Mode Reduction Schemes and Subgrid Models for Homogeneous Turbulence

John C. Bowman,

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada

> http://www.math.ualberta.ca/~bowman/talks Phys. Rev. Lett. 83, 5491 (1999).

Outline

- A Properties
- B Moments
- C Liouville Theorem
- D Statistical Equipartition
- 2 2D Enstrophy Cascade
 - A Comparison with Full Simulation
 - **B** Structure Functions
- 3 GOY Shell Model
- 4 Conclusions

2D Turbulence

• 2D Navier–Stokes vorticity equation:

$$\frac{\partial \omega_{\boldsymbol{k}}}{\partial t} + \nu_{\boldsymbol{k}} \omega_{\boldsymbol{k}} = \int d\boldsymbol{p} \int d\boldsymbol{q} \, \frac{\epsilon_{\boldsymbol{k}\boldsymbol{p}\boldsymbol{q}}}{q^2} \omega_{\boldsymbol{p}}^* \omega_{\boldsymbol{q}}^*,$$

where $\nu_{\mathbf{k}} \doteq \nu k^2$ and

$$\epsilon_{\boldsymbol{k}\boldsymbol{p}\boldsymbol{q}} \doteq (\hat{\boldsymbol{z}} \cdot \boldsymbol{p} \times \boldsymbol{q}) \,\delta(\boldsymbol{k} + \boldsymbol{p} + \boldsymbol{q})$$

is antisymmetric under permutation of any two indices.

• Energy E_0 and enstrophy Z_0 on the fine grid:

$$E_0 \doteq \frac{1}{2} \int d\boldsymbol{k} \frac{|\omega_{\boldsymbol{k}}|^2}{k^2}, \qquad Z_0 \doteq \frac{1}{2} \int d\boldsymbol{k} |\omega_{\boldsymbol{k}}|^2.$$

• First consider $\nu_{k} = 0$. Conservation of E_0 and Z_0 follow from:

$$\frac{1}{k^2} \frac{\epsilon_{kpq}}{q^2} \quad \text{antisymmetric in} \quad k \leftrightarrow q,$$
$$\frac{\epsilon_{kpq}}{q^2} \quad \text{antisymmetric in} \quad k \leftrightarrow p.$$

- Introduce a coarse-grained grid indexed by *K*.
- Define new variables

$$\Omega_{\boldsymbol{K}} = \langle \omega_{\boldsymbol{k}} \rangle_{\boldsymbol{K}} \doteq \frac{1}{\Delta_{\boldsymbol{K}}} \int_{\Delta_{\boldsymbol{K}}} \omega_{\boldsymbol{k}} \, d\boldsymbol{k},$$

where $\Delta_{\mathbf{K}}$ is the area of bin \mathbf{K} .

• Evolution of $\Omega_{\mathbf{K}}$:

$$\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t} + \langle \nu_{\boldsymbol{k}} \omega_{\boldsymbol{k}} \rangle_{\boldsymbol{K}} = \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \left\langle \frac{\epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}}}{q^2} \omega_{\boldsymbol{p}}^* \omega_{\boldsymbol{q}}^* \right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}},$$

where $\langle f \rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} = \frac{1}{\Delta_{\boldsymbol{K}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}}} \int_{\Delta_{\boldsymbol{K}}} d\boldsymbol{k} \int_{\Delta_{\boldsymbol{P}}} d\boldsymbol{p} \int_{\Delta_{\boldsymbol{Q}}} d\boldsymbol{q} f.$

• Approximate ω_p and ω_q by bin-averaged values Ω_P and Ω_Q :

$$\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t} + \langle \nu_{\boldsymbol{k}} \rangle_{\boldsymbol{K}} \,\Omega_{\boldsymbol{K}} = \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \left\langle \frac{\epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}}}{q^2} \right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}} \,\Omega_{\boldsymbol{P}}^* \Omega_{\boldsymbol{Q}}^*.$$

• On the coarse grid, define the energy E and enstrophy Z

$$E \doteq \frac{1}{2} \sum_{\boldsymbol{K}} \frac{|\Omega_{\boldsymbol{K}}|^2}{K^2} \Delta_{\boldsymbol{K}}, \qquad Z \doteq \frac{1}{2} \sum_{\boldsymbol{K}} |\Omega_{\boldsymbol{K}}|^2 \Delta_{\boldsymbol{K}}.$$

• Enstrophy is still conserved since

 $\left\langle \frac{\epsilon_{kpq}}{q^2} \right\rangle_{KPQ}$ antisymmetric in $K \leftrightarrow P$.

But energy conservation has been lost!

 $\frac{1}{K^2} \left\langle \frac{\epsilon_{kpq}}{q^2} \right\rangle_{KPQ} \qquad \text{NOT antisymmetric in} \qquad K \leftrightarrow Q.$

• Reinstate both desired symmetries with the modified coefficient

 $\frac{\left\langle \epsilon_{\boldsymbol{k}\boldsymbol{p}\boldsymbol{q}} \right\rangle_{\boldsymbol{K}\boldsymbol{P}\boldsymbol{Q}}}{Q^2}.$

• Energy and enstrophy are now simultaneously conserved.

Properties

• We call the forced-dissipative version of this approximation *Spectral Reduction* (SR):

$$\frac{\partial \Omega_{\boldsymbol{K}}}{\partial t} + \langle \nu_{\boldsymbol{k}} \rangle_{\boldsymbol{K}} \, \Omega_{\boldsymbol{K}} = \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \, \frac{\langle \epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}} \rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}}{Q^2} \, \Omega_{\boldsymbol{P}}^* \Omega_{\boldsymbol{Q}}^*.$$

- SR conserves both energy and enstrophy and reduces to the exact dynamics in the limit of small bin size.
- It has the same general structure and symmetries as the original equation and in this sense may be considered a *renormalization*.
- SR obeys a Liouville Theorem; in the inviscid limit, it yields statistical-mechanical (equipartition) solutions.

Moments

- Q. How accurate is Spectral Reduction?
- A. For large bins, the *instantaneous* dynamics of SR is inaccurate.
- However: the equations for the *time-averaged* (or ensemble-averaged) moments predicted by SR closely approximate those of the exact bin-averaged statistics.
 Eg., time average the exact bin-averaged enstrophy equation:

$$\frac{\partial}{\partial t} \left\langle \left| \omega_{\boldsymbol{k}} \right|^{2} \right\rangle_{\boldsymbol{K}} + 2 \operatorname{Re} \left\langle \nu_{\boldsymbol{k}} \overline{\left| \omega_{\boldsymbol{k}} \right|^{2}} \right\rangle_{\boldsymbol{K}} = 2 \operatorname{Re} \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \left\langle \frac{\epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}}}{q^{2}} \overline{\omega_{\boldsymbol{k}}^{*} \omega_{\boldsymbol{p}}^{*} \omega_{\boldsymbol{q}}^{*}} \right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}$$

where the bar means time average and $\langle \cdot \rangle_{\mathbf{K}}$ means bin average.

• Time-averaged quantities such as $|\omega_k|^2$ and $\overline{\omega_k^* \omega_p^* \omega_q^*}$ are generally *smooth* functions of k, p, q on the four-dimensional surface defined by the triad condition k + p + q = 0.

• Mean Value Theorem for integrals: for some $\xi \in K$,

$$\overline{|\Omega_{\boldsymbol{K}}|^2} = \overline{|\omega_{\boldsymbol{\xi}}|^2} \approx \overline{|\omega_{\boldsymbol{k}}|^2} \qquad \forall \boldsymbol{k} \in \boldsymbol{K}.$$

• To good accuracy these statistical moments may therefore be evaluated at the characteristic wavenumbers *K*, *P*, *Q*:

$$\frac{\overline{\partial}}{\partial t} |\Omega_{\boldsymbol{K}}|^{2} + 2\operatorname{Re}\langle\nu_{\boldsymbol{k}}\rangle_{\boldsymbol{K}} \overline{|\Omega_{\boldsymbol{K}}|^{2}} = 2\operatorname{Re}\sum_{\boldsymbol{P},\boldsymbol{Q}} \Delta_{\boldsymbol{P}}\Delta_{\boldsymbol{Q}} \left\langle\frac{\epsilon_{\boldsymbol{k}\boldsymbol{p}\boldsymbol{q}}}{q^{2}}\right\rangle_{\boldsymbol{K}\boldsymbol{P}\boldsymbol{Q}} \overline{\Omega_{\boldsymbol{K}}^{*}\Omega_{\boldsymbol{P}}^{*}\Omega_{\boldsymbol{Q}}^{*}}.$$

To the extent that the wavenumber magnitude q varies slowly over a bin:

$$\frac{\overline{\partial}}{\partial t} |\Omega_{\boldsymbol{K}}|^2 + 2 \operatorname{Re} \langle \nu_{\boldsymbol{k}} \rangle_{\boldsymbol{K}} \overline{|\Omega_{\boldsymbol{K}}|^2} = 2 \operatorname{Re} \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \frac{\langle \epsilon_{\boldsymbol{k}\boldsymbol{p}\boldsymbol{q}} \rangle_{\boldsymbol{K}\boldsymbol{P}\boldsymbol{Q}}}{Q^2} \overline{\Omega_{\boldsymbol{K}}^* \Omega_{\boldsymbol{P}}^* \Omega_{\boldsymbol{Q}}^*}.$$

• But this is precisely the time-average of the SR equation!

Convergence

- The previous argument suggests that Spectral Reduction can indeed provide an accurate statistical description of turbulence, even when each bin contains many statistically independent modes.
- As the wavenumber partition is refined, one expects the solutions of the time-averaged SR equations to converge to the exact statistical solution.
- An object-oriented C⁺⁺ program (Triad) has been developed to implement and test Spectral Reduction.

Noncanonical Hamiltonian Formulation

• Underlying *noncanonical* Hamiltonian formulation for inviscid 2D vorticity equation:

$$\dot{\omega}_{\boldsymbol{k}} = \int d\boldsymbol{q} \, J_{\boldsymbol{k}\boldsymbol{q}} \frac{\delta H}{\delta \omega_{\boldsymbol{q}}},$$

where

$$H \doteq \frac{1}{2} \int d\mathbf{k} \frac{|\omega_{\mathbf{k}}|^2}{k^2},$$
$$J_{\mathbf{k}\mathbf{q}} \doteq \int d\mathbf{p} \,\epsilon_{\mathbf{k}\mathbf{p}\mathbf{q}} \omega_{\mathbf{p}}^*.$$

• Leads to inviscid Navier–Stokes equation:

$$\frac{\partial \omega_{\boldsymbol{k}}}{\partial t} + \nu_{\boldsymbol{k}} \omega_{\boldsymbol{k}} = \int d\boldsymbol{p} \int d\boldsymbol{q} \, \frac{\epsilon_{\boldsymbol{k}\boldsymbol{p}\boldsymbol{q}}}{q^2} \omega_{\boldsymbol{p}}^* \omega_{\boldsymbol{q}}^*.$$

Liouville Theorem

• Navier–Stokes:

$$J_{\boldsymbol{k}\boldsymbol{q}} \doteq \int d\boldsymbol{p} \,\epsilon_{\boldsymbol{k}\boldsymbol{p}\boldsymbol{q}} \omega_{\boldsymbol{p}}^*$$

$$\Rightarrow \int d\mathbf{k} \, \frac{\delta \dot{\omega}_{\mathbf{k}}}{\delta \omega_{\mathbf{k}}} = \int d\mathbf{k} \int d\mathbf{q} \, \underbrace{\frac{\delta J_{\mathbf{k}\mathbf{q}}}{\delta \omega_{\mathbf{k}}}}_{\epsilon_{\mathbf{k}}(-\mathbf{k})\mathbf{q}} \frac{\delta H}{\delta \omega_{\mathbf{k}}} + J_{\mathbf{k}\mathbf{q}} \frac{\delta^2 H}{\delta \omega_{\mathbf{k}} \delta \omega_{\mathbf{q}}} = 0.$$

$$J_{KQ} \doteq \sum_{P} \Delta_{P} \langle \epsilon_{kpq} \rangle_{KPQ} \Omega_{P}^{*}$$

$$\Rightarrow \qquad \sum_{K} \frac{\partial \dot{\Omega}_{K}}{\partial \Omega_{K}} = \sum_{K,Q} \frac{\partial J_{KQ}}{\partial \Omega_{K}} \frac{\partial H}{\partial \Omega_{Q}} + J_{KQ} \frac{\partial^{2} H}{\partial \Omega_{K} \partial \Omega_{Q}} = 0.$$

Statistical Equipartition

• If the dynamics are *mixing*, the Liouville Theorem and the coarse-grained invariants

$$E \doteq \frac{1}{2} \sum_{\boldsymbol{K}} \frac{|\Omega_{\boldsymbol{K}}|^2}{K^2} \Delta_{\boldsymbol{K}}, \qquad Z \doteq \frac{1}{2} \sum_{\boldsymbol{K}} |\Omega_{\boldsymbol{K}}|^2 \Delta_{\boldsymbol{K}},$$

lead to statistical equipartition of $(\alpha/K^2 + \beta) |\Omega_K|^2 \Delta_K$.

• This is the correct equipartition only for uniform bins. However, for nonuniform bins, a rescaling of time by Δ_K :

$$\frac{1}{\Delta_{\boldsymbol{K}}} \frac{\partial \Omega_{\boldsymbol{K}}}{\partial t} + \langle \nu_{\boldsymbol{k}} \rangle_{\boldsymbol{K}} \, \Omega_{\boldsymbol{K}} = \sum_{\boldsymbol{P}, \boldsymbol{Q}} \Delta_{\boldsymbol{P}} \Delta_{\boldsymbol{Q}} \, \frac{\left\langle \epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}} \right\rangle_{\boldsymbol{K} \boldsymbol{P} \boldsymbol{Q}}}{Q^2} \, \Omega_{\boldsymbol{P}}^* \Omega_{\boldsymbol{Q}}^*.$$

yields the correct inviscid equipartition:

$$\left\langle |\Omega_{\boldsymbol{k}}|^2 \right\rangle = \frac{1}{\frac{\alpha}{K^2} + \beta}.$$

Stiffness Problem

- The rescaling of time does not change the steady-state moment equations.
- It does affect the statistical trajectory of the system and the resulting statistical solution.
- However, the resulting system becomes numerically very stiff.
- Unsolved Problem: given an efficient numerical method for evolving the system of equations

$$\frac{d\boldsymbol{y}}{dt} = \boldsymbol{S}(\boldsymbol{y}),$$

find an efficient numerical method to evolve

$$\frac{d\boldsymbol{y}}{dt} = \boldsymbol{\Lambda} \boldsymbol{S}(\boldsymbol{y}),$$

where Λ is a constant real diagonal matrix.

Structure functions:

• [Falkovich & Lebedev 1994], [Paret *et al.* 1999]

$$S_n(\boldsymbol{r}) \doteq \overline{|v(\boldsymbol{r}) - v(\boldsymbol{0})|^n} \sim r^n \left[\log\left(\frac{r_1}{r}\right) + \chi'_n \right]^{n/3}$$

GOY Shell Model

• Complex version of the Gledzer [1973] model proposed by Yamada and Ohkitani [1987]:

$$\left(\frac{d}{dt} + \nu k_n^2\right) u_n = ik_n \left(\alpha u_{n+1}^* u_{n+2}^* + \frac{\beta}{\lambda} u_{n-1}^* u_{n+1}^* + \frac{\gamma}{\lambda^2} u_{n-1}^* u_{n-2}^*\right) + F\delta_{n,0},$$

where

$$k_n = \lambda^n.$$

• With $\lambda = 2$, nonlinear terms conserve energy-like and helicity-like invariants

$$\alpha = 1$$
 $\beta = \gamma = -\frac{1}{2}.$

• When $\nu = F = 0$, the GOY model has an unstable fixed point, corresponding to the Kolmogorov power law

$$u_n = Ak_n^{-1/3}.$$

Kolmogorov Law

Energy spectrum for 3D GOY model

Energy spectrum for 3D GOY model

Subgrid Model

Conclusions

- Spectral Reduction affords a dramatic reduction in the number of degrees of freedom that must be explicitly evolved in turbulence simulations.
- One can evolve a turbulent system for thousands of eddy turnover times to obtain energy spectra smooth enough to compare with theory.
- Spectral Reduction has been successfully applied to numerically verify the logarithmically corrected 2D enstrophy law to very high accuracy.
- The high-order structure functions computed by the pseudospectral method and Spectral Reduction are in excellent agreement at the small scales, even in the presence of coherent structures.
- Spectral Reduction lends numerical support to the theoretical and experimental claim that there are no intermittency corrections in strongly forced 2D enstrophy cascades.

Asymptote: The Vector Graphics Language

http://asymptote.sf.net

(freely available under the GNU public license)

References

[Bowman *et al.* 1999] J. C. Bowman, B. A. Shadwick, & P. J. Morrison, Phys. Rev. Lett., 83:5491, 1999.

[Falkovich & Lebedev 1994] G. Falkovich & V. Lebedev, Phys. Rev. E, 50:3883, 1994.

> [Paret et al. 1999] J. Paret, M.-C. Jullien, & P. Tabeling, Phys. Rev. Lett., 83:3418, 1999.