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∂U

∂t
+ v·∇U = D∇2U .

•U = (ω,C) represents

– Scalar vorticity ω = ẑ·∇×v,

– Concentration field C.– Concentration field C.

•The velocity v is incompressible: ∇·v = 0.

•Diffusion matrix D = diag(ν,D):

ν = fluid viscosity,

D = diffusion constant for concentration field.
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Eulerian vs. Lagrangian

•Passive advection without diffusion:

∂C

∂t
+ v·∇C = 0.

∂C

∂t
+ v·∇C = 0.

•Finite difference:

Cn+1
i − Cn

i

τ
= −vC

n
i+1 − Cn

i−1

2h
.

•Problems with Eulerian methods:

– Instability;

– Upwinding and Lax schemes: numerical diffusion.
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Method of Characteristics

• Solution to passive advection problem without diffusion:

C(x, t) = C (ξ0(x, t), 0) .C(x, t) = C (ξ0(x, t), 0) .

• Introduce Lagrangian position

ξ(t) = ξ0 +

∫ t

0

v(ξ(τ ), τ ) dτ,

where ξ(t) = x and ξ0 = ξ0(x, t) is the initial parcel position.where ξ(t) = x and ξ0 = ξ0(x, t) is the initial parcel position.

•Problem of viewing solution on grid: new Lagrangian positions
may not lie on grid points.

• Solutions:

– interpolate (semi-Lagrangian): numerical diffusion;

– Lagrangian rearrangement: project advected parcel centroids
onto rearrangment manifold.
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Casimir Invariants

•Conservation equation:

dC(x(t), t)

dt
=
dx

dt
·∇C +
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where v = dx/dt.
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Casimir Invariants

•Conservation equation:

dC(x(t), t)

dt
=
dx

dt
·∇C +

∂C

∂t
= v·∇C +

∂C

∂t
= 0,

where v = dx/dt.where v = dx/dt.

•For any C1 function f of concentration (or vorticity) field:

d

dt

∫
f (C) dx=

∫
f ′(C)

∂C

∂t
dx = −

∫
f ′(C)v·∇C dx

=−
∫

v·∇f (C) dx =

∫
f (C)∇·v dx = 0.

•Enforce a discrete analog of this exact infinitesimal property:

d

dt

∑

i,j

f (Ci,j) = 0.
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Parcel Centroid

•Advection map is continuous and area-preserving ⇒
rearrangement into distinct nonoverlapping parcels.
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Parcel Centroid

•Advection map is continuous and area-preserving ⇒
rearrangement into distinct nonoverlapping parcels.

•Advection map is continuous and area-preserving ⇒
rearrangement into distinct nonoverlapping parcels.

•Represent solution as finite union of piecewise constant
functions.

•Represent solution as finite union of piecewise constant
functions.

•The resulting discrete constraint

d

dt

∑

i,j

f (Ci,j) = 0

is equivalent to imposing parcel rearrangement.is equivalent to imposing parcel rearrangement.

•Use RK4 to advect the parcel centroids.•Use RK4 to advect the parcel centroids.

•Under this linear map, parcel centroid maps to advected parcel
centroid.

•For passive advection without diffusion: only evolve parcel
centroids (no need to actually evolve the quadrilateral vertices).
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Lagrangian→Eulerian Projection

•Advection in Lagrangian frame ⇒ piles and holes.
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Lagrangian→Eulerian Projection

•Advection in Lagrangian frame ⇒ piles and holes.•Advection in Lagrangian frame ⇒ piles and holes.

•New state must be a rearrangement of initial state to conserve
Casimir invariants.

•How to map excess parcels (*) to holes?
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Lagrangian Rearrangement
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• Start with cells with most parcels.
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Lagrangian Rearrangement
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Lagrangian Rearrangement
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• Start with cells with most parcels.• Start with cells with most parcels.

•Find nearest hole (search in rectangular shells about pile).

•Discretize path from pile to hole.
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Lagrangian Rearrangement
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• Start with cells with most parcels.• Start with cells with most parcels.

•Find nearest hole (search in rectangular shells about pile).•Find nearest hole (search in rectangular shells about pile).

•Discretize path from pile to hole.

•Push chain of parcels toward hole.
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Searching kth Rectangular Shell

A . . .. . . . . .. . .

k

k − 1
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Bresenham Algorithm

•Discretize path from pile to hole:

– Reduce to case 0 ≤ m ≤ 1.

– Choose (x + 1, y) or (x + 1, y + 1).

y
x x + 1

y + 1

ǫ

m

ǫ + m

A

B

y + ǫ

y + ǫ + m
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Bresenham Algorithm

•Discretize path from pile to hole:

– Reduce to case 0 ≤ m ≤ 1.

– Choose (x + 1, y) or (x + 1, y + 1).

y
x x + 1

y + 1

ǫ

m

ǫ + m

A

B

y + ǫ

y + ǫ + m

•Problem: multiple pushing of parcels ⇒ visible streaks.
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Weighted Bresenham Algorithm

•Randomize path:
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Weighted Bresenham Algorithm

•Randomize path:
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•Find quasi-optimal local path based on Lagrangian position. 12



•Theorem 1: The weighted Bresenham algorithm produces

a finite path between any two points on a regular lattice.

For a unit square lattice, at most ⌈1.82x⌉ steps are needed

to connect two points a distance x apart.
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(b)
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•Parcel chains: select parcels with minimal weight.
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•Theorem 1: The weighted Bresenham algorithm produces

a finite path between any two points on a regular lattice.

For a unit square lattice, at most ⌈1.82x⌉ steps are needed

to connect two points a distance x apart.
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SE

(a)

N NE

E
A
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B2

(b)
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B1 B2

B3

N NENW

E

SE

(a)

N NE

E
A

B1

B2

(b)

•Parcel chains: select parcels with minimal weight.

•Multiple holes in same shell: minimize the error.
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Approximate Cost/Chain

• Searching for hole:

∞∑

k=1

8k

(
1 − 1

e

)4k(k−1)

≈ 8.4.
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k=1

k
√
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(
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)4k(k−1)(
1
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)
8k

1 −
(
1 − 1

e

)8k ≈ 8.6.

•Pushing a chain of parcels:

1.82

∞∑

k=1

k
√

2

(
1 − 1

e

)4k(k−1)

≈ 2.7.
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Diffusion

∂U

∂t
+ v·∇U = D∇2U .

•Use operator splitting to include diffusion:

U (t) = U (t1, t2)

∂U

∂t1
= −v·∇U ,

∂U

∂t2
= D∇2U

⇒ ∆U = −v·∇U∆t1 + D∇2U∆t2.
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U (t) = U (t1, t2)

∂U

∂t1
= −v·∇U ,

∂U

∂t2
= D∇2U

⇒ ∆U = −v·∇U∆t1 + D∇2U∆t2.⇒ ∆U = −v·∇U∆t1 + D∇2U∆t2.

•Crank–Nicholson scheme solves for diffusive part:

U (t + τ ) − U (t)

τ
= D

∇2U (t + τ ) + ∇2U (t)

2
.

• In the advection equation ∂Ũ/∂t = −v·∇Ũ :
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– Calculate Ũ , interpolate to Eulerian grid.

•Finite difference:

U − Ũ

τ
= D∇2

(
U + Ũ

2

)
.
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– Calculate Ũ , interpolate to Eulerian grid.

•Finite difference:

U − Ũ

τ
= D∇2

(
U + Ũ

2

)
.

•Multigrid:

– Let L = 1 +
τ

2
D∇2 ⇒ L(−τ )U = L(τ )Ũ .
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– Calculate Ũ , interpolate to Eulerian grid.

•Finite difference:

U − Ũ

τ
= D∇2

(
U + Ũ

2

)
.

U − Ũ

τ
= D∇2

(
U + Ũ

2

)
.

•Multigrid:

– Let L = 1 +
τ

2
D∇2 ⇒ L(−τ )U = L(τ )Ũ .

•Contribution of diffusion to the Lagrangian solution:

– Calculate U − Ũ .

– Project to Lagrangian frame.

– Add to parcel values.
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Self-Advection

•Velocity is now a functional of U determined by 2D vorticity
equation:

∂ω

∂t
+ v·∇ω = D∇2ω.
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equation:

∂ω
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∂ω

∂t
+ v·∇ω = D∇2ω.

•Use multigrid solver: compute stream function ψ = ∇−2ω.•Use multigrid solver: compute stream function ψ = ∇−2ω.

•Calculate v = ẑ×∇ψ from ψ.•Calculate v = ẑ×∇ψ from ψ.

•Problem: calculating v from rearranged ω ⇒ pushing errors
accumulate:

– Propagation of error via advection term v·∇ω.

– Introduces large gradients in ω and C ⇒ excessive diffusion.– Introduces large gradients in ω and C ⇒ excessive diffusion.

• Solution: use interpolated rather than rearranged values:
vI·∇ω, ν∇2ωI , and D∇2CI .

•This interpolation does not destroy the conservation of
Casimirs: velocity need not be a rearrangement.
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Summary

initial condition U0 Lagrangian state U(t)

Lagrangian prediction U(t + τ)

diffused parcels

rearranged Ũ

interpolated ŨL−1(−τ)L(τ)ŨL−1(−τ)L(τ)Ũ

Lagrangian rearranged
solution UR

D∇2Ũ

semi-Lagrangian
solution UI

ψ = ∇−2ω

v = ẑ×∇ψ

initialize

advect: Runge-Kutta

Lagrange → Euler

Lagrange → Euler

diffuse: multigrid
Crank–Nicholson

diffuse: multigrid
Crank–Nicholson

output

subtract

Euler → Lagrange
output

t+ τ → t

self-advection

multigrid
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Simulations: 2 Test Cases

• Semi-Lagrangian solution vs. Lagrangian rearrangement:
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Simulations: 2 Test Cases

• Semi-Lagrangian solution vs. Lagrangian rearrangement:• Semi-Lagrangian solution vs. Lagrangian rearrangement:

•Grid scale h = 1.95 × 10−3, time step τ = 1.95 × 10−2.

• Initial condition:

vx = sin(2πx) cos(2πy), vy = − cos(2πx) sin(2πy).

– Self-advection with no diffusion:

0 (black) and 1 (white) initial condition for C.

– Self-advection with diffusion:

D = ν = 2 × 10−6.
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Semi-Lagrangian vs. Lagrangian Rearrangement
After 750 Time Steps (D = 0)
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Semi-Lagrangian vs. Lagrangian Rearrangement
After 100 Time Steps (D = ν = 2 × 10−6).
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Semi-Lagrangian vs. Lagrangian Rearrangement
After 500 Time Steps (D = ν = 2 × 10−6).
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Semi-Lagrangian vs. Lagrangian Rearrangement
After 1000 Time Steps (D = ν = 2 × 10−6).
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Energy Decay Rate

∂C

∂t
+ v·∇C = D∇2C.

•Evolution of concentration energy:

1

2

∂

∂t

∫
C2 dx = −D

∫
|∇C|2 dx.
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Energy Decay Rate

∂C

∂t
+ v·∇C = D∇2C.

•Evolution of concentration energy:

1

2

∂

∂t

∫
C2 dx = −D

∫
|∇C|2 dx.

•Compare

∂

∂t

∫
C2 dx

∫
C2 dx

and

−2D

∫
|∇C|2 dx

∫
C2 dx

.
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Energy Evolution (ν = D = 0)
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Energy Decay Rate (D = ν = 2 × 10−6).
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Conclusions

•New numerical method Lagrangian rearrangement respects
Casimir invariants.
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•New numerical method Lagrangian rearrangement respects
Casimir invariants.

•Based on a weighted Bresenham Lagrangian-to-Eulerian
projection algorithm.

•Based on a weighted Bresenham Lagrangian-to-Eulerian
projection algorithm.

•Fully Lagrangian:

– Projected solution is used only for viewing;

– Error does not propagate to future time steps.– Error does not propagate to future time steps.

•Can combine with:

– Diffusion

(⇒ more consistent energy behaviour than interpolation);

– Self-advected flow.

•Complexity O(n).
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Asymptote Lifts TeX to 3D
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3D Graphs
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