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Discrete Convolutions

•Discrete linear convolution sums based on the fast
Fourier transform (FFT) algorithm [Gauss 1866],
[Cooley & Tukey 1965] have become important tools for:

– image filtering;

– digital signal processing;

– correlation analysis;

– pseudospectral simulations.
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Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1
∑

p=0

FpGk−p,

where the vectors F and G have period N .

•Define the Nth primitive root of unity:

ζN = exp

(

2πi

N

)

.

•The fast Fourier transform method exploits the properties that
ζrN = ζN/r and ζNN = 1.

•The unnormalized backwards discrete Fourier transform of
{fk : k = 0, . . . , N} is
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fj
.
=

N−1
∑

k=0

ζjkN Fk j = 0, . . . , N − 1,

•The corresponding forward transform is

Fk
.
=

1

N

N−1
∑

j=0

ζ−kjN fj j = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1
∑

j=0

ζℓjN =







N if ℓ = sN for s ∈ Z,
1− ζℓNN
1− ζℓN

= 0 otherwise.
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Discrete Linear Convolution

•The pseudospectral method requires a linear convolution since
wavenumber space is not periodic.

•The convolution theorem states:

N−1
∑

j=0

fjgjζ
−jk
N =

N−1
∑

j=0

ζ−jkN





N−1
∑

p=0

ζjpN Fp









N−1
∑

q=0

ζjqNGq





=

N−1
∑

p=0

N−1
∑

q=0

FpGq

N−1
∑

j=0

ζ
(−k+p+q)j
N

=N
∑

s

N−1
∑

p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are called aliases.

•We need to remove the aliases by ensuring that Gk−p+sN = 0
whenever s 6= 0.
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• If Fp and Gk−p+sN are nonzero only for 0 ≤ p ≤ m − 1 and
0 ≤ k − p + sN ≤ m− 1, then we want k + sN ≤ 2m− 2 to
have no solutions for positive s.

•This can be achieved by choosing N ≥ 2m− 1.

•That is, one must zero pad input data vectors of length m to
length N ≥ 2m− 1.

•Physically, explicit zero padding prevents mode m − 1 from
beating with itself, wrapping around to contaminate mode N =
0modN

• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m.
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Pruned FFTs

•Although explicit padding seems like an obvious waste of
memory and computation, the conventional wisdom on avoiding
this waste is well summed up by Steven G. Johnson, coauthor
of the FFTW (“Fastest Fourier Transform in the West”) library
[Frigo & Johnson ]:

The most common case where people seem to want
a pruned FFT is for zero-padded convolutions, where
roughly 50% of your inputs are zero (to get a linear
convolution from an FFT-based cyclic convolution).
Here, a pruned FFT is hardly worth thinking about, at
least in one dimension. In higher dimensions, matters
change (e.g. for a 3d zero-padded array about 1/8 of
your inputs are non-zero, and one can fairly easily
save a factor of two or so simply by skipping 1d sub-
transforms that are zero).
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Implicit Padding

• If fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber

f2ℓ =
m−1
∑

k=0

ζℓkmFk, f2ℓ+1 =

m−1
∑

k=0

ζℓkm ζkNFk ℓ = 0, 1, . . . m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.
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•Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

NFk=

N−1
∑

j=0

ζ−kjN fj =
m−1
∑

ℓ=0

ζ−k2ℓN f2ℓ +
m−1
∑

ℓ=0

ζ
−k(2ℓ+1)
N f2ℓ+1

=

m−1
∑

ℓ=0

ζ−kℓm f2ℓ + ζ−kN

m−1
∑

ℓ=0

ζ−kℓm f2ℓ+1 k = 0, . . . ,
N

2
− 1.

•No bit reversal is required at the highest level.

•An implicitly padded convolution is implemented as in our
FFTW++ library (version 1.05) as cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution of two complex vectors
f and g using two temporary vectors u and v, each of length m.

•This in-place convolution requires six out-of-place transforms,
thereby avoiding bit reversal at all levels.
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Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do

f[k]← ζk2mf[k];
g[k]← ζk2mg[k];

end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;

f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do

f[k]← f[k] + ζ−k2mu[k];
end

return f/(2m);
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Implicit Padding in 1D
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Implicit Padding in 2D
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Implicit Padding in 3D
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Hermitian Convolutions

•Hermitian convolutions arise when the input vectors are
Fourier transforms of real data:

fN−k = fk.
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Centered Convolutions

•For a centered convolution, the Fourier origin is at wavenumber
zero:

m−1
∑

p=k−m+1

fpgk−p

•Here, one needs to pad to N ≥ 3m− 2 to prevent mode m− 1
from beating with itself to contaminate the most negative (first)
mode, corresponding to wavenumber −m + 1. Since the ratio
of the number of physical to total modes, (2m − 1)/(3m − 2)
is asymptotic to 2/3 for large m, this padding scheme is often
referred to as the 2/3 padding rule.

•The Hermiticity condition then appears as

f−k = fk.
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Implicit Hermitician Centered Padding in 1D
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Implicit Hermitician Centered Padding in 2D
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Biconvolutions

•The biconvolution of three vectors F , G, and H is

N−1
∑

p=0

N−1
∑

q=0

FpGqHk−p−q.

•Computing the transfer function for Z4 = N 3
∑

j ω
4(xj)

requires computing the Fourier transform of the cubic
quantity ω3.

•This requires a centered Hermitian biconvolution:

m−1
∑

p=−m+1

m−1
∑

q=−m+1

m−1
∑

r=−m+1

FpGqHrδp+q+r,k.

•Correctly dealiasing requires a 2/4 zero padding rule (instead of
the usual 2/3 rule for a single convolution).
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2/4 Padding Rule

•Computing the transfer function for Z4 with a 2/4 padding rule
means that in a 2048 × 2048 pseudospectral simulation, the
maximum physical wavenumber retained in each direction is
only 512.

•For a centered Hermitian biconvolution, implicit padding is
twice as fast and uses half of the memory required by
conventional explicit padding.
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Implicit Biconvolution in 1D
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Implicit Biconvolution in 2D
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Conclusions

•Memory savings: in d dimensions implicit padding
asymptotically uses 1/2d−1 of the memory require by
conventional explicit padding.

•Computational savings due to increased data locality: about a
factor of two.

•Highly optimized versions of these routines have been
implemented as a software layer FFTW++ on top of the FFTW

library and released under the Lesser GNU Public License.

•With the advent of this FFTW++ library, writing a high-
performance dealiased pseudospectral code is now a relatively
straightforward exercise.
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Asymptote: 2D & 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the Lesser GNU Public License)
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Asymptote Lifts TEX to 3D

http://asymptote.sf.net
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