Implicitly Padded Convolutions on Hybrid Parallel Architectures

John C. Bowman
University of Alberta

June 8, 2015

www.math.ualberta.ca/~bowman/talks
Acknowledgements: Malcolm Roberts (Université de Strasbourg)

Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the discrete cyclic convolution

$$
\sum_{p=0}^{N-1} F_{p} G_{k-p}
$$

where the vectors F and G have period N.

- Define the N th primitive root of unity:

$$
\zeta_{N}=\exp \left(\frac{2 \pi i}{N}\right)
$$

- The fast Fourier transform method exploits the properties that $\zeta_{N}^{r}=\zeta_{N / r}$ and $\zeta_{N}^{N}=1$.
- However, the pseudospectral method requires a linear convolution.
- The unnormalized backwards discrete Fourier transform of $\left\{F_{k}: k=0, \ldots, N\right\}$ is

$$
f_{j} \doteq \sum_{k=0}^{N-1} \zeta_{N}^{j k} F_{k} \quad j=0, \ldots, N-1
$$

- The corresponding forward transform is

$$
F_{k} \doteq \frac{1}{N} \sum_{j=0}^{N-1} \zeta_{N}^{-k j} f_{j} \quad k=0, \ldots, N-1
$$

- The orthogonality of this transform pair follows from

$$
\sum_{j=0}^{N-1} \zeta_{N}^{\ell j}= \begin{cases}N & \text { if } \ell=s N \text { for } s \in \mathbb{Z} \\ \frac{1-\zeta_{N}^{\ell N}}{1-\zeta_{N}^{\ell}}=0 & \text { otherwise }\end{cases}
$$

Convolution Theorem

$$
\begin{aligned}
\sum_{j=0}^{N-1} f_{j} g_{j} \zeta_{N}^{-j k} & =\sum_{j=0}^{N-1} \zeta_{N}^{-j k}\left(\sum_{p=0}^{N-1} \zeta_{N}^{j p} F_{p}\right)\left(\sum_{q=0}^{N-1} \zeta_{N}^{j q} G_{q}\right) \\
& =\sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_{p} G_{q} \sum_{j=0}^{N-1} \zeta_{N}^{(-k+p+q) j} \\
& =N \sum_{s} \sum_{p=0}^{N-1} F_{p} G_{k-p+s N}
\end{aligned}
$$

- The terms indexed by $s \neq 0$ are aliases; we need to remove them!
- If only the first m entries of the input vectors are nonzero, aliases can be avoided by zero padding input data vectors of length m to length $N \geq 2 m-1$.
- Explicit zero padding prevents mode $m-1$ from beating with itself, wrapping around to contaminate mode $N=0 \bmod N$.
- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:
$\left\{F_{k}\right\}_{k=0}^{m-1}$
$\left\{G_{k}\right\}_{k=0}^{m-1}$
- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

- Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N=2 m$:

Implicit Padding

- Let $N=2 m$. For $j=0, \ldots, 2 m-1$ we want to compute

$$
f_{j}=\sum_{k=0}^{2 m-1} \zeta_{2 m}^{j k} F_{k}
$$

- If $F_{k}=0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$
\begin{aligned}
f_{2 \ell} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{2 \ell k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} F_{k}, \\
f_{2 \ell+1} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{(2 \ell+1) k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} \zeta_{2 m}^{k} F_{k}, \quad \ell=0,1, \ldots m-1 .
\end{aligned}
$$

- This requires computing two subtransforms, each of size m, for an overall computational scaling of order $2 m \log _{2} m=$ $N \log _{2} m$.
- Odd and even terms of the convolution can then be computed separately, multiplied term-by-term, and transformed again to Fourier space:

$$
\begin{aligned}
2 m F_{k} & =\sum_{j=0}^{2 m-1} \zeta_{2 m}^{-k j} f_{j} \\
& =\sum_{\ell=0}^{m-1} \zeta_{2 m}^{-k 2 \ell} f_{2 \ell}+\sum_{\ell=0}^{m-1} \zeta_{2 m}^{-k(2 \ell+1)} f_{2 \ell+1} \\
& =\sum_{\ell=0}^{m-1} \zeta_{m}^{-k \ell} f_{2 \ell}+\zeta_{2 m}^{-k} \sum_{\ell=0}^{m-1} \zeta_{m}^{-k \ell} f_{2 \ell+1} \quad k=0, \ldots, m-1 .
\end{aligned}
$$

- No bit reversal is required at the highest level.
- A 1D implicitly padded convolution is implemented in our FFTW++ library.
- This in-place convolution was written to use six out-of-place transforms, thereby avoiding bit reversal at all levels.
- The computational complexity is $6 K m \log _{2} m$.
- The numerical error is similar to explicit padding and the memory usage is identical.

$$
\left\{F_{k}\right\}_{k=0}^{m-1}
$$

$\left\{G_{k}\right\}_{k=0}^{m-1}$

- The computational complexity is $6 K m \log _{2} m$.
- The numerical error is similar to explicit padding and the memory usage is identical.

- The computational complexity is $6 K m \log _{2} m$.
- The numerical error is similar to explicit padding and the memory usage is identical.

- The computational complexity is $6 K m \log _{2} m$.
- The numerical error is similar to explicit padding and the memory usage is identical.

Input: vector f , vector g
Output: vector f
$\mathrm{u} \leftarrow \mathrm{fft}^{-1}(\mathrm{f})$;
$\mathrm{v} \leftarrow \mathrm{fft}^{-1}(\mathrm{~g})$;
$\mathrm{u} \leftarrow \mathrm{u} * \mathrm{v}$;
for $k=0$ to $m-1$ do
$\mathrm{f}[k] \leftarrow \zeta_{2 m}^{k} \mathrm{f}[k] ;$
$\mathrm{g}[k] \leftarrow \zeta_{2 m}^{k} \mathrm{~g}[k] ;$
end
$\mathrm{v} \leftarrow \mathrm{fft}^{-1}(\mathrm{f})$;
$\mathrm{f} \leftarrow \mathrm{fft}^{-1}(\mathrm{~g})$;
$\mathrm{v} \leftarrow \mathrm{v} * \mathrm{f}$;
$\mathrm{f} \leftarrow \mathrm{fft}(\mathrm{u})$;
$\mathrm{u} \leftarrow \mathrm{fft}(\mathrm{v})$;
for $k=0$ to $m-1$ do
$\mathbf{f}[k] \leftarrow \mathbf{f}[k]+\zeta_{2 m}^{-k} \mathbf{u}[k] ;$
end
return $\mathrm{f} /(2 \mathrm{~m})$;

Implicit Padding in 1D

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

Recursive Convolution

- Naive way to compute a multiple-dimensional convolution:

$$
\mathcal{F}_{N_{1}, \ldots, N_{d}} \longrightarrow \text { multiply } \longrightarrow \mathcal{F}_{N_{1}, \ldots, N_{d}}^{-1}
$$

- The technique of recursive convolution allows one to avoid computing and storing the entire Fourier image of the data:

$$
\mathcal{F}_{N_{d}} \longrightarrow N_{d} \times \text { convolve }_{N_{1}, \ldots, N_{d-1}} \longrightarrow \mathcal{F}_{N_{d}}^{-1}
$$

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2D

Implicit Padding in 3D

Hermitian Convolutions

- Hermitian convolutions arise when the input vectors are Fourier transforms of real data:

$$
f_{N-k}=\overline{f_{k}}
$$

Centered Convolutions

- For a centered convolution, the Fourier origin $(k=0)$ is centered in the domain:

$$
\sum_{p=k-m+1}^{m-1} f_{p} g_{k-p}
$$

- Need to pad to $N \geq 3 m-2$ to prevent mode $m-1$ from beating with itself to contaminate the most negative (first) mode, at wavenumber $-m+1$.
- The ratio of the number of physical to total modes, $(2 m-$ $1) /(3 m-2)$ is asymptotic to $2 / 3$ for large m.
- The Hermiticity condition then appears as

$$
f_{-k}=\overline{f_{k}} .
$$

Parallelization

- Our implicit and explicit convolution routines have been multithreaded for shared-memory architectures.
- Parallel generalized slab/pencil model implementations have recently been developed for distributed-memory architectures (available in svn repository and upcoming 1.14 release).
- The key bottleneck is the distributed matrix transpose.
- We have compared several distributed matrix transpose algorithms, both blocking and nonblocking, under both pure MPI and hybrid MPI/OpenMP architectures.
- Local transposition is not required within a single MPI node.
- Hybrid MPI/OpenMP offers a larger communication block size than pure MPI for matrix transposition.
- Hybrid MPI/OpenMP is sometimes more efficient (by a factor of 2) than pure MPI for computing distributed matrix transposes [Bowman \& Roberts 2013].
- We have developed an adaptive algorithm, dynamically tuned to choose the optimal block size and number of threads.
8×8 Block Transpose over 8 processors

Matrix Transpose: Optimal Number of Threads

Advantages of Hybrid MPI/OpenMP

- Smaller problems sizes to be distributed over a large number of processors;
- More slab-like than pencil-like model; this reduces the size of or even eliminates the need for the second transpose.
- Overlapping computation with communication can yield a 10% speedup for 3D implicitly dealiased convolutions, where a natural parallelism exists between communication and computation.

Pure MPI Scaling of 2D Implicit Convolutions

Strong scaling: cconv2

Pure MPI Scaling of 3D Implicit Convolution

Strong scaling: cconv3

Multithreaded Hermitian Convolution

- The backwards implicitly padded centered Hermitian transform appears as

$$
u_{3 \ell+r}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} w_{k, r}
$$

where

$$
w_{k, r} \doteq \begin{cases}U_{0} & \text { if } k=0 \\ \zeta_{3 m}^{r k}\left(U_{k}+\zeta_{3}^{-r} \overline{U_{m-k}}\right) & \text { if } 1 \leq k \leq m-1\end{cases}
$$

- We exploit the Hermitian symmetry $w_{k, r}=\overline{w_{m-k, r}}$ to reduce the problem to three complex-to-real Fourier transforms of the first $c+1$ components of $w_{k, r}$ (one for each $r=-1,0,1$), where $c \doteq\lfloor m / 2\rfloor$ zeros.
- To facilitate an in-place implementation, in our original paper (SIAM, 2011), we stored the transformed values for $r=1$ in reverse order in the upper half of the input vector.
- However, loop dependencies in the resulting algorithm prevented the top level of the 1D transforms from being multithreaded.

Multithreaded Hermitian Convolution

- Unrolling the loop to process four inputs and outputs simultaneously allows loop independence to be achieved, significantly improving performance in both the serial and parallel contexts.

Multithreaded Hermitian Convolution

- Unrolling the loop to process four inputs and outputs simultaneously allows loop independence to be achieved, significantly improving performance in both the serial and parallel contexts.

- As a result, even in 1D, implicit dealiasing of pseudospectral convolutions is now significantly faster than explicit zero padding.

1D Implicit Hermitian Convolution

2D Pseudospectral Collocation [1 thread]

Conclusions

- Memory savings: in d dimensions implicit padding asymptotically uses $1 / 2^{d-1}$ [for centered convolutions $(2 / 3)^{d-1}$] of the memory required by conventional explicit padding.
- The factor of 2 speedup with implicit dealiasing is largely due to increased data locality.
- Highly optimized and parallelized implicit dealiasing routines have been implemented as a software layer FFTW++ on top of the FFTW library and released under the Lesser GNU Public License: http://fftwpp.sourceforge.net/
- Writing a high-performance dealiased pseudospectral code is now a relatively straightforward exercise!
- Implicit dealiasing has been extended to handle nested convolutions and autocorrelations.
- Implicit dealiasing can also be applied to signal denoising and image filtering.

References

[Bowman \& Roberts 2011] J. C. Bowman \& M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.
[Bowman \& Roberts 2013] J. C. Bowman \& M. Roberts, "Adaptive matrix transpose algorithms for distributed multicore processors," in Springer Proceedings of the Applied Mathematics, Modeling and Computational Science, Springer, 2013.

