
be more representative of the true dynamics than the EDQNM
and TFM.

The RMC and RTFM possess underlying Langevin equations:

∂

∂t
ψ + ηψ = f,

which, unlike the EDQNM, does not assumeδ-correlated
statistics.

It is also possible to designmultiple-rate Markovian closures
that allow fordifferent decorrelation and infinitesimal
perturbation decay rates;this may afford a more accurate
treatment of non-white noise effects.



Comparison of RMC and RTFM with DNS



Alternatives
Mapping Closures

Kaneda’s Lagrangian Renormalized Approximation (LRA)
[Kaneda 1981]

McComb’s Local Energy Theory (LET) [McComb 1990]

Direct Numerical Simulation

Dynamic Subgrid Models

Renormalization Group Theory

Reduced Models:
• Decimation
• Empirical Orthogonal Eigenfunctions
• Spectral Reduction: Bowman, Shadwick, Morrison [1999]
• Stochastic Models



2D Turbulence

EnergyE = 1
2

∑

k

|ωk|
2

k2
andenstrophyZ = 1

2

∑

k

|ωk|
2 are

conserved.

. . .
k2 k3k1

Z1 Z3

Z2

E1 E3

. . .

E2E2 = E1 + E3, Z2 = Z1 + Z3.

[Fjørtoft 1953]: energy cascades to large scales and enstrophy
cascades to small scales.

[Kraichnan 1967], [Leith 1968], and [Batchelor 1969] (KLB):
k−5/3 inverse energycascade atlargescales,
k−3 direct enstrophycascade atsmallscales.



Let s2 =
∑

k

fkω
∗
k
/
∑

k

fk
ω∗
k

k2
be the ratio of meanenstrophy

to energyinjection.

Typically, s will lie within the band of forced wavenumbers.

Multiply the energy equation

1

2k2
∂ |ωk|

2

∂t
+Dk

|ωk|
2

k2
= Sk

ω∗
k

k2
+ fk

ω∗
k

k2

by s2 and subtract the enstrophy equation

1

2

∂ |ωk|
2

∂t
+Dk |ωk|

2 = Skω
∗
k + fkω

∗
k

⇒ steady-statebalance equation[Tran & Bowman 2003]
s∑

k=1

(s2 − k2)DkE(k) =

∞∑

k=s

(k2 − s2)DkE(k).



Balance Equation
Small and large scale dynamics areintricately coupled:

s∑

k=1

(s2 − k2)DkE(k) =

∞∑

k=s

(k2 − s2)DkE(k).

Can be used to explain the discrepancy between the KLB
predictionE(k) ∼ k−3 and the steep∼ k−5 enstrophy-range
spectrum typically seen in numerical simulations.

Unbounded domain: everlasting inverse energy cascade.

Bounded domain: upscale energy cascade is halted at the
lowest wavenumber.

The effect of this lower spectral boundary may be understood
by replacing it with an external forcing.



Large-scale direct cascade (zero dissipation fork < 40)?



Energetic reflections at the lower spectral boundary eventually
lead to a large-scaledirectcascade.

This would agree with the large-scalek−3 spectra seen
numerically by [Borue 1994] and observed in the atmosphere
[Lilly & Peterson 1983].

[Tran & Bowman 2003]: In a bounded domain, the two inertial
range exponentsmust sum to−8 (high Reynolds number).

Large-scalek−3 spectrum⇒ a small-scalek−5 spectrum.

Consistent with rigorous [Tran & Shepherd 2002] constraint:
the spectrum must beat least as steep ask−5.



Direct k−3 enstrophy cascade

Zero dissipation for3 < k < 300.



Logarithmic spectral slope

-6

-4

-2

0

Zero dissipation for3 < k < 300.



Conclusions
Realizabilityensures physically reasonable behaviour.

The EDQNM closure can predict negative energies in the
presence ofnon-hermitian effectssuch as wave phenomena.

The unrealizability of the EDQNM closure arises from an
improper Fluctuation–Dissipation Ansatz.

Correcting this difficulty has led to therealizable Markovian
closure.

A realizable test-field model, invariant to random Galilean
transformations, has been implemented for two-dimensional
Navier–Stokes turbulence.
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