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Shell Models
Shell models are reduced models of turbulence formulated in
Fourier space.

Typical velocity Fourier amplitudes on each shelln in
wavenumber space are represented by asingle quantityun.

The shell wavenumberskn = λn scale geometrically.

General form:

(dt + νk2
n)un = ikn

∑

l,m

Al,mu∗

n+lu
∗

n+m + F.

We take the forcingF to be awhite-noise random process.

This allows one to control the mean rate of energy injection
[Novikov 1964]: ǫ = F 2/2.



DN Model
Restrict shell model:

Only nearest neighbour couplings.

Enforce conservation ofenergy1

2

∑

n |un|
2 by nonlinearity.

⇒ generalized Desnyansky and Novikov [1974] model (DN):
(

d

dt
+ νk2

n

)

un = ikn(anu∗2
n−1 − λan+1u

∗

nu∗

n+1)

+ ikn(bnu∗

n−1u
∗

n − λbn+1u
∗2
n+1),

For constant coefficientsan andbn of opposite sign, Bell and
Nelkin [1977] showed that whenν = 0 this model has a
(linearly) stablefixed point, corresponding to the Kolmogorov
scaling

un = Ak
−1/3
n .

Since the fixed point is stable, the DN system does not exhibit
intermittency.



GOY Model
Complex version of the Gledzer [1973] model proposed by
Yamada and Ohkitani [1987]:
(

d

dt
+ νk2

n

)

un = ikn

(

αu∗

n+1u
∗

n+2 + βu∗

n−1u
∗

n+1 + γu∗

n−1u
∗

n−2

)

+Fδn,0,

where

α
.
= α, β

.
=

β

λ
, γ

.
=

γ

λ2
.

Whenν = F = 0, the Goy model has anunstablefixed point,
again corresponding to the Kolmogorov power law

un = Ak
−1/3
n .



Given periodic or zero Dirichlet boundary conditionsin
wavenumber spaceonun, nonlinearity conserves the energy

E
.
=

1

2

∑

n

|un|
2,

providedα + β + γ = 0.

Setα = 1 by rescaling time⇒ one free parameterδ:

α = 1 β = −δ γ = δ − 1.

A second invariantE .
= 1

2

∑

n kp
n|un|

2 is also conserved, where

p = − logλ(δ − 1).

Consider the caseλ = 2.

[2D Turbulence:]For δ = 5/4, the second invariant
1

2

∑

n k2
n|un|

2 has the dimensions ofenstrophy.

[3D Turbulence:]For δ = 1/2, the second invariant
1

2

∑

n(−1)nkn|un|
2 has the dimensions ofhelicity.



Kolmogorov Law

Energy spectrum for 3D GOY model (λ = 2)
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Intermittency
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Zeta exponents: 3D GOY model vs. NS (Kolmogorov)



Intermittency
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Zeta exponents: 3D GOY model vs. NS (experimental)



Spectral Reduction of GOY Model
Exploit the continuity of velocity moments in wavenumber.

Goal: replace neighbouring shells by a reduced number of
representative shells with enhanced couplings.

Define sum and difference variablesvn anddn:

vn =
u2n + σnu2n+1

√

1 + σ2
n

,

dn =
−σnu2n + u2n+1

√

1 + σ2
n

,

for some real numbersσn.

Neglectthe contribution ofdn to nonlinearity: whenever a term
u2n+1 appears, replace it byσnu2n.

If the un are real and independent of time, theσn factors can be
chosen to make this approximation exact.



Rescaled sum variables
Even-index shell variables in the nonlinearity can then be
related directly to the sum variablesvn:

vn ≈
u2n(1 + σ2

n)
√

1 + σ2
n

= u2n

√

1 + σ2
n.

Introduce

sn
.
=

vn
√

1 + σ2
n

=
u2n + σnu2n+1

1 + σ2
n

≈ u2n.

The even-index shell velocities appearing in the nonlinearterm
may now be replaced simply bysn.



Evolution of rescaled sum variablessn:

d

dt
sn =

1

1 + σ2
n

d

dt
(u2n + σnu2n+1)

= −µΛ2nsn +
iΛn

1 + σ2
n

×
(

ans∗2n−1 − Λan+1s
∗

ns∗n+1 + bns∗n−1s
∗

n − Λbn+1s
∗2
n+1

)

,

where

µ = ν

(

1 + σ2
nλ2

1 + σ2
n

)

, Λ = λ2,

an = γσn−1, bn = −
α

λ
σn−1σn.

Course-grained energy1
2

∑

n |sn|
2(1 + σ2

n) is conserved.



In the case whereσn = σ, we canrepeat the renormalization
procedureto compute the evolution of

Sn
.
=

s2n + Σns2n+1

1 + Σ2
n

≈ s2n.

All of the nonlinear terms containingS∗2
n cancel, leaving

d

dt
Sn = −µΛ2nSn +

iΛn

(1 + Σ2
n)(1 + σ2)

×
[

AnS∗2
n−1 − ΛAn+1S

∗

nS∗

n+1 + BnS∗

n−1S
∗

n − ΛBn+1S
∗2
n+1

]

,

where

µ = µ

(

1 + Σ2
nΛ2

1 + Σ2
n

)

, Λ = Λ2,

An = Σ2
n−1a2n, Bn = Σn−1b2n.



Properties

Energy1

2

∑

n |Sn|
2(1 + Σ2

n)(1 + σ2) is again conserved.

After the first renormalization, the form of the equations
remainsinvariantunder susbequent renormalization.

The form is identical to that of the DN model but with
coefficients of the same sign (for the 3D Goy model).



Subgrid Model



Conclusions
The Goy model is an interesting dynamical system that mirrors
many properties (scaling, intermittency) of real turbulence.

It provides an excellent testbed for new ideas and methods for
two- and three-dimensional turbulence, for example, the
method of Spectral Reduction.

These ideas can be used to develop reliable dynamical subgrid
models.
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