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Statistical Closures
e Fundamental nonlinear equation:

1 * *
/ dp dq Mkpqu wq 3
Ay

wherefAk dpdqg = fdpdq o(k+p+q).
e Symmetrize the mode-coupling coefficiedts,,,:
Mipg = Migp-
e [or certain real time-independent factoegs



Moments
e Define thetwo-time correlation

Cr(t, ') = (Vi (t)yr* (1))
andone-time correlation

Cr(t) = Cr(t 1) = (Jun(]*).

e Thenonlinear Green’s functioG(¢,t') is the infinitesimal
response to an added source functign

Nz
Gt ) = <5n:(t’)>

Mke=0



Example: ¢y = 2D stream function
e Let

e Conservation oénergy
1 2
E= > EC(t)
k
andenstrophy

1 4
Z_§§k:k Che(t)

follow, usingo, = k* andoy, = £ in



Closure Tutorial
Fundamental equation

O B
n + v = M.
Second moment:
oWy) /0y \
o =2 <§w> = =20 (Y1) +2M (Yyy).

Gaussian approximatiofyy) = 0 = linear theory!
Instead, formulate the equation fapy1)):

0
= (V0) + v (V) = 3M (V).



Quasinormal Closure
Adopt Gaussian initial conditions at= 0. Letting vy = (1),

t N, —
() = 3M /O 430D (DT50).

Make thequasinormaapproximation:

(Dap) = 3 () (Pb)
For Gaussian statistics, this holds exactly.
We arrive at theyuasinormal closure:

a 4 ) _
o7 (W) + 20 (W) = 18M M /O di e 73U (g ().

[Ogura 1963], [Orszag 1977]. the quasinormal closure can
Incorrectly predichegative energiés



Renormalization
e Better torenormalize replace the linear Green’s function

(0) (1) = 6—3u(t—i)H(t — 1),

whereH is the Heaviside step function, by the statistical
meanG of theperturbechonlinear Green’s functio@'

%éﬂa_zma:a@_a.

e The equations fo€' = (7)) andG take on the form

t
%C+2y0: 18MM/ H#FGCC,
0

t
%GJrVG:QMM/ 4G CG+5(t—1).
0



General form of a closure:

nonlinear (eddy) damping  nonlinear noise

/7 ~ Y

t t'
(%wk)ck(t,t%/ dt Y (t,8)Cr(t,t) = / dt Fie(t, )G (t', 1),
0 0

(4
<% + Vk>Gk(t,t/) + / At S (t, 1) Gr(t, 1) =6t — 1),
t/

e Direct-interaction approximation (DIA):

Yt t) = —/A dpqukqu;qu;;(t,i)C;(t,i),
k

_ 1 * * I * n
Fut:0) =5 [ dpdaMipgMipgC(t.OC5 (8.0
k



Advantages of the DIA
Reduces correctly to perturbation theory.
Produces two-time spectral information.
The DIA can be formally written as

Cr = Gy Fr G,

WheneverFy, is a positive definite matrixfx(¢) f;(¢) ), the

DIA is the exact statistical solution for thigeneralized
Langevin equation

(gt +uk)¢k( ) + /o df Sg(t, 1) V() = Fr(t),




Disadvantages of the DIA

Kramer, Majda, and Vanden-Eijnden [2003] have apparently
found a case of passive scalar advection with a fluctuating
random sweep wherealizability is violatecdespite the fact
that [Kraichnan 1958b] claims the DIA is the exact solution t
arandom coupling model

Violates random Galilean invariance.
Predicts an energy rand&(k) ~ k—3/2 instead oft—%/3.

Predicts a 2D enstrophy rang#k) ~ k~—%/2 instead ofk 3.
Contains time-history integrals: nontrivial to compute.

Only handles second-order statistics; mistreats highsero
coherent structures.



Eddy-Damped QuasiNormal Markovian closure

The EDQNM approximates the DIA time-history convolutions
In favour of a triad interaction time.

Advantages:
Much faster than DIA.

In the absence of wave phenomel#s realizable it predicts
the exact statistics of an underlying Langevin equation.

Disadvantages:

Assumes a Fluctuation—Dissipation relation.

Only predicts one-time spectral information.

Does not take account of time-history effects accurately.

Proof of realizabilitybreaks downn the presence drossby or
drift waves.

No general multiple-field formulation.
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Nonrealizability of the EDQNM
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The DIA-based EDQNM

The DIA equation for the one-time correlation functionistil
contains unknown two-time correlation functionsag.

In thermal equilibrium, thé-luctuation—Dissipatio(FD)
theorem holds:

Cr(t,t) = Gr(t,t")C(c0) (t > t).

In thermal equilibrium, statistical guantities are stafioy,
SOC(t,t") = Cr(t — t'). HenceCy(t) = C,(0) = Cr(t).

So we must replace the FD theorem by either
Cr(t,t) = G(t,t)Ci(t) (>
or
C(t, 1) = Gr(t,t")Ck(t") (t > t).

EDQNM adopts thée stform: unlike theZndform this leads to
a realizable closure [Orszag 1977] in thesence of waves.



In terms of theriad interaction time

Orepa (t) = /O i Gr(t, 1) Gp(t,T) Glt, 7).

the Markovianized DIA can be written in the compact form

ot
by defining anonlinear damping rate,

i(t) = — /A Ap dq Mygpg M- 0 (1) Cyl(1),

(2 1+ 2Re Vk)(]k(t) + 2Reng(t) Cp(t) = 2Fk(t)

and anonlinear noise term,

1 2 .
Fi(t) = §Re/A dp dq ‘Mkpq| Okpq(t) Cp(t) Cqlt).



EDQNM
e Replace the Green’s function equation by the Markovian form

9 Grlt ') + (1) Grlt, ) = (¢ — ¥),

ot
whereng(t) = vg + ni(t). What results is the EDQNM:
0
Eck(t) + 2Reng(t) Cr(t) = 2F (1),

Ia(t) = g — /A 0p dg Miepg M (£) Calh).
k

1 2 .
Fi(t) = §Re /A dp dq |Mypg|™ Oipq(t) Cp(t) Cq(t),

k

0
E‘gkpq - (nk + Np T+ 77q)‘9kpq =1, 9kpq<0) = 0.

The computational scaling of this system with tiffies OT', a
vast improvement over th@T? scaling of the DIA.



Test-Field Model (TFM)

The test-field model [Kraichnan 1971, Kraichnan 1972] also
approximates the DIA time-history convolutions.

Advantages:

Invariant to random Galilean transformations.
Predicts a 2D enstrophy range spectrm.
Much faster than DIA.

Disadvantages:

Heuristic construction.

Only predicts one-time spectral information.

Does not take account of time-history effects accurately.
Assumes a Fluctuation—Dissipation relation.

Can predict negative energies if wave effects are present!



Nonrealizability of the EDQNM and TFM
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Realizable Markovian Closure (RMC)

Goal: Replace the FD Ansatz with a relation that reducesdo th
FD theorem Iin a steady state.

EDQNM FD Ansatz:
Cr(t,t)
Cr(t)
Langevin statistics:
Cr(t,t)
Cr(t')
Thermal equilibrium:
Cr(t,t)
C(0)

= G(t,t) (t > 1),

= G(t, 1) (t >1).

= Gg(t,t") (t >t).



Modified Fluctuation—Dissipation Ansatz

e |n a non stationary state, (19) should be restated as a lgalanc
between theorrelation coefficienand the response function
(fort > ¢):

finite amplitude P
p N - Infinitesimal
Ck(t,t/)

= Gp(t,t)

— ~ response function
correlation coefficient

_J/

G G w)

e Time scales ohmplitude decorrelatioanddecay of
iInfinitesimal disturbanceshould be equal, since these

processes both occur by interaction with the turbulent
background.




Realizability
e For unrestricted time argumentandt’:

e ((t,t") positive-semidefinitec—
Gr(t, V) = Gg(t,t') + Gi (', t) is positive-semidefinite.
We employ the following theorem [Bowmadi al. 1993].

Theorem 1: Let Reng(t) be continuous almost everywhere.
The Hermitian function Gz defined by

Ghippy = 4 €m0 Jort =t
AV () di /
e~ o m(t) . fort <t

is positive-semidefinite <= Reng(t) > 0 for almost all t.



e Subject to the restrictioRe n;, > 0, it follows that
Cr(t, t) = /di di G(t, 1) Fr(i, 1) Gi(t, 1) >0,

IS real and non-negative, provided that the initial cowdtis
non-negative.



Realizable Markovian Closure (RMC)
e Applying the modified FD Ansatz yields the RMC:

9 Crl(t) + 2 Remg(t) Cr(t) = 2Fi (1)

Ot
. 1/2 —1/2
M) = vk — Y MipgMiaOhar(t) Cg ()0 2(1)
k+p+q=0
) 2 1/2 1/2
2Fy(t) = Re Z ‘MkPCI‘ @kpq(t)cp/ (t)Cq/ (2)
k-+p-+qg=0

whereP(n) = Ren H(Ren) + iIlmn andH is the Heaviside
unit step function.

e Although the steady-state EDQNM and RMC equations are
Identical, the RMC provides igealizable evolution to this state.



Realizable Test-Field Model (RTFM)

Similarly, we have constructed a Realizable Test-Field &od
[Bowman & Krommes 1997].

Even for wave-free turbulence, the RMC and RTFM appear to
be more representative of the true dynamics than the EDQNM
and TFM.

The RMC and RTFM possess underlying Langevin eguations:

0

which, unlike the EDQNM, does not assuieorrelated
statistics.

It Is also possible to designultiple-rate Markovian closures
that allow fordifferent decorrelation and infinitesimal
perturbation decay ratethis may afford a more accurate
treatment of non-white noise effects.



Comparison of RMC and RTFM with DNS
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Alternatives
Mapping Closures

Kaneda'’s Lagrangian Renormalized Approximation (LRA)
[Kaneda 1981]

McComb’s Local Energy Theory (LET) [McComb 1990]
Direct Numerical Simulation

Dynamic Subgrid Models

Renormalization Group Theory

Reduced Models:
Decimation
Empirical Orthogonal Eigenfunctions
Spectral Reduction: Bowman, Shadwick, Morrison [1999]
Stochastic Models



2D Turbulence

5wl are
k

2
w
e EnergyE = %Z ’ /:2’ andenstrophyZ =
k
conserved.
- kl - k2 -
7 A

ks

Ly = By + Es. Ejz? Ty = 71 + Za.

e [Fjortoft 1953]. energy cascades to large scales and quistro
cascades to small scales.

e [Kraichnan 1967], [Leith 1968], and [Batchelor 1969] (KLB)

—°/3 inverse energgascade dargescales,
k=3 direct enstrophgascade atmallscales.




o lets’ =) frwi/ Y fk% be the ratio of meannstrophy
k k

to energyinjection.
e Typically, s will lie within the band of forced wavenumbers.

e Multiply the energy equation
1 6kﬂkF
D
02 o kg
by s? and subtract the enstrophy equation
10 |wg|”
2 Ot
= steady-stateéalance equatiofTran & Bowman 2003]

S ©.@)

D (s = K)DpE(k) =) (K = s*) Dy E(k).

k=1 k=s

2 * *
Wi | Yk Y
= Skﬁ + fkﬁ

2 * *
+ Dy, |wg|” = Skwy, + frwy,



Balance Equation
Small and large scale dynamics an&icately coupled

i(ﬁ — k*DyE(k) = i(lﬁ — s)D,E(k).
k=1 k=s

Can be used to explain the discrepancy between the KLB
predictionZ (k) ~ k£—2 and the steep- k£ ° enstrophy-range
spectrum typically seen in numerical simulations.

Unbounded domain: everlasting inverse energy cascade.

Bounded domain: upscale energy cascade is halted at the
lowest wavenumber.

The effect of this lower spectral boundary may be understood
by replacing it with an external forcing.
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Energetic reflections at the lower spectral boundary eadigtu
lead to a large-scalérectcascade.

This would agree with the large-scale® spectra seen
numerically by [Borue 1994] and observed in the atmosphere
[Lilly & Peterson 1983].

[Tran & Bowman 2003]: In a bounded domain, the two inertial
range exponentsiust sum to-8 (high Reynolds number).

Large-scalé:—3 spectrum=- a small-scalé— spectrum.

Consistent with rigorous [Tran & Shepherd 2002] constraint
the spectrum must b& least as steep as”.



E(k)

Direct &2 enstrophy cascade
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logarithmic slope of E(k)
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Logarithmic spectral slope
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Conclusions
Realizabilityensures physically reasonable behaviour.

The EDQNM closure can predict negative energies in the
presence ofion-hermitian effectsuch as wave phenomena.

The unrealizability of the EDQNM closure arises from an
iImproper Fluctuation—Dissipation Ansatz.

Correcting this difficulty has led to thealizable Markovian
closure

A realizable test-field modghvariant to random Galilean
transformations, has been implemented for two-dimensiona
Navier—Stokes turbulence.
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