A Fully Lagrangian Advection Scheme M. Ali Yassaei, John C. Bowman, and Anup Basu University of Alberta Dec 6, 2008

www.math.ualberta.ca/~bowman/talks

1

Outline

- 2D Advection–Diffusion
- Passive Advection
- Casimir Invariants
- Lagrangian Rearrangement
 - Weighted Bresenham Algorithm
- Average Complexity
- Operator Splitting
 - Diffusion
 - Self-advection
- Energy Decay Rate
- Conclusions

• 2D advection-diffusion:

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} = \boldsymbol{D} \nabla^2 \boldsymbol{U}.$$

• 2D advection–diffusion:

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} = \boldsymbol{D} \nabla^2 \boldsymbol{U}.$$

• $\boldsymbol{U} = (\omega, C)$ represents

- Scalar vorticity $\boldsymbol{\omega} = \hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{v}$,
- Concentration field C.

• 2D advection–diffusion:

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} = \boldsymbol{D} \nabla^2 \boldsymbol{U}.$$

- $\boldsymbol{U} = (\omega, C)$ represents
 - Scalar vorticity $\boldsymbol{\omega} = \hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{v}$,
 - Concentration field C.
- The velocity \boldsymbol{v} is incompressible: $\boldsymbol{\nabla} \cdot \boldsymbol{v} = 0$.

• 2D advection–diffusion:

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} = \boldsymbol{D} \nabla^2 \boldsymbol{U}.$$

- $\boldsymbol{U} = (\omega, C)$ represents
 - Scalar vorticity $\boldsymbol{\omega} = \hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{v}$,
 - Concentration field C.
- The velocity \boldsymbol{v} is incompressible: $\boldsymbol{\nabla} \cdot \boldsymbol{v} = 0$.
- Diffusion matrix $\boldsymbol{D} = \operatorname{diag}(\nu, D)$:
 - $\nu =$ fluid viscosity,

D = diffusion constant for concentration field.

Eulerian vs. Lagrangian

• Passive advection without diffusion:

$$\frac{\partial C}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} C = 0.$$

Eulerian vs. Lagrangian

• Passive advection without diffusion:

$$\frac{\partial C}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} C = 0.$$

• Finite difference:

$$\frac{C_i^{n+1} - C_i^n}{\tau} = -v \frac{C_{i+1}^n - C_{i-1}^n}{2h}.$$

Eulerian vs. Lagrangian

• Passive advection without diffusion:

$$\frac{\partial C}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} C = 0.$$

• Finite difference:

$$\frac{C_i^{n+1} - C_i^n}{\tau} = -v \frac{C_{i+1}^n - C_{i-1}^n}{2h}.$$

- Problems with Eulerian methods:
 - Instability;
 - Upwinding and Lax schemes: numerical diffusion.

• Solution to passive advection problem without diffusion:

 $C(\boldsymbol{x},t) = C\left(\boldsymbol{\xi}_0(\boldsymbol{x},t),0\right).$

• Solution to passive advection problem without diffusion:

$$C(\boldsymbol{x},t) = C(\boldsymbol{\xi}_0(\boldsymbol{x},t),0).$$

• Introduce Lagrangian position

$$\boldsymbol{\xi}(t) = \boldsymbol{\xi}_0 + \int_0^t \boldsymbol{v}(\boldsymbol{\xi}(\tau), \tau) \, d\tau,$$

where $\boldsymbol{\xi}(t) = \boldsymbol{x}$ and $\boldsymbol{\xi}_0 = \boldsymbol{\xi}_0(\boldsymbol{x}, t)$ is the initial parcel position.

• Solution to passive advection problem without diffusion:

$$C(\boldsymbol{x},t) = C(\boldsymbol{\xi}_0(\boldsymbol{x},t),0).$$

• Introduce Lagrangian position

$$\boldsymbol{\xi}(t) = \boldsymbol{\xi}_0 + \int_0^t \boldsymbol{v}(\boldsymbol{\xi}(\tau), \tau) \, d\tau,$$

where $\boldsymbol{\xi}(t) = \boldsymbol{x}$ and $\boldsymbol{\xi}_0 = \boldsymbol{\xi}_0(\boldsymbol{x}, t)$ is the initial parcel position.

• Problem of viewing solution on grid: new Lagrangian positions may not lie on grid points.

• Solution to passive advection problem without diffusion:

$$C(\boldsymbol{x},t) = C(\boldsymbol{\xi}_0(\boldsymbol{x},t),0).$$

• Introduce Lagrangian position

$$\boldsymbol{\xi}(t) = \boldsymbol{\xi}_0 + \int_0^t \boldsymbol{v}(\boldsymbol{\xi}(\tau), \tau) \, d\tau,$$

where $\boldsymbol{\xi}(t) = \boldsymbol{x}$ and $\boldsymbol{\xi}_0 = \boldsymbol{\xi}_0(\boldsymbol{x}, t)$ is the initial parcel position.

- Problem of viewing solution on grid: new Lagrangian positions may not lie on grid points.
- Solutions:
 - interpolate (semi-Lagrangian): numerical diffusion;

– Lagrangian rearrangement: project advected parcel centroids onto rearrangement manifold.

Casimir Invariants

• Conservation equation:

$$\frac{dC(\boldsymbol{x}(t),t)}{dt} = \frac{d\boldsymbol{x}}{dt} \cdot \boldsymbol{\nabla}C + \frac{\partial C}{\partial t} = \boldsymbol{v} \cdot \boldsymbol{\nabla}C + \frac{\partial C}{\partial t} = 0,$$

where $\boldsymbol{v} = d\boldsymbol{x}/dt$.

Casimir Invariants

• Conservation equation:

$$\frac{dC(\boldsymbol{x}(t),t)}{dt} = \frac{d\boldsymbol{x}}{dt} \cdot \boldsymbol{\nabla}C + \frac{\partial C}{\partial t} = \boldsymbol{v} \cdot \boldsymbol{\nabla}C + \frac{\partial C}{\partial t} = 0,$$

where $\boldsymbol{v} = d\boldsymbol{x}/dt$.

• For any C^1 function f of concentration (or vorticity) field:

$$\frac{d}{dt} \int f(C) \, d\boldsymbol{x} = \int f'(C) \frac{\partial C}{\partial t} \, d\boldsymbol{x} = -\int f'(C) \boldsymbol{v} \cdot \boldsymbol{\nabla} C \, d\boldsymbol{x}$$
$$= -\int \boldsymbol{v} \cdot \boldsymbol{\nabla} f(C) \, d\boldsymbol{x} = \int f(C) \boldsymbol{\nabla} \cdot \boldsymbol{v} \, d\boldsymbol{x} = 0.$$

Casimir Invariants

• Conservation equation:

$$\frac{dC(\boldsymbol{x}(t),t)}{dt} = \frac{d\boldsymbol{x}}{dt} \cdot \boldsymbol{\nabla}C + \frac{\partial C}{\partial t} = \boldsymbol{v} \cdot \boldsymbol{\nabla}C + \frac{\partial C}{\partial t} = 0,$$

where $\boldsymbol{v} = d\boldsymbol{x}/dt$.

• For any C^1 function f of concentration (or vorticity) field:

$$\frac{d}{dt} \int f(C) \, d\boldsymbol{x} = \int f'(C) \frac{\partial C}{\partial t} \, d\boldsymbol{x} = -\int f'(C) \boldsymbol{v} \cdot \boldsymbol{\nabla} C \, d\boldsymbol{x}$$
$$= -\int \boldsymbol{v} \cdot \boldsymbol{\nabla} f(C) \, d\boldsymbol{x} = \int f(C) \boldsymbol{\nabla} \cdot \boldsymbol{v} \, d\boldsymbol{x} = 0.$$

• Enforce a discrete analog of this exact infinitesimal property:

$$\frac{d}{dt}\sum_{i,j}f(C_{i,j}) = 0.$$

• Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.
- The resulting discrete constraint

$$\frac{d}{dt}\sum_{i,j}f(C_{i,j}) = 0$$

is equivalent to imposing parcel rearrangement.

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.
- The resulting discrete constraint

$$\frac{d}{dt}\sum_{i,j}f(C_{i,j}) = 0$$

is equivalent to imposing parcel rearrangement.

• Use RK4 to advect the parcel centroids.

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.
- The resulting discrete constraint

$$\frac{d}{dt}\sum_{i,j}f(C_{i,j}) = 0$$

is equivalent to imposing parcel rearrangement.

- Use RK4 to advect the parcel centroids.
- Under this linear map, parcel centroid maps to advected parcel centroid.

- Advection map is continuous and area-preserving \Rightarrow rearrangement into distinct nonoverlapping parcels.
- Represent solution as finite union of piecewise constant functions.
- The resulting discrete constraint

$$\frac{d}{dt}\sum_{i,j}f(C_{i,j}) = 0$$

is equivalent to imposing parcel rearrangement.

- Use RK4 to advect the parcel centroids.
- Under this linear map, parcel centroid maps to advected parcel centroid.
- For passive advection without diffusion: only evolve parcel centroids (no need to actually evolve the quadrilateral vertices).

$Lagrangian \rightarrow Eulerian Projection$

• Advection in Lagrangian frame \Rightarrow piles and holes.

$Lagrangian \rightarrow Eulerian Projection$

- Advection in Lagrangian frame \Rightarrow piles and holes.
- New state must be a rearrangement of initial state to conserve Casimir invariants.

$Lagrangian \rightarrow Eulerian Projection$

- Advection in Lagrangian frame \Rightarrow piles and holes.
- New state must be a rearrangement of initial state to conserve Casimir invariants.
- How to map excess parcels (*) to holes?

• Start with cells with most parcels.

- Start with cells with most parcels.
- Find nearest hole (search in rectangular shells about pile).

- Start with cells with most parcels.
- Find nearest hole (search in rectangular shells about pile).
- Discretize path from pile to hole.

- Start with cells with most parcels.
- Find nearest hole (search in rectangular shells about pile).
- Discretize path from pile to hole.
- Push chain of parcels toward hole.

Searching kth Rectangular Shell

Bresenham Algorithm

• Discretize path from pile to hole:

– Reduce to case $0 \le m \le 1$.

- Choose (x + 1, y) or (x + 1, y + 1).

Bresenham Algorithm

• Discretize path from pile to hole:

– Reduce to case $0 \le m \le 1$.

- Choose (x + 1, y) or (x + 1, y + 1).

• Problem: multiple pushing of parcels \Rightarrow visible streaks.

Weighted Bresenham Algorithm

• Randomize path:

0	1	8	4	2	3	7	6	9	4	4	6	3	0	4	1	8	3	5	2	4
5	8	3	3	8	9	3	3	7	9	5	4	4	8	4	1	1	4	3	6	3
2	0	0	9	8	7	2	4	5	1	4	1	7	2	6	7	3	6	5	0	6
4	1	6	6	7	0	3	9	2	5	9	2	7	7	4	6	6	5	1	6	2
7	3	5	0	4	1	3	0	4	2	5	9	9	4	5	6	0	2	9	3	6
0	8	9	8	9	8	5	1	1	6	2	7	6	4	4	0	6	2	8	5	5
7	6	5	9	1	2	3	5	3	2	4	2	5	0	7	2	0	8	6	5	5
4	5	1	5	4	7	2	6	3	8	3	3	9	5	1	1	3	2	6	3	3
9	7	1	9	0	9	6	6	9	5	6	5	8	8	9	5	6	6	5	6	0
4	8	9	3	2	0	1	1	8	8	1	8	2	4	6	5	7	8	7	8	0
1	0	6	3	9	2	5	4	7	4	5	9	6	5	5	0	2	8	4	7	9
6	8	3	8	0	9	7	0	2	6	0	9	3	9	1	6	0	0	9	0	4
6	4	0	4	8	8	0	0	6	0	2	6	4	2	1	8	2	0	8	1	1
1	8	6	6	6	3	2	9	2	6	1	4	6	8	0	4	2	6	5	3	2
7	1	5	4	2	8	8	2	2	3	4	8	4	5	1	4	3	0	9	1	3
0	7	6	3	4	0	1	0	5	4	2	3	7	8	9	6	3	8	7	2	0
6	7	7	0	9	7	8	7	3	4	4	3	1	2	1	4	7	4	9	7	9
8	3	3	9	7	5	0	4	9	1	1	3	6	1	5	3	8	6	8	1	2
9	7	8	6	0	6	0	9	5	8	7	1	4	0	1	6	7	4	9	4	8
7	1	9	3	9	7	0	8	6	0	0	9	8	0	9	3	3	6	5	7	2
4	5	9	6	8	7	4	4	4	1	0	1	3	4	4	7	5	7	2	3	0
8	7	1	7	3	5	4	8	5	3	8	3	2	6	0	5	0	7	4	5	3
2	3	7	3	6	8	3	7	8	3	9	9	8	1	8	4	9	3	9	1	4
2	0	4	6	2	9	7	9	0	6	8	1	1	1	0	2	8	1	4	1	7
1	9	4	6	5	1	9	3	7	7	5	5	8	4	3	5	4	6	7	0	8
9	0	4	5	2	2	4	4	0	5	5	9	9	2	6	5	5	3	5	2	2
1	7	3	2	5	6	8	2	0	6	1	3	9	9	8	2	6	2	2	6	6
1	7	4	2	9	5	8	3	4	9	7	9	3	5	9	1	9	1	0	3	7
0	1	3	1	6	9	2	9	6	5	9	3	0	3	3	8	0	8	1	7	9
1	6	5	9	3	1	1	4	7	5	5	1	6	0	8	3	4	6	0	3	9
3	6	7	7	7	5	3	5	0	5	7	2	3	1	4	1	8	2	8	3	3

Weighted Bresenham Algorithm

• Randomize path:

0	1	8	4	2	3	7	6	9	4	4	6	3	0	4	1	8	3	5	2	4
5	8	3	3	8	9	3	3	7	9	5	4	4	8	4	1	1	4	3	6	3
2	0	0	9	8	7	2	4	5	1	4	1	7	2	6	7	3	6	5	0	6
4	1	6	6	7	0	3	9	2	5	9	2	7	7	4	6	6	5	1	6	2
7	3	5	0	4	1	3	0	4	2	5	9	9	4	5	6	0	2	9	3	6
0	8	9	8	9	8	5	1	1	6	2	7	6	4	4	0	6	2	8	5	5
7	6	5	9	1	2	3	5	3	2	4	2	5	0	7	2	0	8	6	5	5
4	5	1	5	4	7	2	6	3	8	3	3	9	5	1	1	3	2	6	3	3
9	7	1	9	0	9	6	6	9	5	6	5	8	8	9	5	6	6	5	6	0
4	8	9	3	2	0	1	1	8	8	1	8	2	4	6	5	7	8	7	8	0
1	0	6	3	9	2	5	4	7	4	5	9	6	5	5	0	2	8	4	7	9
6	8	3	8	0	9	7	0	2	6	0	9	3	9	1	6	0	0	9	0	4
6	4	0	4	8	8	0	0	6	0	2	6	4	2	1	8	2	0	8	1	1
1	8	6	6	6	3	2	9	2	6	1	4	6	8	0	4	2	6	5	3	2
7	1	5	4	2	8	8	2	2	3	4	8	4	5	1	4	3	0	9	1	3
0	7	6	3	4	0	1	0	5	4	2	3	7	8	9	6	3	8	7	2	0
6	7	7	0	9	7	8	7	3	4	4	3	1	2	1	4	7	4	9	7	9
8	3	3	9	7	5	0	4	9	1	1	3	6	1	5	3	8	6	8	1	2
9	7	8	6	0	6	0	9	5	8	7	1	4	0	1	6	7	4	9	4	8
7	1	9	3	9	7	0	8	6	0	0	9	8	0	9	3	3	6	5	7	2
4	5	9	6	8	7	4	4	4	1	0	1	3	4	4	7	5	7	2	3	0
8	7	1	7	3	5	4	8	5	3	8	3	2	6	0	5	0	7	4	5	3
2	3	7	3	6	8	3	7	8	3	9	9	8	1	8	4	9	3	9	1	4
2	0	4	6	2	9	7	9	0	6	8	1	1	1	0	2	8	1	4	1	7
1	9	4	6	5	1	9	3	7	7	5	5	8	4	3	5	4	6	7	0	8
9	0	4	5	2	2	4	4	0	5	5	9	9	2	6	5	5	3	5	2	2
1	7	3	2	5	6	8	2	0	6	1	3	9	9	8	2	6	2	2	6	6
1	7	4	2	9	5	8	3	4	9	7	9	3	5	9	1	9	1	0	3	7
0	1	3	1	6	9	2	9	6	5	9	3	0	3	3	8	0	8	1	7	9
1	6	5	9	3	1	1	4	7	5	5	1	6	0	8	3	4	6	0	3	9
3	6	7	7	7	5	3	5	0	5	7	2	3	1	4	1	8	2	8	3	3

• Find quasi-optimal local path based on Lagrangian position.

• Theorem 1: The weighted Bresenham algorithm produces a finite path between any two points on a regular lattice. For a unit square lattice, at most $\lceil 1.82x \rceil$ steps are needed to connect two points a distance x apart.

• Theorem 1: The weighted Bresenham algorithm produces a finite path between any two points on a regular lattice. For a unit square lattice, at most [1.82x] steps are needed to connect two points a distance x apart.

• Parcel chains: select parcels with minimal weight.
• Theorem 1: The weighted Bresenham algorithm produces a finite path between any two points on a regular lattice. For a unit square lattice, at most [1.82x] steps are needed to connect two points a distance x apart.

- Parcel chains: select parcels with minimal weight.
- Multiple holes in same shell: minimize the error.

Approximate Cost/Chain

• Searching for hole:

$$\sum_{k=1}^{\infty} 8k \left(1 - \frac{1}{e}\right)^{4k(k-1)} \approx 8.4.$$

Approximate Cost/Chain

• Searching for hole:

$$\sum_{k=1}^{\infty} 8k \left(1 - \frac{1}{e}\right)^{4k(k-1)} \approx 8.4.$$

• Identifying the path:

$$1.82\sum_{k=1}^{\infty}k\sqrt{2}\left(1-\frac{1}{e}\right)^{4k(k-1)}\left(\frac{1}{e}\right)\frac{8k}{1-\left(1-\frac{1}{e}\right)^{8k}}\approx 8.6.$$

Approximate Cost/Chain

• Searching for hole:

$$\sum_{k=1}^{\infty} 8k \left(1 - \frac{1}{e}\right)^{4k(k-1)} \approx 8.4.$$

• Identifying the path:

$$1.82\sum_{k=1}^{\infty} k\sqrt{2} \left(1 - \frac{1}{e}\right)^{4k(k-1)} \left(\frac{1}{e}\right) \frac{8k}{1 - \left(1 - \frac{1}{e}\right)^{8k}} \approx 8.6.$$

• Pushing a chain of parcels:

$$1.82\sum_{k=1}^{\infty} k\sqrt{2} \left(1 - \frac{1}{e}\right)^{4k(k-1)} \approx 2.7.$$

Diffusion

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} = \boldsymbol{D} \nabla^2 \boldsymbol{U}.$$

• Use operator splitting to include diffusion:

 $oldsymbol{U}(t) = oldsymbol{U}(t_1, t_2)$ $rac{\partial oldsymbol{U}}{\partial t_1} = -oldsymbol{v} \cdot oldsymbol{
abla} oldsymbol{U}, \quad rac{\partial oldsymbol{U}}{\partial t_2} = oldsymbol{D}
abla^2 oldsymbol{U}$

 $\Rightarrow \Delta \boldsymbol{U} = -\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} \Delta t_1 + \boldsymbol{D} \nabla^2 \boldsymbol{U} \Delta t_2.$

Diffusion

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} = \boldsymbol{D} \nabla^2 \boldsymbol{U}.$$

• Use operator splitting to include diffusion:

$$U(t) = U(t_1, t_2)$$

$$\frac{\partial U}{\partial t_1} = -v \cdot \nabla U, \quad \frac{\partial U}{\partial t_2} = D \nabla^2 U$$

$$\Rightarrow \Delta U = -v \cdot \nabla U \Delta t_1 + D \nabla^2 U \Delta t_2.$$

• Crank–Nicholson scheme solves for diffusive part:

$$\frac{\boldsymbol{U}(t+\tau) - \boldsymbol{U}(t)}{\tau} = \boldsymbol{D} \frac{\nabla^2 \boldsymbol{U}(t+\tau) + \nabla^2 \boldsymbol{U}(t)}{2}.$$

Diffusion

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{U} = \boldsymbol{D} \nabla^2 \boldsymbol{U}.$$

• Use operator splitting to include diffusion:

$$U(t) = U(t_1, t_2)$$

$$\frac{\partial U}{\partial t_1} = -v \cdot \nabla U, \quad \frac{\partial U}{\partial t_2} = D \nabla^2 U$$

$$\Rightarrow \Delta U = -v \cdot \nabla U \Delta t_1 + D \nabla^2 U \Delta t_2.$$

• Crank–Nicholson scheme solves for diffusive part:

$$\frac{\boldsymbol{U}(t+\tau) - \boldsymbol{U}(t)}{\tau} = \boldsymbol{D} \frac{\nabla^2 \boldsymbol{U}(t+\tau) + \nabla^2 \boldsymbol{U}(t)}{2}$$

• In the advection equation $\partial \widetilde{U} / \partial t = -v \cdot \nabla \widetilde{U}$:

– Calculate \widetilde{U} , interpolate to Eulerian grid.

• Finite difference:

$$\frac{\boldsymbol{U} - \widetilde{\boldsymbol{U}}}{\tau} = \boldsymbol{D} \nabla^2 \left(\frac{\boldsymbol{U} + \widetilde{\boldsymbol{U}}}{2} \right)$$

•

– Calculate \widetilde{U} , interpolate to Eulerian grid.

• Finite difference:

$$\frac{\boldsymbol{U} - \widetilde{\boldsymbol{U}}}{\tau} = \boldsymbol{D} \nabla^2 \left(\frac{\boldsymbol{U} + \widetilde{\boldsymbol{U}}}{2} \right)$$

•

• Multigrid:

- Let
$$\mathcal{L} = \mathbf{1} + \frac{\tau}{2} \mathbf{D} \nabla^2 \implies \mathcal{L}(-\tau) \mathbf{U} = \mathcal{L}(\tau) \widetilde{\mathbf{U}}.$$

– Calculate \widetilde{U} , interpolate to Eulerian grid.

• Finite difference:

$$\frac{\boldsymbol{U} - \widetilde{\boldsymbol{U}}}{\tau} = \boldsymbol{D} \nabla^2 \left(\frac{\boldsymbol{U} + \widetilde{\boldsymbol{U}}}{2} \right)$$

• Multigrid:

- Let
$$\mathcal{L} = \mathbf{1} + \frac{\tau}{2} \mathbf{D} \nabla^2 \implies \mathcal{L}(-\tau) \mathbf{U} = \mathcal{L}(\tau) \widetilde{\mathbf{U}}.$$

• Contribution of diffusion to the Lagrangian solution:

- Calculate $\boldsymbol{U} \widetilde{\boldsymbol{U}}$.
- Project to Lagrangian frame.
- Add to parcel values.

$$rac{\partial \omega}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \omega = \boldsymbol{D} \nabla^2 \omega.$$

 \bullet Velocity is now a functional of \boldsymbol{U} determined by 2D vorticity equation:

$$\frac{\partial \omega}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \omega = \boldsymbol{D} \nabla^2 \omega.$$

• Use multigrid solver: compute stream function $\psi = \nabla^{-2} \omega$.

 \bullet Velocity is now a functional of \boldsymbol{U} determined by 2D vorticity equation:

$$\frac{\partial \omega}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \omega = \boldsymbol{D} \nabla^2 \omega.$$

• Use multigrid solver: compute stream function $\psi = \nabla^{-2} \omega$.

• Calculate $\boldsymbol{v} = \hat{\boldsymbol{z}} \times \boldsymbol{\nabla} \psi$ from ψ .

$$\frac{\partial \omega}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \omega = \boldsymbol{D} \nabla^2 \omega.$$

- Use multigrid solver: compute stream function $\psi = \nabla^{-2} \omega$.
- Calculate $\boldsymbol{v} = \hat{\boldsymbol{z}} \times \boldsymbol{\nabla} \psi$ from ψ .
- Problem: calculating \boldsymbol{v} from rearranged $\omega \Rightarrow$ pushing errors accumulate:
 - Propagation of error *via* advection term $\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{\omega}$.
 - Introduces large gradients in ω and $C \Rightarrow$ excessive diffusion.

$$\frac{\partial \omega}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \omega = \boldsymbol{D} \nabla^2 \omega.$$

- Use multigrid solver: compute stream function $\psi = \nabla^{-2} \omega$.
- Calculate $\boldsymbol{v} = \hat{\boldsymbol{z}} \times \boldsymbol{\nabla} \psi$ from ψ .
- Problem: calculating \boldsymbol{v} from rearranged $\omega \Rightarrow$ pushing errors accumulate:
 - Propagation of error *via* advection term $\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{\omega}$.
 - Introduces large gradients in ω and $C \Rightarrow$ excessive diffusion.
- Solution: use interpolated rather than rearranged values: $\boldsymbol{v}_{I} \cdot \boldsymbol{\nabla} \omega, \ \nu \nabla^{2} \omega_{I}, \text{ and } D \nabla^{2} C_{I}.$

$$\frac{\partial \omega}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \omega = \boldsymbol{D} \nabla^2 \omega.$$

- Use multigrid solver: compute stream function $\psi = \nabla^{-2} \omega$.
- Calculate $\boldsymbol{v} = \hat{\boldsymbol{z}} \times \boldsymbol{\nabla} \psi$ from ψ .
- Problem: calculating \boldsymbol{v} from rearranged $\omega \Rightarrow$ pushing errors accumulate:
 - Propagation of error *via* advection term $\boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{\omega}$.
 - Introduces large gradients in ω and $C \Rightarrow$ excessive diffusion.
- Solution: use interpolated rather than rearranged values: $\boldsymbol{v}_{I} \cdot \boldsymbol{\nabla} \omega, \ \nu \nabla^{2} \omega_{I}, \text{ and } D \nabla^{2} C_{I}.$
- This interpolation does not destroy the conservation of Casimirs: velocity need not be a rearrangement.

Summary

Simulations: 2 Test Cases

• Semi-Lagrangian solution vs. Lagrangian rearrangement:

Simulations: 2 Test Cases

- Semi-Lagrangian solution vs. Lagrangian rearrangement:
- Grid scale $h = 1.95 \times 10^{-3}$, time step $\tau = 1.95 \times 10^{-2}$.

Simulations: 2 Test Cases

- Semi-Lagrangian solution vs. Lagrangian rearrangement:
- Grid scale $h = 1.95 \times 10^{-3}$, time step $\tau = 1.95 \times 10^{-2}$.
- Initial condition:

$$v_x = \sin(2\pi x)\cos(2\pi y), \quad v_y = -\cos(2\pi x)\sin(2\pi y).$$

- Self-advection with no diffusion:
 - 0 (black) and 1 (white) initial condition for C.
- Self-advection with diffusion:

 $D = \nu = 2 \times 10^{-6}.$

Semi-Lagrangian vs. Lagrangian Rearrangement After 750 Time Steps $(\boldsymbol{D}=\boldsymbol{0})$

Semi-Lagrangian vs. Lagrangian Rearrangement After 100 Time Steps $(D = \nu = 2 \times 10^{-6})$.

Semi-Lagrangian vs. Lagrangian Rearrangement After 500 Time Steps $(D = \nu = 2 \times 10^{-6})$.

Semi-Lagrangian vs. Lagrangian Rearrangement After 1000 Time Steps $(D = \nu = 2 \times 10^{-6})$.

Energy Decay Rate

$$\frac{\partial C}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} C = D \nabla^2 C.$$

• Evolution of concentration energy:

$$\frac{1}{2}\frac{\partial}{\partial t}\int C^2\,d\boldsymbol{x} = -D\int |\boldsymbol{\nabla}C|^2\,d\boldsymbol{x}.$$

Energy Decay Rate

$$\frac{\partial C}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} C = D \nabla^2 C.$$

• Evolution of concentration energy:

$$\frac{1}{2}\frac{\partial}{\partial t}\int C^2\,d\boldsymbol{x} = -D\int |\boldsymbol{\nabla} C|^2\,d\boldsymbol{x}.$$

• Compare

Energy Evolution $(\nu = D = 0)$

Energy Decay Rate
$$(D = \nu = 2 \times 10^{-6}).$$

• New numerical method Lagrangian rearrangement respects Casimir invariants.

- New numerical method Lagrangian rearrangement respects Casimir invariants.
- Based on a weighted Bresenham Lagrangian-to-Eulerian projection algorithm.

- New numerical method Lagrangian rearrangement respects Casimir invariants.
- Based on a weighted Bresenham Lagrangian-to-Eulerian projection algorithm.
- Fully Lagrangian:
 - Projected solution is used only for viewing;
 - Error does not propagate to future time steps.

- New numerical method Lagrangian rearrangement respects Casimir invariants.
- Based on a weighted Bresenham Lagrangian-to-Eulerian projection algorithm.
- Fully Lagrangian:
 - Projected solution is used only for viewing;
 - Error does not propagate to future time steps.
- Can combine with:
 - Diffusion
 - $(\Rightarrow$ more consistent energy behaviour than interpolation);
 - Self-advected flow.

- New numerical method Lagrangian rearrangement respects Casimir invariants.
- Based on a weighted Bresenham Lagrangian-to-Eulerian projection algorithm.
- Fully Lagrangian:
 - Projected solution is used only for viewing;
 - Error does not propagate to future time steps.
- Can combine with:
 - Diffusion

 $(\Rightarrow$ more consistent energy behaviour than interpolation);

- Self-advected flow.
- Complexity $\mathcal{O}(n)$.

Asymptote: 2D & 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince http://asymptote.sf.net (freely available under the GNU public license)

Asymptote Lifts TeX to 3D

$$\int_{-\infty}^{+\infty} e^{-\alpha x^2} \, dx = \sqrt{\frac{\pi}{\alpha}}$$

Acknowledgements: Orest Shardt (U. Alberta)

3D Graphs

