The 3D Asymptote Generalization of the MetaPost Bezier Interpolation Algorithms

John Bowman
University of Alberta

July 16, 2007
http://www.math.ualberta.ca/~bowman

History

- $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and METAFONT (Knuth, 1979)
- MetaPost (Hobby, 1989): 2D Bezier Control Point Selection
- Asymptote (Hammerlindl, Bowman, Prince, 2004): 2D \& 3D

Cartesian Coordinates

```
draw((0,0)--(100,100));
```

- units are PostScript big points ($1 \mathrm{bp}=1 / 72$ inch $)$
- -- means join the points with a linear segment to create a path
- cyclic path:

$$
\operatorname{draw}((0,0)--(100,0)--(100,100)--(0,100)-- \text { cycle }) ;
$$

Scaling to a Given Size

- PostScript units are often inconvenient.
- Instead, scale user coordinates to a specified final size:

```
size(101,101);
draw ((0,0)--(1,0)--(1,1)--(0,1)--cycle);
```


- One can also specify the size in cm:
size ($0,3 \mathrm{~cm}$); draw (unitsquare);

Labels

- Adding and aligning IATEX labels is easy:
size ($0,3 \mathrm{~cm}$);
draw (unitsquare);
label("\$A\$", (0,0), SW);
label("\$B\$", (1,0), SE);
label("\$C\$", (1,1),NE);
label("\$D\$", (0,1),NW);

2D Bezier Splines

- Using . . instead of -- specifies a Bezier cubic spline: draw(z0 .. controls c0 and c1 .. z1,blue);

$$
(1-t)^{3} z_{0}+3 t(1-t)^{2} c_{0}+3 t^{2}(1-t) c_{1}+t^{3} z_{1}, \quad t \in[0,1] .
$$

Smooth Paths

- Asymptote can choose control points for you, using the algorithms of Hobby [1986] and Knuth [1986]:

```
pair[] z={(0,0), (0,1), (2,1), (2,0), (1,0)};
draw(z[0]..z[1]..z[2]..z[3]..z[4]..cycle,
    grey+linewidth(5));
dot(z,linewidth(7));
```


Hobby's 2D Direction Algorithm

- A tridiagonal system of linear equations is solved to determine any unspecified directions θ_{k} and ϕ_{k} through each knot z_{k} :

$$
\frac{\theta_{k-1}-2 \phi_{k}}{\ell_{k}}=\frac{\phi_{k+1}-2 \theta_{k}}{\ell_{k+1}}
$$

- The resulting shape may be adjusted by modifying optional tension parameters and curl boundary conditions.

Hobby's 2D Control Point Algorithm

- Having prescribed outgoing and incoming path directions $e^{i \theta_{0}}$ at node z_{0} and $e^{i \theta_{1}}$ at node z_{1} relative to the vector $z_{1}-z_{0}$, the control points are determined as:

$$
\begin{aligned}
& u=z_{0}+e^{i \theta}\left(z_{1}-z_{0}\right) f(\theta,-\phi) \\
& v=z_{1}-e^{i \phi}\left(z_{1}-z_{0}\right) f(-\phi, \theta)
\end{aligned}
$$

where the relative distance function $f(\theta, \phi)$ is given by Hobby [1986].

Bezier Curves in 3D

- Apply an affine transformation

$$
x_{i}^{\prime}=A_{i j} x_{j}+C_{i}
$$

to a Bezier curve:

$$
\begin{gathered}
x(t)=\sum_{k=0}^{3} B_{k}(t) P_{k}, \quad t \in[0,1] . \\
x_{i}^{\prime}=A_{i j} x_{j}+C_{i} .
\end{gathered}
$$

- The resulting curve is also a Bezier curve:

$$
\begin{aligned}
x_{i}^{\prime}(t) & =\sum_{k=0}^{3} B_{k}(t) A_{i j}\left(P_{k}\right)_{j}+C_{i} \\
& =\sum_{k=0}^{3} B_{k}(t) P_{k}^{\prime}
\end{aligned}
$$

where P_{k}^{\prime} is the transformed $k^{\text {th }}$ control point, noting $\sum_{k=0}^{3} B_{k}(t)=1$.

3D Generalization of Hobby's algorithm

- Must reduce to 2D algorithm in planar case.
- Determine directions by applying Hobby's algorithm in the plane containing z_{k-1}, z_{k}, z_{k+1}.
- The only ambiguity that can arise is the overall sign of the angles, which relates to viewing each 2D plane from opposing normal directions.
- A reference vector based on the mean unit normal of successive segments can be used to resolve such ambiguities.

3D Control Point Algorithm

- Hobby's control point algorithm can be generalized to 3D by expressing it in terms of the absolute directions ω_{0} and ω_{1} :

$$
\begin{aligned}
& u=z_{0}+\omega_{0}\left|z_{1}-z_{0}\right| f(\theta,-\phi) \\
& v=z_{1}-\omega_{1}\left|z_{1}-z_{0}\right| f(-\phi, \theta)
\end{aligned}
$$

interpreting θ and ϕ as the angle between the corresponding path direction vector and $z_{1}-z_{0}$.

- In this case there is an unambiguous reference vector for determining the relative sign of the angles ϕ and θ.

3D saddle example

- A unit circle in the $X-Y$ plane may be filled and drawn with: $(1,0,0) . .(0,1,0) . .(-1,0,0) . .(0,-1,0) . . c y c l e$

and then distorted into a saddle:
$(1,0,0) . .(0,1,1) . .(-1,0,0) . .(0,-1,1) . . c y c l e$

3D graphs and surfaces

Affine Transforms

- Affine transformations can be applied to pairs, triples, paths, pens, and even whole pictures:

```
transform t=rotate(90);
write(t*(1,0)); // Writes (0,1).
```

fill(P,blue);
fill (shift $(2,0) * r e f l e c t((0,0),(0,1)) * P, ~ r e d) ;$
fill(shift $(4,0) *$ rotate $(30) * P$, yellow);
fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);

P

Packages

- There are packages for Feynman diagrams,

data structures,

algebraic knot theory:

$$
\begin{aligned}
\Phi \Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\rho_{4 b}\left(x_{1}+x_{4}, x_{2}, x_{3}, x_{5}\right)+\rho_{4 b}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& +\rho_{4 a}\left(x_{1}, x_{2}+x_{3}, x_{4}, x_{5}\right)-\rho_{4 b}\left(x_{1}, x_{2}, x_{3}, x_{4}+x_{5}\right) \\
& -\quad \rho_{4 a}\left(x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right)-\rho_{4 a}\left(x_{1}, x_{2}, x_{4}, x_{5}\right)
\end{aligned}
$$

Scientific Graphs

Slide Presentations

- Asymptote has a package for preparing slides.
- It even supports embedded hi-resolution PDF movies.
title("Slide Presentations");
item("Asymptote has a package for preparing slides.");
item("It even supports embedded hi-resolution PDF movies.");

$$
K<\Delta|\ggg| \cdots+
$$

Automatic Sizing

- Figures can be specified in user coordinates, then automatically scaled to the final size.

Deferred Drawing

- We can't draw a graphical object until we know the scaling factors for the user coordinates.
- Instead, store a function that when given the scaling information, draws the scaled object.
void draw(picture pic=currentpicture, path g, pen p=currentpen) \{ pic.add(new void(frame f, transform t) \{ draw (f,t*g, $)$;
\});
pic.addPoint(min(g),min(p));
pic.addPoint(max(g), max (p));
\}

Coordinates

- Store bounding box information as a sum of user and true-size coordinates:

pic. $\operatorname{addPoint}(\min (\mathrm{g}), \min (\mathrm{p}))$;
pic. $\operatorname{addPoint}(\max (\mathrm{g}), \max (\mathrm{p}))$;
- Filling ignores the pen width:

$$
\begin{aligned}
& \text { pic.addPoint }(\min (g),(0,0)) \text {; } \\
& \text { pic.addPoint }(\max (g),(0,0)) \text {; }
\end{aligned}
$$

- Communicate with IATEX to determine label sizes:

$$
E=m c^{2}
$$

Sizing

- When scaling the final figure to a given size S, we first need to determine a scaling factor $a>0$ and a shift b so that all of the coordinates when transformed will lie in the interval $[0, S]$. That is, if u and t are the user and truesize components:

$$
0 \leq a u+t+b \leq S
$$

- We are maximizing the variable a subject to a number of inequalities. This is a linear programming problem that can be solved by the simplex method.

Sizing

- Every addition of a coordinate (t, u) adds two restrictions

$$
\begin{aligned}
& a u+t+b \geq 0 \\
& a u+t+b \leq S
\end{aligned}
$$

and each drawing component adds two coordinates.

- A figure could easily produce thousands of restrictions, making the simplex method impractical.
- Most of these restrictions are redundent, however. For instance, with concentric circles, only the largest circle needs to be accounted for.

Redundant Restrictions

- In general, if $u \leq u^{\prime}$ and $t \leq t^{\prime}$ then

$$
a u+t+b \leq a u^{\prime}+t^{\prime}+b
$$

for all choices of $a>0$ and b, so

$$
0 \leq a u+t+b \leq a u^{\prime}+t^{\prime}+b \leq S
$$

- This defines a partial ordering on coordinates. When sizing a picture, the program first computes which coordinates are maximal (or minimal) and only sends effective restraints to the simplex algorithm.
- In practice, the linear programming problem will have less than a dozen restraints.
- All picture sizing is implemented in Asymptote code.

Infinite Lines

- Deferred drawing allows us to draw infinite lines.
drawline(P, Q);

References

[Hobby 1986] J. D. Hobby, Discrete Comput. Geom., 1:123, 1986. [Knuth 1986] D. E. Knuth, The METAFONTbook, Addison-Wesley, Reading, Massachusetts, 1986.

Asymptote: The Vector Graphics Language

http://asymptote.sf.net
(freely available under the GNU public license)

