A Fully Lagrangian Advection Scheme
 M. Ali Yassaei, John C. Bowman, and Anup Basu
 University of Alberta

Dec 6, 2008
www.math.ualberta.ca/~bowman/talks

Outline

- 2D Advection-Diffusion
- Passive Advection
- Casimir Invariants
- Lagrangian Rearrangement
- Weighted Bresenham Algorithm
- Average Complexity
- Operator Splitting
- Diffusion
- Self-advection
- Energy Decay Rate
- Conclusions

Introduction

- 2D advection-diffusion:

$$
\frac{\partial \boldsymbol{U}}{\partial t}+\boldsymbol{v} \cdot \nabla \boldsymbol{U}=\boldsymbol{D} \nabla^{2} \boldsymbol{U}
$$

Introduction

-2D advection-diffusion:

$$
\frac{\partial \boldsymbol{U}}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U}=\boldsymbol{D} \nabla^{2} \boldsymbol{U}
$$

- $\boldsymbol{U}=(\omega, C)$ represents
- Scalar vorticity $\omega=\hat{\boldsymbol{z}} \cdot \nabla \times \boldsymbol{v}$,
- Concentration field C.

Introduction

-2D advection-diffusion:

$$
\frac{\partial \boldsymbol{U}}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U}=\boldsymbol{D} \nabla^{2} \boldsymbol{U}
$$

- $\boldsymbol{U}=(\omega, C)$ represents
- Scalar vorticity $\omega=\hat{z} \cdot \nabla \times \boldsymbol{v}$,
- Concentration field C.
- The velocity \boldsymbol{v} is incompressible: $\boldsymbol{\nabla} \cdot \boldsymbol{v}=0$.

Introduction

-2D advection-diffusion:

$$
\frac{\partial \boldsymbol{U}}{\partial t}+\boldsymbol{v} \cdot \nabla \boldsymbol{U}=\boldsymbol{D} \nabla^{2} \boldsymbol{U}
$$

- $\boldsymbol{U}=(\omega, C)$ represents
- Scalar vorticity $\omega=\hat{\boldsymbol{z}} \cdot \nabla \times \boldsymbol{v}$,
- Concentration field C.
- The velocity \boldsymbol{v} is incompressible: $\boldsymbol{\nabla} \cdot \boldsymbol{v}=0$.
- Diffusion matrix $\boldsymbol{D}=\operatorname{diag}(\nu, D)$:
$\nu=$ fluid viscosity,
$D=$ diffusion constant for concentration field.

Eulerian vs. Lagrangian

- Passive advection without diffusion:

$$
\frac{\partial C}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} C=0
$$

Eulerian vs. Lagrangian

- Passive advection without diffusion:

$$
\frac{\partial C}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} C=0
$$

- Finite difference:

$$
\frac{C_{i}^{n+1}-C_{i}^{n}}{\tau}=-v \frac{C_{i+1}^{n}-C_{i-1}^{n}}{2 h}
$$

Eulerian vs. Lagrangian

- Passive advection without diffusion:

$$
\frac{\partial C}{\partial t}+\boldsymbol{v} \cdot \nabla C=0
$$

- Finite difference:

$$
\frac{C_{i}^{n+1}-C_{i}^{n}}{\tau}=-v \frac{C_{i+1}^{n}-C_{i-1}^{n}}{2 h}
$$

- Problems with Eulerian methods:
- Instability;
- Upwinding and Lax schemes: numerical diffusion.

Method of Characteristics

- Solution to passive advection problem without diffusion:

$$
C(\boldsymbol{x}, t)=C\left(\boldsymbol{\xi}_{0}(\boldsymbol{x}, t), 0\right)
$$

Method of Characteristics

- Solution to passive advection problem without diffusion:

$$
C(\boldsymbol{x}, t)=C\left(\boldsymbol{\xi}_{0}(\boldsymbol{x}, t), 0\right)
$$

- Introduce Lagrangian position

$$
\boldsymbol{\xi}(t)=\boldsymbol{\xi}_{0}+\int_{0}^{t} \boldsymbol{v}(\boldsymbol{\xi}(\tau), \tau) d \tau
$$

where $\boldsymbol{\xi}(t)=\boldsymbol{x}$ and $\boldsymbol{\xi}_{0}=\boldsymbol{\xi}_{0}(\boldsymbol{x}, t)$ is the initial parcel position.

Method of Characteristics

- Solution to passive advection problem without diffusion:

$$
C(\boldsymbol{x}, t)=C\left(\boldsymbol{\xi}_{0}(\boldsymbol{x}, t), 0\right)
$$

- Introduce Lagrangian position

$$
\boldsymbol{\xi}(t)=\boldsymbol{\xi}_{0}+\int_{0}^{t} \boldsymbol{v}(\boldsymbol{\xi}(\tau), \tau) d \tau
$$

where $\boldsymbol{\xi}(t)=\boldsymbol{x}$ and $\boldsymbol{\xi}_{0}=\boldsymbol{\xi}_{0}(\boldsymbol{x}, t)$ is the initial parcel position.

- Problem of viewing solution on grid: new Lagrangian positions may not lie on grid points.

Method of Characteristics

- Solution to passive advection problem without diffusion:

$$
C(\boldsymbol{x}, t)=C\left(\boldsymbol{\xi}_{0}(\boldsymbol{x}, t), 0\right) .
$$

- Introduce Lagrangian position

$$
\boldsymbol{\xi}(t)=\boldsymbol{\xi}_{0}+\int_{0}^{t} \boldsymbol{v}(\boldsymbol{\xi}(\tau), \tau) d \tau
$$

where $\boldsymbol{\xi}(t)=\boldsymbol{x}$ and $\boldsymbol{\xi}_{0}=\boldsymbol{\xi}_{0}(\boldsymbol{x}, t)$ is the initial parcel position.

- Problem of viewing solution on grid: new Lagrangian positions may not lie on grid points.
- Solutions:
- interpolate (semi-Lagrangian): numerical diffusion;
- Lagrangian rearrangement: project advected parcel centroids onto rearrangment manifold.

Casimir Invariants

- Conservation equation:

$$
\frac{d C(\boldsymbol{x}(t), t)}{d t}=\frac{d \boldsymbol{x}}{d t} \cdot \nabla C+\frac{\partial C}{\partial t}=\boldsymbol{v} \cdot \nabla C+\frac{\partial C}{\partial t}=0
$$

where $\boldsymbol{v}=d \boldsymbol{x} / d t$.

Casimir Invariants

- Conservation equation:

$$
\frac{d C(\boldsymbol{x}(t), t)}{d t}=\frac{d \boldsymbol{x}}{d t} \cdot \nabla C+\frac{\partial C}{\partial t}=\boldsymbol{v} \cdot \nabla C+\frac{\partial C}{\partial t}=0
$$

where $\boldsymbol{v}=d \boldsymbol{x} / d t$.

- For any C^{1} function f of concentration (or vorticity) field:

$$
\begin{aligned}
\frac{d}{d t} \int f(C) d \boldsymbol{x} & =\int f^{\prime}(C) \frac{\partial C}{\partial t} d \boldsymbol{x}=-\int f^{\prime}(C) \boldsymbol{v} \cdot \boldsymbol{\nabla} C d \boldsymbol{x} \\
& =-\int \boldsymbol{v} \cdot \boldsymbol{\nabla} f(C) d \boldsymbol{x}=\int f(C) \boldsymbol{\nabla} \cdot \boldsymbol{v} d \boldsymbol{x}=0
\end{aligned}
$$

Casimir Invariants

- Conservation equation:

$$
\frac{d C(\boldsymbol{x}(t), t)}{d t}=\frac{d \boldsymbol{x}}{d t} \cdot \nabla C+\frac{\partial C}{\partial t}=\boldsymbol{v} \cdot \nabla C+\frac{\partial C}{\partial t}=0
$$

where $\boldsymbol{v}=d \boldsymbol{x} / d t$.

- For any C^{1} function f of concentration (or vorticity) field:

$$
\begin{aligned}
\frac{d}{d t} \int f(C) d \boldsymbol{x} & =\int f^{\prime}(C) \frac{\partial C}{\partial t} d \boldsymbol{x}=-\int f^{\prime}(C) \boldsymbol{v} \cdot \boldsymbol{\nabla} C d \boldsymbol{x} \\
& =-\int \boldsymbol{v} \cdot \boldsymbol{\nabla} f(C) d \boldsymbol{x}=\int f(C) \boldsymbol{\nabla} \cdot \boldsymbol{v} d \boldsymbol{x}=0
\end{aligned}
$$

- Enforce a discrete analog of this exact infinitesimal property:

$$
\frac{d}{d t} \sum_{i, j} f\left(C_{i, j}\right)=0
$$

Parcel Centroid

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.

Parcel Centroid

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.

Parcel Centroid

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.
- The resulting discrete constraint

$$
\frac{d}{d t} \sum_{i, j} f\left(C_{i, j}\right)=0
$$

is equivalent to imposing parcel rearrangement.

Parcel Centroid

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.
- The resulting discrete constraint

$$
\frac{d}{d t} \sum_{i, j} f\left(C_{i, j}\right)=0
$$

is equivalent to imposing parcel rearrangement.

- Use RK4 to advect the parcel centroids.

Parcel Centroid

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.
- The resulting discrete constraint

$$
\frac{d}{d t} \sum_{i, j} f\left(C_{i, j}\right)=0
$$

is equivalent to imposing parcel rearrangement.

- Use RK4 to advect the parcel centroids.
- Under this linear map, parcel centroid maps to advected parcel centroid.

Parcel Centroid

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.
- The resulting discrete constraint

$$
\frac{d}{d t} \sum_{i, j} f\left(C_{i, j}\right)=0
$$

is equivalent to imposing parcel rearrangement.

- Use RK4 to advect the parcel centroids.
- Under this linear map, parcel centroid maps to advected parcel centroid.
- For passive advection without diffusion: only evolve parcel centroids (no need to actually evolve the quadrilateral vertices).

Lagrangian \rightarrow Eulerian Projection

- Advection in Lagrangian frame \Rightarrow piles and holes.

Lagrangian \rightarrow Eulerian Projection

- Advection in Lagrangian frame \Rightarrow piles and holes.
- New state must be a rearrangement of initial state to conserve Casimir invariants.

Lagrangian \rightarrow Eulerian Projection

- Advection in Lagrangian frame \Rightarrow piles and holes.
- New state must be a rearrangement of initial state to conserve Casimir invariants.
- How to map excess parcels $\left(^{*}\right)$ to holes?

Lagrangian Rearrangement

- Start with cells with most parcels.

Lagrangian Rearrangement

- Start with cells with most parcels.
- Find nearest hole (search in rectangular shells about pile).

Lagrangian Rearrangement

- Start with cells with most parcels.
- Find nearest hole (search in rectangular shells about pile).
- Discretize path from pile to hole.

Lagrangian Rearrangement

- Start with cells with most parcels.
- Find nearest hole (search in rectangular shells about pile).
- Discretize path from pile to hole.
- Push chain of parcels toward hole.

Searching k th Rectangular Shell

Bresenham Algorithm

- Discretize path from pile to hole:
- Reduce to case $0 \leq m \leq 1$.
- Choose $(x+1, y)$ or $(x+1, y+1)$.

Bresenham Algorithm

- Discretize path from pile to hole:
- Reduce to case $0 \leq m \leq 1$.
- Choose $(x+1, y)$ or $(x+1, y+1)$.

- Problem: multiple pushing of parcels \Rightarrow visible streaks.

Weighted Bresenham Algorithm

- Randomize path:

0	1	8	4	2	3	7	6	9	4	4	6	3	0	4	1	8	3	5	2	
5	8	3	3	8	9	3	3	7	9	5	4	4	8	4	1	1	4	3	6	3
2	0	0	9	8	7	2	4	5	1	4	1	7	2	6	7	3	6	5	0	6
4	1	6	6	7	0	3	9	2	5	9	2	7	7	4	6	6	5	1	6	2
7	3	5	0	4	1	3	0	4	2	5	9	9	4	5	6	0	2	9	3	6
0	8	9	8	9	8	5	1	1	6	2	7	6	4	4	0	6	2	8	5	5
7	6	5	9	1	2	3	5	3	2	4	2	5	0	7	2	0	8	6	5	5
4	5	1	5	4	7	2	6	3	8	3	3	9	5	1	1	3	2	6	3	3
9	7	1	9	0	9	6	6	9	5	6	5	8	8	9	5	6	6	5	6	0
4	8	9	3	2	0	1	1	8	8	1	8	2	4	6	5	7	8	7	8	0
1	0	6	3	9	2	5	4	7	4	5	9	6	5	5	0	2	8	4	7	9
6	8	3	8	0	9	7	0	2	6	0	9	3	9	1	6	0	0	9	0	4
6	4	0	4	8	8	0	0	6	0	2	6	4	2	1	8	2	0	8	1	1
1	8	6	6	6	3	2	9	2	6	1	4	6	8	0	4	2	6	5	3	2
7	1	5	4	2	8	8	2	2	3	4	8	4	5	1	4	3	0	9	1	3
0	7	6	3	4	0	1	0	5	4	(2)	3	7	8	9	6	3	8	7	2	0
6	7	7	0	9	7	8	7	3	4	4	3	1	2	1	4	7	4	9	7	9
8	3	3	9	7	5	0	4	9	1	1	3	6	1	5	3	8	6	8	1	2
9	7	8	6	0	6	0	9	5	8	7	1	4	0	1	6	7	4	9	4	8
7	1	9	3	9	7	0	8	6	0	0	9	8	0	9	3	3	6	5	7	2
4	5	9	6	8	7	4	4	4	1	0	1	3	4	4	7	5	7	2	3	(0)
8	7	1	7	3	5	4	8	5	3	8	3	2	6	0	5	0	7	4	5	3
2	3	7	3	6	8	3	7	8	3	9	9	8	1	8	4	9	3	9	1	4
2	0	4	6	2	9	7	9	0	6	8	1	1	1	0	2	8	1	4	1	7
1	9	4	6	5	1	9	3	7	7	5	5	8	4	3	5	4	6	7	0	8
9	0	4	5	2	2	4	4	0	5	5	9	9	2	6	5	5	3	5	2	2
1	7	3	2	5	6	8	2	0	6	1	3	9	9	8	2	6	2	2	6	6
1	7	4	2	9	5	8	3	4	9	7	9	3	5	9	1	9	1	0	3	7
0	1	3	1	6	9	2	9	6	5	9	3	0	3	3	8	0	8	1	7	9
1	6	5	9	3	1	1	4	7	5	5	1	6	0	8	3	4	6	0	3	9
(3)	6	7	7	7	5	3	5	0	5	7	2	3	1	4	1	8	2	8	3	3

Weighted Bresenham Algorithm

- Randomize path:

0	1	8	4	2	3	7	6	9	4	4	6	3	0	4	1	8	3	5	2	
5	8	3	3	8	9	3	3	7	9	5	4	4	8	4	1	1	4	3	6	3
2	0	0	9	8	7	2	4	5	1	4	1	7	2	6	7	3	6	5	0	6
4	1	6	6	7	0	3	9	2	5	9	2	7	7	4	6	6	5	1	6	2
7	3	5	0	4	1	3	0	4	2	5	9	9	4	5	6	0	2	9	3	6
0	8	9	8	9	8	5	1	1	6	2	7	6	4	4	0	6	2	8	5	5
7	6	5	9	1	2	3	5	3	2	4	2	5	0	7	2	0	8	6	5	5
4	5	1	5	4	7	2	6	3	8	3	3	9	5	1	1	3	2	6	3	3
9	7	1	9	0	9	6	6	9	5	6	5	8	8	9	5	6	6	5	6	0
4	8	9	3	2	0	1	1	8	8	1	8	2	4	6	5	7	8	7	8	0
(1)	0	6	3	9	2	5	4	7	4	5	9	6	5	5	0	2	8	4	7	9
6	8	3	8	0	9	7	0	2	6	0	9	3	9	1	6	0	0	9	0	4
6	4	0	4	8	8	0	0	6	0	2	6	4	2	1	8	2	0	8	1	1
1	8	6	6	6	3	2	9	2	6	1	4	6	8	0	4	2	6	5	3	2
7	1	5	4	2	8	8	2	2	3	4	8	4	5	1	4	3	0	9	1	3
0	7	6	3	4	0	1	0	5	4	2	3	7	8	9	6	3	8	7	2	0
6	7	7	0	9	7	8	7	3	4	4	3	1	2	1	4	7	4	9	7	9
8	3	3	9	7	5	0	4	9	1	1	3	6	1	5	3	8	6	8	1	2
9	7	8	6	0	6	0	9	5	8	7	1	4	0	1	6	7	4	9	4	8
7	1	9	3	9	7	0	8	6	0	0	9	8	0	9	3	3	6	5	7	2
4	5	9	6	8	7	4	4	4	1	0	1	3	4	4	7	5	7	2	3	0
8	7	1	7	3	5	4	8	5	3	8	3	2	6	0	5	0	7	4	5	3
2	3	7	3	6	8	3	7	8	3	9	9	8	1	8	4	9	3	9	1	4
2	0	4	6	2	9	7	9	0	6	8	1	1	1	0	2	8	1	4	1	7
1	9	4	6	5	1	9	3	7	7	5	5	8	4	3	5	4	6	7	0	8
9	0	4	5	2	2	4	4	0	5	5	9	9	2	6	5	5	3	5	2	2
1	7	3	2	5	6	8	2	0	6	1	3	9	9	8	2	6	2	2	6	6
1	7	4	2	9	5	8	3	4	9	7	9	3	5	9	1	9	1	0	3	7
0	1	3	1	6	9	2	9	6	5	9	3	0	3	3	8	0	8	1	7	9
1	6	5	9	3	1	1	4	7	5	5	1	6	0	8	3	4	6	0	3	9
3	6	7	7	7	5	3	5	0	5	7	2	3	1	4	1	8	2	8	3	3

- Find quasi-optimal local path based on Lagrangian position.
- Theorem 1: The weighted Bresenham algorithm produces a finite path between any two points on a regular lattice. For a unit square lattice, at most $\lceil 1.82 x\rceil$ steps are needed to connect two points a distance x apart.

(a)

(b)
- Theorem 1: The weighted Bresenham algorithm produces a finite path between any two points on a regular lattice. For a unit square lattice, at most $\lceil 1.82 x\rceil$ steps are needed to connect two points a distance x apart.

(a)

(b)
- Parcel chains: select parcels with minimal weight.
- Theorem 1: The weighted Bresenham algorithm produces a finite path between any two points on a regular lattice. For a unit square lattice, at most $\lceil 1.82 x\rceil$ steps are needed to connect two points a distance x apart.

(a)

(b)
- Parcel chains: select parcels with minimal weight.
- Multiple holes in same shell: minimize the error.

Approximate Cost/Chain

- Searching for hole:

$$
\sum_{k=1}^{\infty} 8 k\left(1-\frac{1}{e}\right)^{4 k(k-1)} \approx 8.4
$$

Approximate Cost/Chain

- Searching for hole:

$$
\sum_{k=1}^{\infty} 8 k\left(1-\frac{1}{e}\right)^{4 k(k-1)} \approx 8.4
$$

- Identifying the path:

$$
1.82 \sum_{k=1}^{\infty} k \sqrt{2}\left(1-\frac{1}{e}\right)^{4 k(k-1)}\left(\frac{1}{e}\right) \frac{8 k}{1-\left(1-\frac{1}{e}\right)^{8 k}} \approx 8.6 .
$$

Approximate Cost/Chain

- Searching for hole:

$$
\sum_{k=1}^{\infty} 8 k\left(1-\frac{1}{e}\right)^{4 k(k-1)} \approx 8.4
$$

- Identifying the path:

$$
1.82 \sum_{k=1}^{\infty} k \sqrt{2}\left(1-\frac{1}{e}\right)^{4 k(k-1)}\left(\frac{1}{e}\right) \frac{8 k}{1-\left(1-\frac{1}{e}\right)^{8 k}} \approx 8.6 .
$$

- Pushing a chain of parcels:

$$
1.82 \sum_{k=1}^{\infty} k \sqrt{2}\left(1-\frac{1}{e}\right)^{4 k(k-1)} \approx 2.7
$$

Diffusion

$$
\frac{\partial \boldsymbol{U}}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U}=\boldsymbol{D} \nabla^{2} \boldsymbol{U} .
$$

- Use operator splitting to include diffusion:

$$
\boldsymbol{U}(t)=\boldsymbol{U}\left(t_{1}, t_{2}\right)
$$

$$
\frac{\partial \boldsymbol{U}}{\partial t_{1}}=-\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U}, \quad \frac{\partial \boldsymbol{U}}{\partial t_{2}}=\boldsymbol{D} \nabla^{2} \boldsymbol{U}
$$

$$
\Rightarrow \Delta \boldsymbol{U}=-\boldsymbol{v} \cdot \nabla \boldsymbol{U} \Delta t_{1}+\boldsymbol{D} \nabla^{2} \boldsymbol{U} \Delta t_{2}
$$

Diffusion

$$
\frac{\partial \boldsymbol{U}}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U}=\boldsymbol{D} \nabla^{2} \boldsymbol{U} .
$$

- Use operator splitting to include diffusion:

$$
\boldsymbol{U}(t)=\boldsymbol{U}\left(t_{1}, t_{2}\right)
$$

$$
\begin{gathered}
\frac{\partial \boldsymbol{U}}{\partial t_{1}}=-\boldsymbol{v} \cdot \nabla \boldsymbol{U}, \quad \frac{\partial \boldsymbol{U}}{\partial t_{2}}=\boldsymbol{D} \nabla^{2} \boldsymbol{U} \\
\Rightarrow \Delta \boldsymbol{U}=-\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} \Delta t_{1}+\boldsymbol{D} \nabla^{2} \boldsymbol{U} \Delta t_{2} .
\end{gathered}
$$

- Crank-Nicholson scheme solves for diffusive part:

$$
\frac{\boldsymbol{U}(t+\tau)-\boldsymbol{U}(t)}{\tau}=\boldsymbol{D} \frac{\nabla^{2} \boldsymbol{U}(t+\tau)+\nabla^{2} \boldsymbol{U}(t)}{2} .
$$

Diffusion

$$
\frac{\partial \boldsymbol{U}}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U}=\boldsymbol{D} \nabla^{2} \boldsymbol{U} .
$$

- Use operator splitting to include diffusion:

$$
\boldsymbol{U}(t)=\boldsymbol{U}\left(t_{1}, t_{2}\right)
$$

$$
\begin{aligned}
& \frac{\partial \boldsymbol{U}}{\partial t_{1}}=-\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U}, \quad \frac{\partial \boldsymbol{U}}{\partial t_{2}}=\boldsymbol{D} \nabla^{2} \boldsymbol{U} \\
& \Rightarrow \Delta \boldsymbol{U}=-\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} \Delta t_{1}+\boldsymbol{D} \nabla^{2} \boldsymbol{U} \Delta t_{2} .
\end{aligned}
$$

- Crank-Nicholson scheme solves for diffusive part:

$$
\frac{\boldsymbol{U}(t+\tau)-\boldsymbol{U}(t)}{\tau}=\boldsymbol{D} \frac{\nabla^{2} \boldsymbol{U}(t+\tau)+\nabla^{2} \boldsymbol{U}(t)}{2} .
$$

- In the advection equation $\partial \widetilde{\boldsymbol{U}} / \partial t=-\boldsymbol{v} \cdot \boldsymbol{\nabla} \widetilde{\boldsymbol{U}}$:
- Calculate $\widetilde{\boldsymbol{U}}$, interpolate to Eulerian grid.
- Finite difference:

$$
\frac{\boldsymbol{U}-\widetilde{\boldsymbol{U}}}{\tau}=\boldsymbol{D} \nabla^{2}\left(\frac{\boldsymbol{U}+\widetilde{\boldsymbol{U}}}{2}\right)
$$

- Calculate $\widetilde{\boldsymbol{U}}$, interpolate to Eulerian grid.
- Finite difference:

$$
\frac{\boldsymbol{U}-\widetilde{\boldsymbol{U}}}{\tau}=\boldsymbol{D} \nabla^{2}\left(\frac{\boldsymbol{U}+\widetilde{\boldsymbol{U}}}{2}\right)
$$

- Multigrid:

$$
- \text { Let } \mathcal{L}=\mathbf{1}+\frac{\tau}{2} \boldsymbol{D} \nabla^{2} \Rightarrow \mathcal{L}(-\tau) \boldsymbol{U}=\mathcal{L}(\tau) \widetilde{\boldsymbol{U}}
$$

- Calculate $\widetilde{\boldsymbol{U}}$, interpolate to Eulerian grid.
- Finite difference:

$$
\frac{\boldsymbol{U}-\tilde{\boldsymbol{U}}}{\tau}=\boldsymbol{D} \nabla^{2}\left(\frac{\boldsymbol{U}+\tilde{\boldsymbol{U}}}{2}\right)
$$

- Multigrid:
- Let $\mathcal{L}=\mathbf{1}+\frac{\tau}{2} \boldsymbol{D} \nabla^{2} \quad \Rightarrow \quad \mathcal{L}(-\tau) \boldsymbol{U}=\mathcal{L}(\tau) \widetilde{\boldsymbol{U}}$.
- Contribution of diffusion to the Lagrangian solution:
- Calculate $\boldsymbol{U}-\widetilde{\boldsymbol{U}}$.
- Project to Lagrangian frame.
- Add to parcel values.

Self-Advection

- Velocity is now a functional of \boldsymbol{U} determined by 2D vorticity equation:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \omega=\boldsymbol{D} \nabla^{2} \omega
$$

Self-Advection

- Velocity is now a functional of \boldsymbol{U} determined by 2D vorticity equation:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \omega=\boldsymbol{D} \nabla^{2} \omega
$$

- Use multigrid solver: compute stream function $\psi=\nabla^{-2} \omega$.

Self-Advection

- Velocity is now a functional of \boldsymbol{U} determined by 2D vorticity equation:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{v} \cdot \nabla \omega=\boldsymbol{D} \nabla^{2} \omega
$$

- Use multigrid solver: compute stream function $\psi=\nabla^{-2} \omega$.
- Calculate $\boldsymbol{v}=\hat{\boldsymbol{z}} \times \boldsymbol{\nabla} \psi$ from ψ.

Self-Advection

- Velocity is now a functional of \boldsymbol{U} determined by 2D vorticity equation:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{v} \cdot \nabla \omega=\boldsymbol{D} \nabla^{2} \omega
$$

- Use multigrid solver: compute stream function $\psi=\nabla^{-2} \omega$.
- Calculate $\boldsymbol{v}=\hat{\boldsymbol{z}} \times \boldsymbol{\nabla} \psi$ from ψ.
- Problem: calculating \boldsymbol{v} from rearranged $\omega \Rightarrow$ pushing errors accumulate:
- Propagation of error via advection term $\boldsymbol{v} \cdot \boldsymbol{\nabla} \omega$.
- Introduces large gradients in ω and $C \Rightarrow$ excessive diffusion.

Self-Advection

- Velocity is now a functional of \boldsymbol{U} determined by 2D vorticity equation:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \omega=\boldsymbol{D} \nabla^{2} \omega
$$

- Use multigrid solver: compute stream function $\psi=\nabla^{-2} \omega$.
- Calculate $\boldsymbol{v}=\hat{\boldsymbol{z}} \times \boldsymbol{\nabla} \psi$ from ψ.
- Problem: calculating \boldsymbol{v} from rearranged $\omega \Rightarrow$ pushing errors accumulate:
- Propagation of error via advection term $\boldsymbol{v} \cdot \boldsymbol{\nabla} \omega$.
- Introduces large gradients in ω and $C \Rightarrow$ excessive diffusion.
- Solution: use interpolated rather than rearranged values: $\boldsymbol{v}_{I} \cdot \nabla \omega, \nu \nabla^{2} \omega_{I}$, and $D \nabla^{2} C_{I}$.

Self-Advection

- Velocity is now a functional of \boldsymbol{U} determined by 2D vorticity equation:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{v} \cdot \nabla \omega=\boldsymbol{D} \nabla^{2} \omega
$$

- Use multigrid solver: compute stream function $\psi=\nabla^{-2} \omega$.
- Calculate $\boldsymbol{v}=\hat{\boldsymbol{z}} \times \boldsymbol{\nabla} \psi$ from ψ.
- Problem: calculating \boldsymbol{v} from rearranged $\omega \Rightarrow$ pushing errors accumulate:
- Propagation of error via advection term $\boldsymbol{v} \cdot \boldsymbol{\nabla} \omega$.
- Introduces large gradients in ω and $C \Rightarrow$ excessive diffusion.
- Solution: use interpolated rather than rearranged values: $\boldsymbol{v}_{I} \cdot \nabla \omega, \nu \nabla^{2} \omega_{I}$, and $D \nabla^{2} C_{I}$.
- This interpolation does not destroy the conservation of Casimirs: velocity need not be a rearrangement.

Summary

Simulations: 2 Test Cases

- Semi-Lagrangian solution vs. Lagrangian rearrangement:

Simulations: 2 Test Cases

- Semi-Lagrangian solution vs. Lagrangian rearrangement:
- Grid scale $h=1.95 \times 10^{-3}$, time step $\tau=1.95 \times 10^{-2}$.

Simulations: 2 Test Cases

- Semi-Lagrangian solution vs. Lagrangian rearrangement:
- Grid scale $h=1.95 \times 10^{-3}$, time step $\tau=1.95 \times 10^{-2}$.
- Initial condition:

$$
v_{x}=\sin (2 \pi x) \cos (2 \pi y), \quad v_{y}=-\cos (2 \pi x) \sin (2 \pi y)
$$

- Self-advection with no diffusion:

0 (black) and 1 (white) initial condition for C.

- Self-advection with diffusion:

$$
D=\nu=2 \times 10^{-6}
$$

Semi-Lagrangian vs. Lagrangian Rearrangement After 750 Time Steps $(\boldsymbol{D}=\mathbf{0})$

Semi-Lagrangian vs. Lagrangian Rearrangement After 100 Time Steps $\left(D=\nu=2 \times 10^{-6}\right)$.

Semi-Lagrangian vs. Lagrangian Rearrangement After 500 Time Steps ($D=\nu=2 \times 10^{-6}$).

Semi-Lagrangian vs. Lagrangian Rearrangement After 1000 Time Steps $\left(D=\nu=2 \times 10^{-6}\right)$.

Energy Decay Rate

$$
\frac{\partial C}{\partial t}+\boldsymbol{v} \cdot \nabla C=D \nabla^{2} C .
$$

- Evolution of concentration energy:

$$
\frac{1}{2} \frac{\partial}{\partial t} \int C^{2} d \boldsymbol{x}=-D \int|\nabla C|^{2} d \boldsymbol{x}
$$

Energy Decay Rate

$$
\frac{\partial C}{\partial t}+\boldsymbol{v} \cdot \nabla C=D \nabla^{2} C .
$$

- Evolution of concentration energy:

$$
\frac{1}{2} \frac{\partial}{\partial t} \int C^{2} d \boldsymbol{x}=-D \int|\nabla C|^{2} d \boldsymbol{x}
$$

- Compare

$$
\frac{\frac{\partial}{\partial t} \int C^{2} d \boldsymbol{x}}{\int C^{2} d \boldsymbol{x}} \text { and } \frac{-2 D \int|\nabla C|^{2} d \boldsymbol{x}}{\int C^{2} d \boldsymbol{x}}
$$

Energy Evolution $(\nu=D=0)$

Energy Decay Rate $\left(D=\nu=2 \times 10^{-6}\right)$.

$$
\begin{gathered}
-\frac{\frac{d}{d t} \int C_{I}^{2} d x}{\int C_{I}^{2} d x} \\
----\frac{-2 \nu \int\left|\nabla C_{I}\right|^{2} d x}{\int C_{I}^{2} d x} \\
---\frac{\frac{d}{d t} \int C_{R}^{2} d x}{\int C_{R}^{2} d x} \\
-2 \nu\left|\nabla C_{R}\right|^{2} d x \\
\int C_{R}^{2} d x
\end{gathered}
$$

Conclusions

- New numerical method Lagrangian rearrangement respects Casimir invariants.

Conclusions

- New numerical method Lagrangian rearrangement respects Casimir invariants.
- Based on a weighted Bresenham Lagrangian-to-Eulerian projection algorithm.

Conclusions

- New numerical method Lagrangian rearrangement respects Casimir invariants.
- Based on a weighted Bresenham Lagrangian-to-Eulerian projection algorithm.
- Fully Lagrangian:
- Projected solution is used only for viewing;
- Error does not propagate to future time steps.

Conclusions

- New numerical method Lagrangian rearrangement respects Casimir invariants.
- Based on a weighted Bresenham Lagrangian-to-Eulerian projection algorithm.
- Fully Lagrangian:
- Projected solution is used only for viewing;
- Error does not propagate to future time steps.
- Can combine with:
- Diffusion
(\Rightarrow more consistent energy behaviour than interpolation);
- Self-advected flow.

Conclusions

- New numerical method Lagrangian rearrangement respects Casimir invariants.
- Based on a weighted Bresenham Lagrangian-to-Eulerian projection algorithm.
- Fully Lagrangian:
- Projected solution is used only for viewing;
- Error does not propagate to future time steps.
- Can combine with:
- Diffusion
(\Rightarrow more consistent energy behaviour than interpolation);
- Self-advected flow.
- Complexity $\mathcal{O}(n)$.

Asymptote: 2D \& 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince
http://asymptote.sf.net
(freely available under the GNU public license)

Asymptote Lifts TeX to 3D

$$
\int_{-\infty}^{+\infty} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}}
$$

Acknowledgements: Orest Shardt (U. Alberta)

3D Graphs

