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A Brief History of Infinity

• Etymology: Latin infinitas, meaning “unboundedness”;

• “unlimited extent of time, space, or quantity” [Webster];

• Surya Prajnapti (c. 400 BC): infinite numbers;

• Archimedes (c. 287 BC–212 BC): infinitesimals in mechanics;

• Bhāskara II (1114–1185): infinitesimals, notion of derivative;

• Sharaf al-Dī n al-Tūs̄i (1135–1213): notion of derivative;

• John Wallis (1616–1703): symbol∞ in De sectionibus conicis ;

• Gottfried Leibniz (1646–1716): infinitesimal calculus;

• Isaac Newton (1643–1727): fluxion-based calculus;

• Georg Cantor (1845–1918): Cantor set;

• David Hilbert (1862–1943): Grand Hotel paradox.
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Concept of Infinity

• The concept of infinity is an idealization encountered when we
attempt to:

– list all natural numbers 1, 2, 3, . . .

– find decimal representations of fractions like 1/3 or 1/7:

1

3
= 0.3333 . . .

= 0.3

1

7
= 0.142857142857 . . .

= 0.142857
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Rational Numbers

• Rational numbers (fractions) are obtained by dividing one
natural number by another.

• We find the decimal digits in the expansion 1
7 = 0.142857 by

doing long division.

• If we divide by 7, there are seven possible remainders:
0, 1, 2, 3, 4, 5, 6.

• If the remainder 0 is ever encountered, the decimal expansion
terminates (e.g. 1

4 = 0.25 = 0.250).

• Otherwise, once seven steps in the long division have been
performed, a repeated remainder will have been encountered.

• Once a remainder is repeated, from there on the same quotient
digits will be generated as before.

• The decimal expansion of 1/q either terminates or ultimately
reaches a pattern of q − 1 or fewer digits repeated forever!
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• Conversely: decimal expansions that ultimately reach a repeated
pattern always represent rational numbers.

5



Real Numbers

• The real numbers generalize the rational numbers to include
those numbers that do not have a final repeated pattern in their
decimal expansions.

• Pythagoras (c. 570–495 BC): the length of the hypotenuse of a
unit right isosceles triangle cannot be expressed as a rational
number:

√
2 = 1.41421356 . . . does not finish with a repeated

pattern.

1

√
2

1

• So
√

2 is a real number, but not a rational number.
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The Unit Interval

• We can find infinitely many real numbers between 0 and 1 (say):

e.g.

√
2

2
,

√
2

4
,

√
2

8
, . . .

• Just how many real numbers are there between 0 and 1?

• Since

√
2

2n
is a real number between 0 and 1,

there are at least as many real numbers as there are natural
numbers n = 1, 2, 3, . . .

• In fact, a decimal expansion consisting of “0.” followed by an
arbitrary sequence of digits, finite or infinite, corresponds to a
real number between 0 and 1.

• Since there are 10 choices (0 to 9) for the first digit after the
decimal point and 10 choices (0 to 9) for the second digit after
the decimal point, we see there are 10×10×10 . . . choices. One
factor of 10 comes from each digit!
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How Many Natural Numbers Are There?

• Each digit is associated with a natural number that identifies
its position after the decimal point.

• But how many natural numbers are there?

• Cantor: Denote the “number” of natural numbers 1, 2, 3 . . .
by ℵ0 (the symbol ℵ is a Hebrew character).

• We know that ℵ0 is not a finite number; it just provides us with
a precise definition for the notion of infinity.

• By giving the number of natural numbers an explicit name, we
can make statements like:

– the number of even natural numbers is 1
2ℵ0;

– the number of odd natural numbers is 1
2ℵ0;

– the number of real numbers between 0 and 1 is 10ℵ0.
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Countability

• Suppose I take the set of even natural numbers E = {2, 4, 6, . . .}
and I divide each of them by 2.

• I obtain N = {1, 2, 3, . . .}, the set of all natural numbers!

• Surely dividing the even numbers by 2 did not change the size
of the set E!

• So there must be ℵ0 numbers in E as well as in N.

• This leads to our first surprise:

1

2
ℵ0 = ℵ0.
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• That is, there are the same number of even numbers as natural
numbers in the sense that there is a one-to-one correspondence
between E and N:

2↔ 1

4↔ 2

6↔ 3

. . .

• Suppose we now include 0 along with the set of natural numbers:
consider {0, 1, 2, . . .}.

• If we add 1 to each number in the above set we recover N again!

• This leads to our second surprise:

1 + ℵ0 = ℵ0.
• Moral: infinite numbers do not obey the same rules as finite

numbers.
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Cardinality

• We say that the sets {2, 4, 6, . . . } and {1, 2, 3, . . . } have the
same cardinality.

• If a set has the same cardinality as N, namely ℵ0, we say that
it is countably infinite: this just means that we can write them
in a list.
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Countability of Rational Numbers

• How many fractional (rational) numbers 1/2, 1/3, 2/3, . . . are
there between 0 and 1?

• Q. Can we list them?

• A. Yes:

1
2,

1
3,

2
3,

1
4,

2
4,

3
4,

1
5,

2
5,

3
5,

4
5,

1
6,

2
6,

3
6,

4
6,

5
6, . . .

• So there is another surprise: ℵ0 × ℵ0 = ℵ0!
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Countability of Real Numbers

• How many real numbers are there?

• Can we list them?

• Q. Is there another surprise like

10ℵ0 = ℵ0?
• A. No!

• There are far too many real numbers (even between 0 and 1) to
list.

• As we will see in the interactive demonstration, no matter how
we try to list the real numbers, at least one real number is always
left out...

• We say that the real numbers are uncountable:

ℵ0 < 10ℵ0
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Smallest Positive Real Number

• Consider 1, 12,
1
4,

1
8, . . .

• There is no least positive real number!

• What about 1− 0.9?

• Is this a real number?

• Is this number positive, zero, or negative?

• Consider:

1

3
= 0.3333 . . .

• If we multiply by 3 we find:

1 = 0.9999 . . .

• So 1− 0.9 = 0.

14



Cantor’s Set

• Starting with the unit interval, let us repeatedly remove the
middle third from what remains:

0 1
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Cantor’s Set

• Starting with the unit interval, let us repeatedly remove the
middle third from what remains:

0 1

• Q. How much have we removed?
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0 1

• A. Sum up

S =
1

3
+

2

9
+

4

27
+

8

81
+ . . .

• Consider

3S = 1 +
2

3
+

4

9
+

8

27
+

16

81
. . .

whereas

2S =
2

3
+

4

9
+

8

27
+

16

81
+ . . .

• The difference of the last two equations tells us that S = 1!
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Cantor Dust

• Since the sum of all of the lengths of the intervals removed
equals 1, and we started with an interval of length 1, there are
no intervals left in the Cantor set!

• We say that the Cantor set has measure zero. What remains in
the set is sometimes called Cantor dust.

• Nevertheless, the Cantor set contains uncountably infinitely
many points; in fact as many points as in the original unit
interval!

• To see this, consider the ternary (base-3) representation of each
number in the unit interval.

• Removing the middle third at each level n = 1, 2, 3, . . . is
equivalent to removing all numbers that have a 1 in the nth
ternary position.
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• The numbers we are left with are just those numbers whose
ternary representations consist only of the digits 0 and 2 (like
0.2220220 and 0.020202).

• If we replace the ternary digit 2 by 1 in those remaining numbers,
we have simply obtained all possible binary representations for
numbers between 0 and 1: (like 0.1110110 and 0.010101).

• Surprisingly, Cantor dust and the real numbers have the same
cardinality!
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3D Generalization: Sierpinski Sponge
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https://www.math.ualberta.ca/~bowman/asygl/inf/SierpinskiSponge.html


Asymptote: 2D & 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)
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https://www.math.ualberta.ca/~bowman/asygl/logo3.html


Asymptote Lifts TEX to 3D

http://asymptote.sf.net
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