Casimir Cascades in Two-Dimensional Turbulence

John C. Bowman (University of Alberta)

Acknowledgements: Jahanshah Davoudi (University of Toronto)

June 4, 2008

www.math.ualberta.ca/~bowman/talks

Outline

- Two-Dimensional Turbulence
 - Fjørtoft Dual Cascade Scenario
 - Kraichnan-Leith-Batchelor Theory
- Casimir Invariants
 - High-Wavenumber Truncation
 - Nonlinear Enstrophy Transfer Function
 - Casimir Cascades?
- Transfer vs. Flux
- Conclusions

Two-Dimensional Turbulence

• Navier–Stokes equation for vorticity $\omega = \widehat{\boldsymbol{z}} \cdot \nabla \times \boldsymbol{u}$:

$$\frac{\partial \omega}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \omega = -\nu \nabla^2 \omega + f.$$

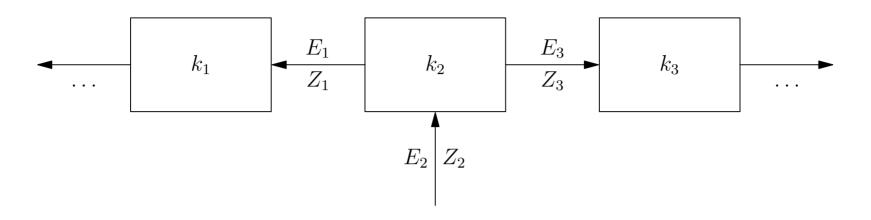
• In Fourier space:

$$\frac{\partial \omega_{\mathbf{k}}}{\partial t} = S_{\mathbf{k}} - \nu k^2 \omega_{\mathbf{k}} + f_{\mathbf{k}},$$
where $S_{\mathbf{k}} = \sum_{\mathbf{p}} \frac{\widehat{\mathbf{z}} \cdot \mathbf{p} \times \mathbf{k}}{p^2} \omega_{\mathbf{p}}^* \omega_{-\mathbf{k}-\mathbf{p}}^*.$

• When $\nu = 0$ and $f_k = 0$:

energy
$$E = \frac{1}{2} \sum_{\mathbf{k}} \frac{|\omega_{\mathbf{k}}|^2}{k^2}$$
 and enstrophy $Z = \frac{1}{2} \sum_{\mathbf{k}} |\omega_{\mathbf{k}}|^2$ are conserved.

Fjørtoft Dual Cascade Scenario



$$E_2 = E_1 + E_3, \qquad Z_2 = Z_1 + Z_3, \qquad Z_i \approx k_i^2 E_i.$$

• When $k_1 = k$, $k_2 = 2k$, and $k_3 = 4k$:

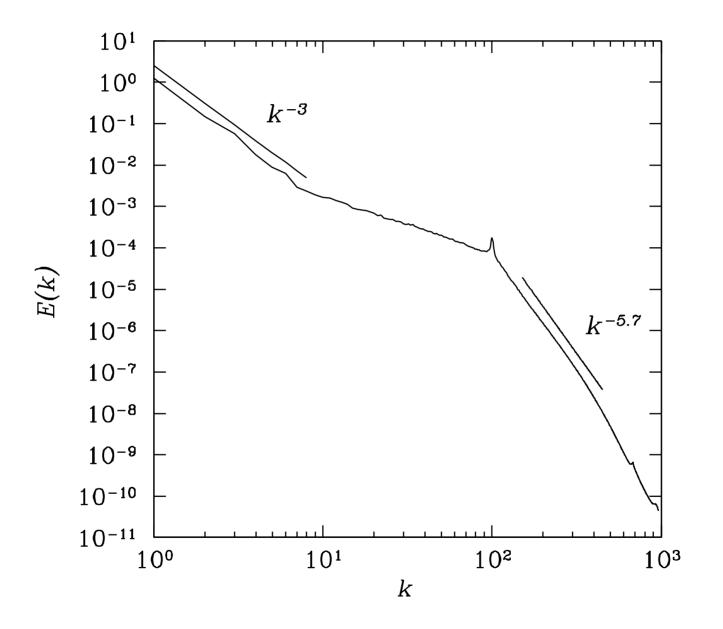
$$E_1 \approx \frac{4}{5}E_2$$
, $Z_1 \approx \frac{1}{5}Z_2$, $E_3 \approx \frac{1}{5}E_2$, $Z_3 \approx \frac{4}{5}Z_2$.

• Fjørtoft [1953]: energy cascades to large scales and enstrophy cascades to small scales.

Kraichnan-Leith-Batchelor Theory

- In an infinite domain:
 - large scale $k^{-5/3}$ energy cascade
 - small scale k^{-3} enstrophy cascade
- In a bounded domain, the situation may be quite different...

Long-Time Behaviour in a Bounded Domain



Tran and Bowman, PRE 69, 036303, 1–7 (2004).

Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.
- Any continuously differentiable function of the (scalar) vorticity is conserved by the nonlinearity:

$$\frac{d}{dt} \int f(\omega) d\mathbf{x} = \int f'(\omega) \frac{\partial \omega}{\partial t} d\mathbf{x} = -\int f'(\omega) \mathbf{u} \cdot \nabla \omega d\mathbf{x}$$
$$= -\int \mathbf{u} \cdot \nabla f(\omega) d\mathbf{x} = \int f(\omega) \nabla \cdot \mathbf{u} d\mathbf{x} = 0.$$

- Do these invariants also play a fundamental role in the turbulent dynamics, in addition to the quadratic (energy and enstrophy) invariants? Do they exhibit cascades?
- Polyakov has suggested that the higher-order Casimir invariants cascade to large scales, while Eyink suggests that they might cascade to small scales.

• What is certain is that only the quadratic invariants survive high-wavenumber truncation (Montgomery calls them rugged invariants).

High-Wavenumber Truncation

$$\frac{\partial \omega_{\mathbf{k}}}{\partial t} = \sum_{\mathbf{p},\mathbf{q}} \frac{\epsilon_{\mathbf{k}\mathbf{p}\mathbf{q}}}{q^2} \omega_{\mathbf{p}}^* \omega_{\mathbf{q}}^*.$$

where $\epsilon_{kpq} = (\widehat{z} \cdot p \times q) \, \delta(k + p + q)$.

• Enstrophy evolution:

$$\frac{d}{dt} \sum_{\mathbf{k}} |\omega_{\mathbf{k}}|^2 = \sum_{\mathbf{k}, \mathbf{p}, \mathbf{q}} \frac{\epsilon_{\mathbf{k}\mathbf{p}\mathbf{q}}}{q^2} \omega_{\mathbf{k}}^* \omega_{\mathbf{p}}^* \omega_{\mathbf{q}}^* = 0.$$

• Invariance of $Z_3 = \int \omega^3 dx$ follows from:

$$0 = \sum_{\boldsymbol{k},\boldsymbol{r},\boldsymbol{s}} \left[\sum_{\boldsymbol{p},\boldsymbol{q}} \frac{\epsilon_{\boldsymbol{k}\boldsymbol{p}\boldsymbol{q}}}{q^2} \omega_{\boldsymbol{p}}^* \omega_{\boldsymbol{q}}^* \omega_{\boldsymbol{r}}^* \omega_{\boldsymbol{s}}^* + 2 \text{ other similar terms} \right].$$

- The absence of an explicit $\omega_{\mathbf{k}}$ in the first term means that setting $\omega_{\mathbf{k}} = 0$ for $\mathbf{k} > K$ will make the summations no longer symmetric!
- However, since the missing terms involve ω_p and ω_q for p and q higher than the truncation wavenumber K, one might expect that a very well-resolved simulation would lead to almost exact invariance of Z_3 .
- We will show that this is indeed the case.

Enstrophy Balance

$$\frac{\partial \omega_{\mathbf{k}}}{\partial t} + \nu k^2 \omega_{\mathbf{k}} = S_{\mathbf{k}} + f_{\mathbf{k}},$$

• Multiply by $\omega_{\mathbf{k}}^*$ and integrate over wavenumber angle \Rightarrow enstrophy spectrum Z(k) evolves as:

$$\frac{\partial}{\partial t}Z(k) + 2\nu k^2 Z(k) = 2T(k) + G(k),$$

where T(k) and G(k) are the corresponding angular averages of $\operatorname{Re} \langle S_{\mathbf{k}} \omega_{\mathbf{k}}^* \rangle$ and $\operatorname{Re} \langle f_{\mathbf{k}} \omega_{\mathbf{k}}^* \rangle$.

Nonlinear Enstrophy Transfer Function

$$\frac{\partial}{\partial t}Z(k) + 2\nu k^2 Z(k) = 2T(k) + G(k).$$

Let

$$\Pi(k) \doteq 2 \int_{k}^{\infty} T(p) \, dp$$

represent the nonlinear transfer of enstrophy into $[k, \infty)$.

• Integrate from k to ∞ :

$$\frac{d}{dt} \int_{k}^{\infty} Z(p) \, dp = \Pi(k) - \epsilon_{Z}(k),$$

where $\epsilon_Z(k) \doteq 2\nu \int_k^\infty p^2 Z(p) dp - \int_k^\infty G(p) dp$ is the total enstrophy transfer, via dissipation and forcing, *out* of wavenumbers higher than k.

- A positive (negative) value for $\Pi(k)$ represents a flow of enstrophy to wavenumbers higher (lower) than k.
- When $\nu = 0$ and $f_k = 0$:

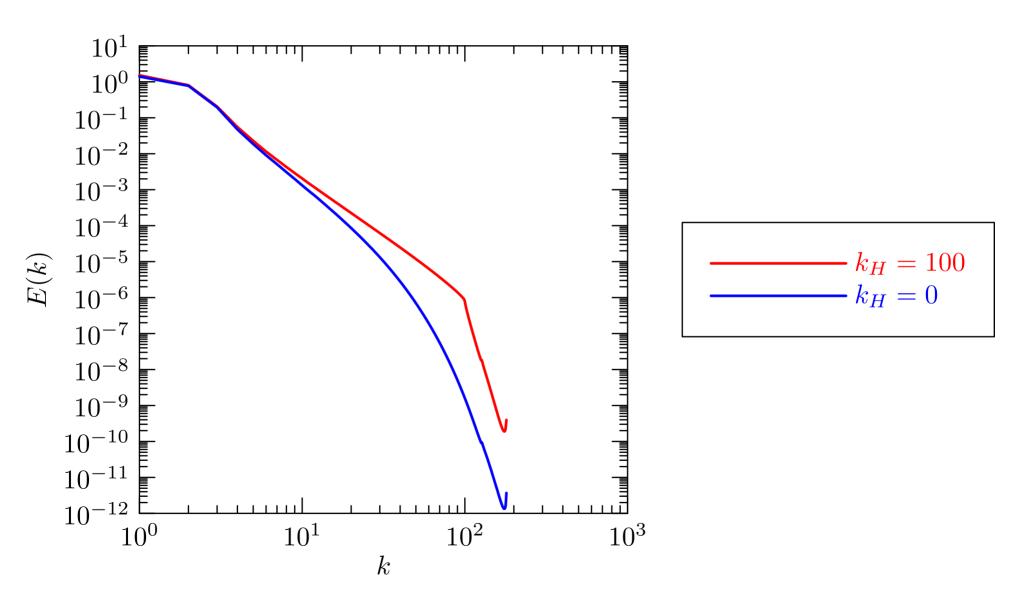
$$0 = \frac{d}{dt} \int_0^\infty Z(p) dp = 2 \int_0^\infty T(p) dp,$$

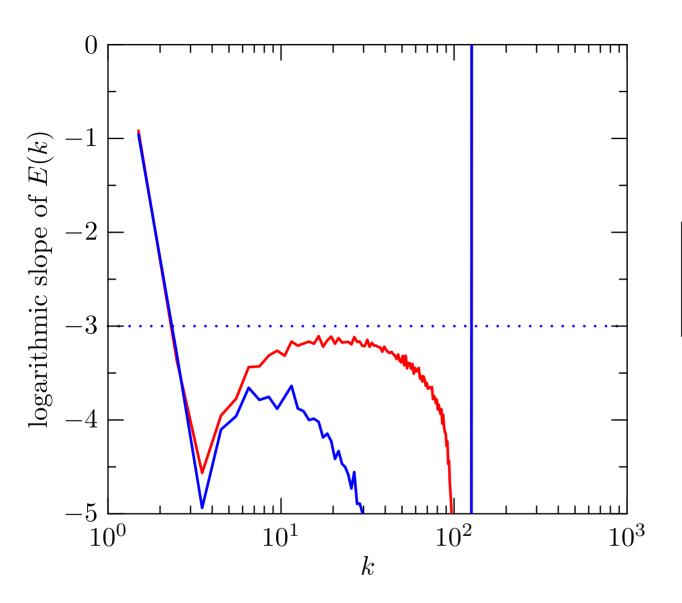
so that

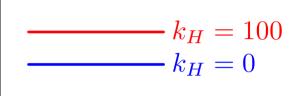
$$\Pi(k) = 2 \int_{k}^{\infty} T(p) \, dp = -2 \int_{0}^{k} T(p) \, dp.$$

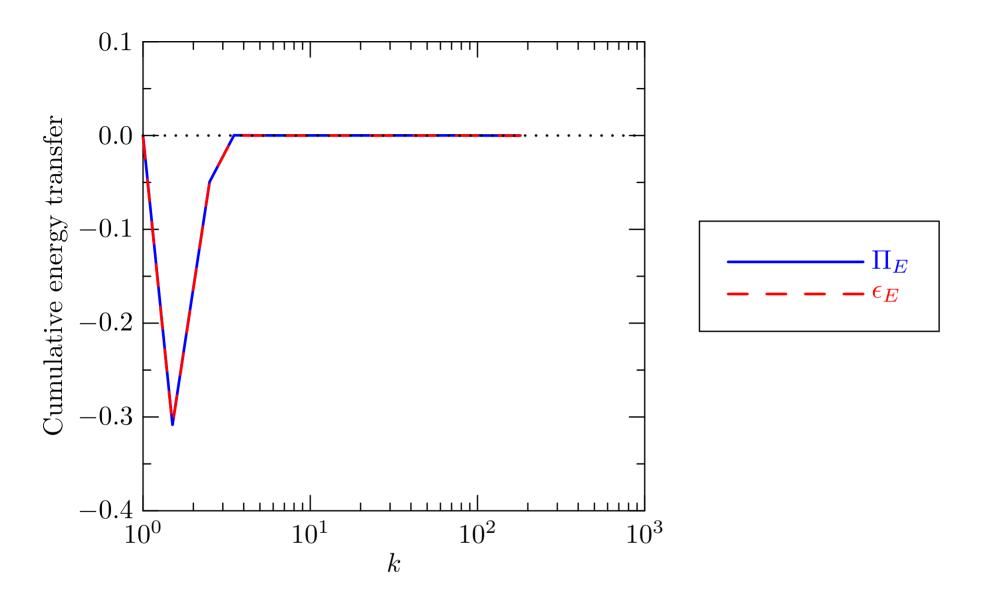
- Note that $\Pi(0) = \Pi(\infty) = 0$.
- In a steady state, $\Pi(k) = \epsilon_Z(k)$.
- This provides an excellent numerical diagnostic for when a steady state has been reached.

Forcing at k = 2, friction for k < 3, viscosity for $k \ge k_H = 100 \ (255 \times 255 \ \text{dealiased modes})$

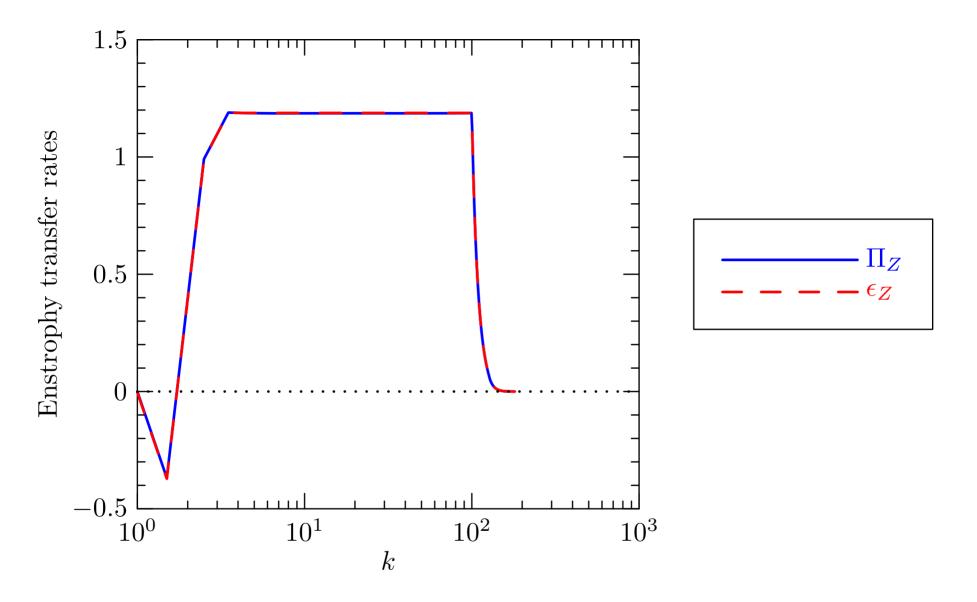




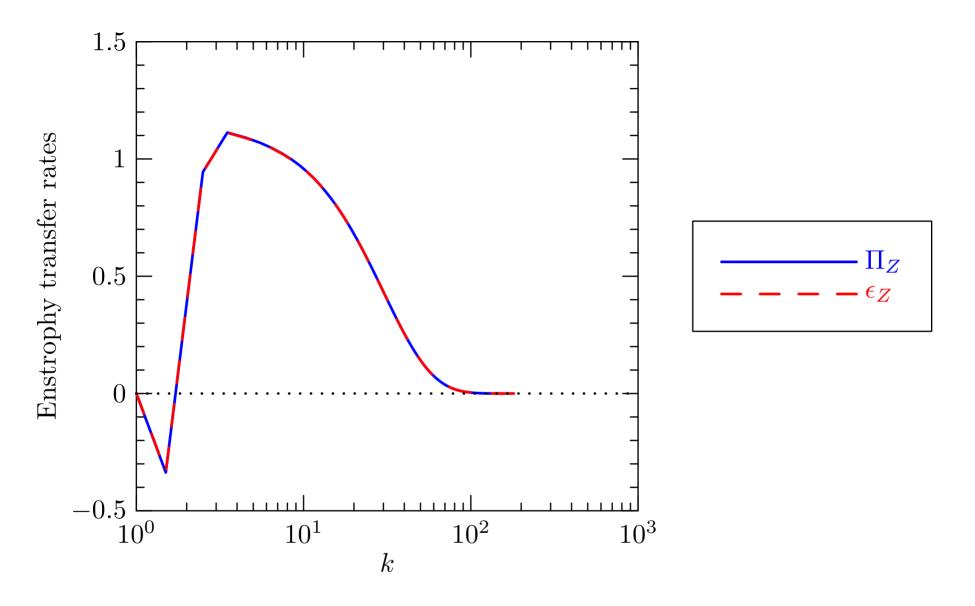




Cutoff viscosity $(k \ge k_H = 100)$



Cutoff viscosity $(k \ge k_H = 100)$



Molecular viscosity $(k \ge k_H = 0)$

Nonlinear Casimir Transfer

• Fourier decompose the fourth-order Casimir invariant $Z_4 = N^3 \sum_{j} \omega^4(x_j)$ in terms of N spatial collocation points x_j :

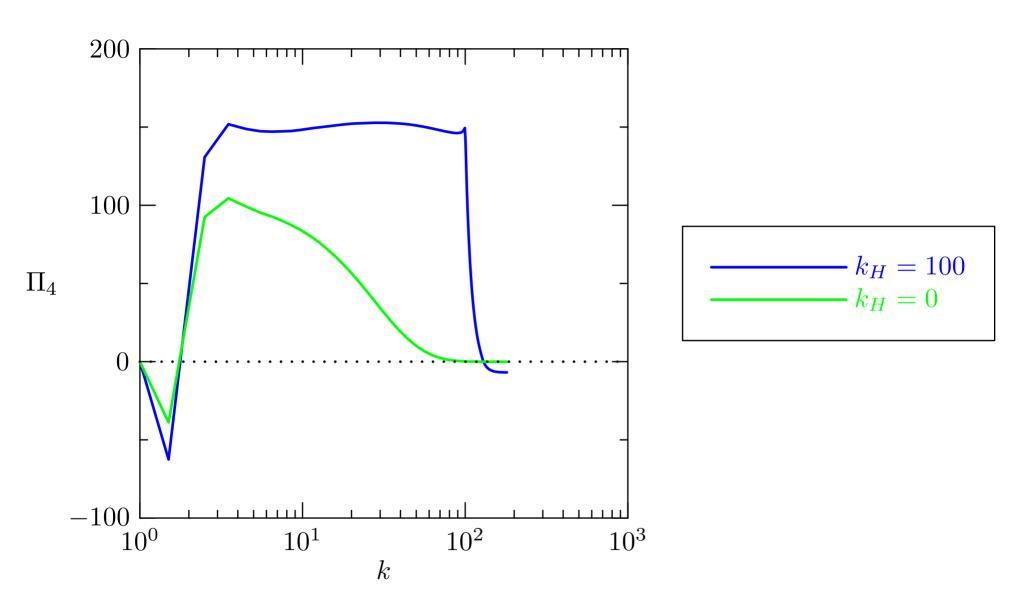
$$Z_4 = \sum_{\mathbf{k}, \mathbf{p}} \omega_{\mathbf{k}} \, \omega_{\mathbf{p}} \, \omega_{\mathbf{q}} \, \omega_{-\mathbf{k} - \mathbf{p} - \mathbf{q}}.$$

$$\frac{d}{dt}Z_4 = \sum_{\mathbf{k}} \left[S_{\mathbf{k}} \sum_{\mathbf{p}} \omega_{\mathbf{p}} \omega_{\mathbf{q}} \omega_{-\mathbf{k}-\mathbf{p}-\mathbf{q}} + 3\omega_{\mathbf{k}} \sum_{\mathbf{p}} S_{\mathbf{p}} \omega_{\mathbf{q}} \omega_{-\mathbf{k}-\mathbf{p}-\mathbf{q}} \right]$$

$$\frac{d}{dt}Z_4 = N^2 \sum_{\mathbf{k}} \left[S_{\mathbf{k}} \sum_{\mathbf{j}} \omega^3(x_{\mathbf{j}}) e^{2\pi i \mathbf{j} \cdot \mathbf{k}/N} + 3\omega_{\mathbf{k}} \sum_{\mathbf{j}} S(x_{\mathbf{j}}) \omega^2(x_{\mathbf{j}}) e^{2\pi i \mathbf{j} \cdot \mathbf{k}/N} \right]$$

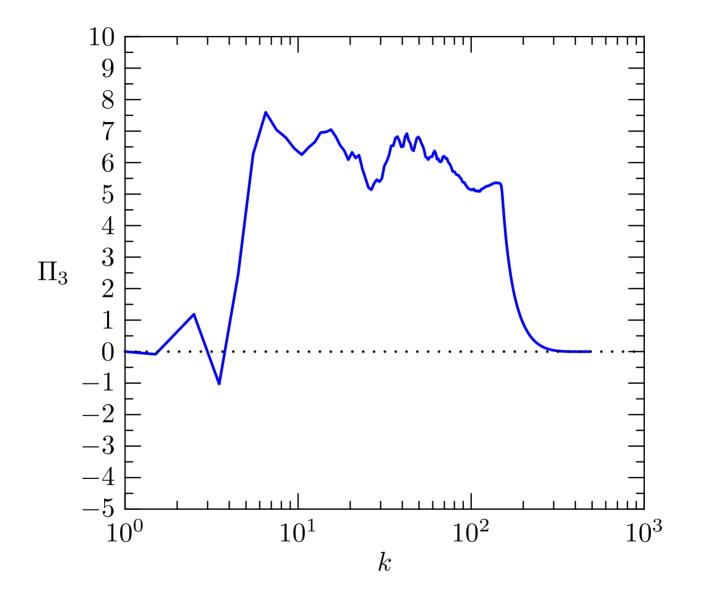
$$\stackrel{=}{=} \sum_{\mathbf{k}} T_4(\mathbf{k}). \quad \text{Here } S_{\mathbf{k}} \text{ is the nonlinear source term in } \frac{\partial}{\partial t} \omega_{\mathbf{k}}.$$

Downscale Transfer of Z_4



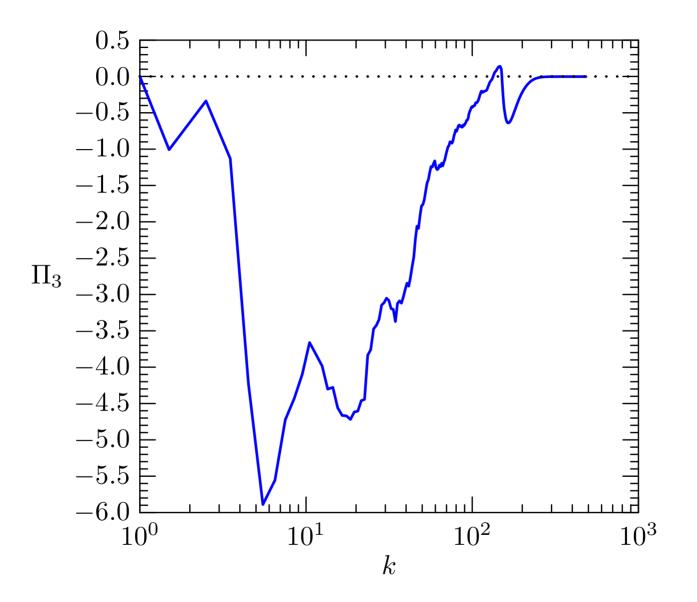
Nonlinear transfer Π_4 of Z_4 averaged over $t \in [15, 55]$.

Third-order Casimir Transfer Function



Nonlinear transfer Π_3 of Z_3 averaged over $t \in [7, 12]$.

No Cascade of Z_3



Nonlinear transfer Π_3 of Z_3 averaged over $t \in [12, 17]$.

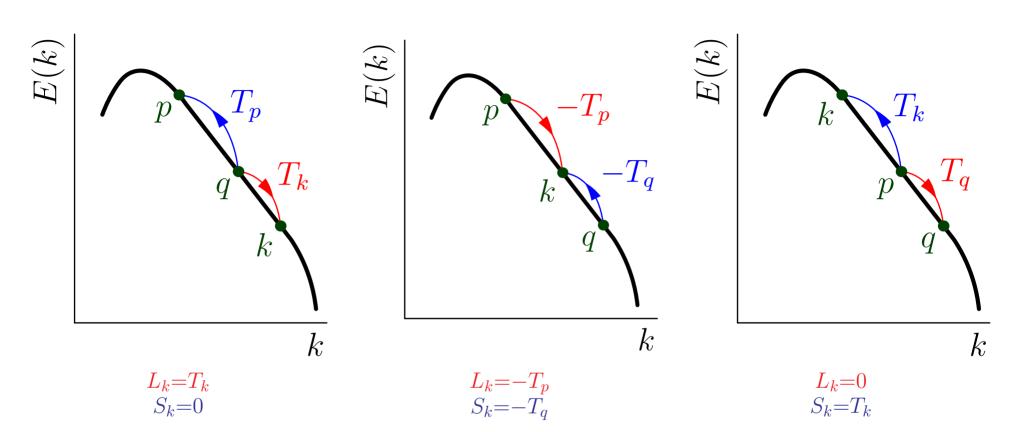
Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to $[k, \infty)$ is given by

$$\Pi(k) = \int_k^\infty T(k) dk = -\int_0^k T(k) dk.$$

- In a steady state, $\Pi(k)$ will trivially be constant within a true inertial range.
- In contrast, the enstrophy flux through a wavenumber k is the amount of enstrophy transferred to small scales via triad interactions involving mode k.

Flux Decomposition for a Single $(\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q})$ Triad



• Note that energy is conserved: $L_k + S_k = T_k = -T_p - T_q$. Thus

$$L_{k} = \operatorname{Re} \sum_{\substack{|\mathbf{k}|=k\\|\mathbf{p}|< k\\|\mathbf{k}-\mathbf{p}|< k}} M_{\mathbf{k},\mathbf{p}} \,\omega_{\mathbf{p}} \,\omega_{\mathbf{k}-\mathbf{p}} \,\omega_{\mathbf{k}}^{*} - \operatorname{Re} \sum_{\substack{|\mathbf{k}|=k\\|\mathbf{p}|< k\\|\mathbf{k}-\mathbf{p}|> k}} M_{\mathbf{p},\mathbf{k}-\mathbf{p}} \,\omega_{\mathbf{k}} \,\omega_{\mathbf{k}-\mathbf{p}} \,\omega_{\mathbf{p}}^{*}.$$

Conclusions

- Even though higher-order Casimir invariants do not survive wavenumber truncation, it is possible, with sufficiently well resolved simulations, to check whether they cascade to large or small scales.
- We computed the transfer function of the globally integrated ω^4 inviscid invariant.
- Numerical evidence suggests that in the enstrophy inertial range there is a direct cascade of this invariant to small scales.
- However, for the globally integrated ω^3 inviscid invariant, we found no systematic cascade: it appears to slosh back and forth between the large and small scales. This is expected since ω^3 does not have a definite sign.
- One should distinguish between nonlocal transfer and flux. To compute this decomposition efficiently, one needs to develop a restricted Fast Fourier transform.

Asymptote: The Vector Graphics Language

http://asymptote.sf.net

(freely available under the GNU public license)