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2D Turbulence
2D Navier–Stokes vorticity equation:

∂ωk

∂t
+ νkωk =

∫

dp

∫

dq
ǫkpq

q2
ω∗

pω∗

q ,

whereνk
.
= νk2 and

ǫkpq
.
= (ẑ·p×q) δ(k + p + q)

is antisymmetric under permutation of any two indices.

EnergyE0 and enstrophyZ0 on the fine grid:

E0
.
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∫
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First considerνk = 0. Conservation ofE0 andZ0 follow from:

1

k2

ǫkpq

q2
antisymmetric in k ↔ q,

ǫkpq

q2
antisymmetric in k ↔ p.



Spectral Reduction
Introduce a coarse-grained grid indexed byK.

Define new variables

ΩK = 〈ωk〉K
.
=

1

∆K

∫

∆K

ωk dk,

where∆K is the area of binK.

Evolution ofΩK :
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+ 〈νkωk〉K =

∑

P ,Q

∆P ∆Q

〈
ǫkpq

q2
ω∗

pω∗

q

〉

KP Q

,

where〈f〉KP Q =
1

∆K∆P ∆Q

∫
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Approximateωp andωq by bin-averaged valuesΩP andΩQ:
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On the coarse grid, define the energyE and enstrophyZ

E
.
=

1

2

∑

K

|ΩK |2

K2
∆K , Z

.
=

1

2

∑

K

|ΩK |2 ∆K .

Enstrophy is still conserved since
〈

ǫkpq

q2

〉

KP Q

antisymmetric in K ↔ P .

But energy conservation has been lost!

1

K2

〈
ǫkpq

q2

〉

KP Q

NOT antisymmetric in K ↔ Q.

Reinstate both desired symmetries with the modified coefficient
〈
ǫkpq

〉

KP Q

Q2
.

Energy and enstrophy are now simultaneously conserved.



Properties
We call the forced-dissipative version of this approximation
Spectral Reduction (SR):

∂ΩK

∂t
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SR conserves both energy and enstrophy and reduces to the
exact dynamics in the limit of small bin size.

It has the same general structure and symmetries as the original
equation and in this sense may be considered a
renormalization.

SR obeys a Liouville Theorem; in the inviscid limit, it yields
statistical-mechanical (equipartition) solutions.



Moments
Q. How accurate is Spectral Reduction?

A. For large bins, theinstantaneous dynamics of SR is
inaccurate.

However: the equations for thetime-averaged (or
ensemble-averaged) moments predicted by SRclosely
approximate those of the exact bin-averaged statistics.
Eg., time average the exact bin-averaged enstrophy equation:
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where thebar means time averageand〈·〉K means bin average.

Time-averaged quantities such as|ωk|
2 andω∗

kω∗

pω∗

q are
generallysmooth functions ofk, p, q on the four-dimensional
surface defined by the triad conditionk + p + q = 0.



Mean Value Theorem for integrals:for someξ ∈ K,

|ΩK |2 =
∣
∣ωξ

∣
∣2 ≈ |ωk|

2 ∀k ∈ K.

To good accuracy these statistical moments may therefore be
evaluated at the characteristic wavenumbersK, P , Q:
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To the extent that the wavenumber magnitudeq varies slowly
over a bin:
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But this is precisely the time-average of the SR equation!



Convergence
The previous argument suggests that Spectral Reductioncan
indeed provide an accurate statistical description of turbulence,
even when each bin contains many statistically independent
modes.

As the wavenumber partition is refined, one expects the
solutions of the time-averaged SR equations to converge to the
exact statistical solution.

An object-orientedC++ program(Triad) has been developed
to implement and test Spectral Reduction.



Convergence of Partition



Structure Functions



Noncanonical Hamiltonian Formulation
Underlyingnoncanonical Hamiltonian formulation for inviscid
2D vorticity equation:

ω̇k =

∫

dq Jkq

δH

δωq
,

where
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=
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=
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Leads to inviscid Navier–Stokes equation:
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Liouville Theorem
Navier–Stokes:
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=
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⇒
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Spectral Reduction:
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Statistical Equipartition
If the dynamics aremixing, the Liouville Theorem and the
coarse-grained invariants

E
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lead to statistical equipartition of(α/K2 + β) |ΩK |2 ∆K .

This is the correct equipartition only foruniform bins.
However, for nonuniform bins, a rescaling of time by∆K :
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yields the correct inviscid equipartition:
〈

|Ωk|
2
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=
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α
K2 + β

.



Relaxation to equipartition



Stiffness Problem
The rescaling of time does not change the steady-state moment
equations.

It does affect the statistical trajectory of the system and the
resulting statistical solution.

However, the resulting system becomes numerically verystiff.

Unsolved Problem:given an efficient numerical method for
evolving the system of equations

dy

dt
= S(y),

find an efficient numerical method to evolve
dy

dt
= ΛS(y),

whereΛ is a constant real diagonal matrix.
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Structure functions:
[Falkovich & Lebedev 1994], [Paretet al. 1999]

Sn(r)
.
= |v(r) − v(0)|n ∼ rn

[

log
(r1

r

)

+ χ′

n

]n/3
.

0 0.6 1.2 1.8
0

600

1200

1800

2400



GOY Shell Model
Complex version of the Gledzer [1973] model proposed by
Yamada and Ohkitani [1987]:

(
d

dt
+ νk2

n

)

un = ikn

(

αu∗

n+1u
∗

n+2 +
β

λ
u∗

n−1u
∗

n+1 +
γ

λ2
u∗

n−1u
∗

n−2

)

+Fδn,0,

where
kn = λn.

With λ = 2, nonlinear terms conserve energy-like and
helicity-like invariants

α = 1 β = γ = −
1

2
.

Whenν = F = 0, the GOY model has anunstablefixed point,
corresponding to the Kolmogorov power law

un = Ak
−1/3
n .



Kolmogorov Law
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Spectral Reduction
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Spectral Reduction
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Spectral Reduction
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Spectral Reduction
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Subgrid Model
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Conclusions
Spectral Reductionaffords a dramatic reduction in the number
of degrees of freedom that must be explicitly evolved in
turbulence simulations.

One can evolve a turbulent system forthousands of eddy
turnover timesto obtain energy spectrasmooth enough to
compare with theory.

Spectral Reduction has been successfully applied to
numerically verify the logarithmically corrected 2D enstrophy
law to very high accuracy.

The high-order structure functions computed by the
pseudospectral method and Spectral Reduction are in excellent
agreement at the small scales, even in the presence of coherent
structures.

Spectral Reduction lends numerical support to the theoretical
and experimental claim that there areno intermittency
corrections in strongly forced 2D enstrophy cascades.



Asymptote: The Vector Graphics Language
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(freely available under the GNU public license)
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