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Turbulence

Big wharls have little whirls that feed on their
velocity, and little wharls have littler whirls and so on
to viscosity. . . [Richardson 1922]

eIn 1941, Kolmogorov conjectured that the energy spectrum
of 3D incompressible turbulence exhibits a self-similar power-
law scaling characterized by a uniform cascade of energy to
molecular (viscous) scales:

E(k) = C3k513,

e Here £ is the Fourier wavenumber and E(k) is normalized so
that | E(k)dk is the total energy.

e Kolmogorov suggested that C' might be a universal constant.
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2D Incompressible Turbulence

e In 2D, where w4 maps a plane normal to 2 to R?, the vorticity
vector w = V Xwu is always perpendicular to w.

e Navier—Stokes equation for the scalar vorticity w = 2.V Xu:

%—CZJru Vw=—vVw+ f.

e The incompressibility condition V-u = 0 can be exploited to
find v in terms of w:

Vwxz=Vxz2w=VXx(Vxu)=V(V-u) - Vu=-Vu.

e Thus u = 2X VV %w. In Fourier space:

dwk
= S — vk wi, + f,
— = Sk K+ Sk
zXq-k €
where S = Z qg WqW_k—q = Z quw_pw_q.

q p.q



Here €rpg = 2P X q Op1psq 1s antisymmetric under permutation
of any two indices.

dwk

€
R =D Dt

e When v = f = 0:

1 1 ’
enstrophy Z = 5; \wk\Q and energy B = §Z ‘CZ;‘ are

conserved:

€
kg 1 antisymmetricin = k < p,
q

l e

B % antisymmetric in -~ k <> q.



Fjortoft Dual Cascade Scenario

E, L
Z1 Z3
E2 ZQ

Ey = F, + Fjs, Ty = 71 + Zs, 7; = ki F;.

e When k1 = k, ky = 2k, and k3 = 4k:

4 1 1 4
bW~ -FEy, Zi=~=-Z by~ -FEy, Z3=~—-Z>.
1 5 29 1 5 29 3 5 29 3 5 2
e Fjgrtoft [1953]: energy cascades to large scales and enstrophy

cascades to small scales.
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2D Turbulence: Mathematical Formulation

e Consider the Navier—Stokes equations for 2D incompressible
homogeneous isotropic turbulence with density p = 1.

%—?—Vv2u+u Vu+VP=F,
Vu =0,
/udaz— /Fdw—

0
—Uo

with 2 = [0, 27] x [0, 27T] and periodic boundary conditions on 9.

e Introduce the Hilbert space
H(Q) =l {u c (C*(Q)NLYN)* | Veu =0, / udx = O} .
Q

with inner product (u,v) = [, u( v(x,t)dz and L* norm
ul = (u,u)'/?



e For u € H(Q)), the Navier-Stokes equations can be expressed:

le—?; —vwWu+uVu+VP=F.

o Introduce A = —P(V?), f = P(F), and the bilinear map

B(u,u) =P (u-Vu+ VP),
where P is the Helmholtz-Leray projection operator from
(L?(2))? to H(Q):
P(v) = v — VV *V.v, Yo € (L*(Q))*%
e The dynamical system can then be compactly written:

Cfl—?quAuth(u,u) = f.



Stokes Operator A

e The operator A = P(—V?) is positive semi-definite and self-
acjoint, with a compact inverse.

e On the periodic domain §2 = |0, 27| x [0, 27|, the eigenvalues of
A are

A=k-k, ke 7 x 7Z\{0}.
e The eigenvalues of A can be arranged as
O<)\0<)\1<>\2<"', A =1

and its eigenvectors w;, ¢ € Ny, form an orthonormal basis for the
Hilbert space H, upon which we can define any quotient power

of A:

A%w; = Nw;, a€eR, 35N
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Subspace of Finite Enstrophy

e We define the subspace of H consisting of solutions with finite
enstrophy:

( )

V=3queH]|» \uw)<oo;.

7=0

\ /

e Another suitable norm for elements uw € V is

R AN
— AV = / 2. = . )2
lul| = A"l ( e > (uw))

i=1 j=0

1/2
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Properties of the Bilinear Map

e We will make use of the antisymmetry

(B(u,v),w) = —(B(u,w),v).

e In 2D, we also have orthogonality:

(B(u,u), Au) =0

and the strong form of enstrophy invariance:

(B(Av,v),u) = (B(u,v), Av).

e In 2D the above properties imply the symmetry

(B(Au,u),u) + (B(v, Av),u) + (B(v,v), Av) = 0.

e We will need the 2D Ladyzhenskaya inequality
U4 < Cplul |2,

where the constant C'; depends only on the domain 2.
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Dynamical Behaviour

e Our starting point is the incompressible 2D Navier—Stokes
equation with periodic boundary conditions:

d
d—?%—uAu%—B(u,u):f, u € H.
e Take the inner product with w (respectively Aw):
SO + vl = (£, u(t)
2dt S
1d
L )|+ vl At = (. Au(t))

e The Cauchy-Schwarz and Poincaré inequalities yield

(Fru(t) < [fllu@®)]  and Ju(t)] < [[u?)]]

e Since the existence and uniqueness for solutions to the 2D
Navier—Stokes equation has been proven, a global attractor can

be defined 7, 7.
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Dynamical Behaviour: Constant Forcing

o If the force f is constant with respect to time, a Gronwall
imequality can be exploited:

() < e u(0)? + (1— e (m) |
f

e Defining a nondimensional Grashof number G = =, the above
%
inequality can be simplified to

w(t)]? < e u(0)] + (1 — e )G

e Similarly,
[u@)[]* < e [Juw(0)[]* + (1 — e G,
e Being on the attractor thus requires

u| <vG  and  ||ul|| < VG

14



Attractor Set A

e Let S be the solution operator:
S(t)wg = u(t), uy = u(0),
where u(t) is the unique solution of the Navier—Stokes equations.

e The closed ball B of radius vG in the space V' is a bounded
absorbing set in H.

e That is, for any bounded set B’ there exists a time t; such that

to =to(B'), and SE)B C B, Vi>t.
e We can then construct the global attractor:
A=()5(t)B,
t>0

so A is the largest bounded, invariant set such that S(t)A = A
for all t > 0.
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Z—F Plane Bounds: Constant Forcing

e A trivial lower bound is provided by the Poincaré inequality:

u’ <|lul? = E<Z
e An upper bound is given by

Theorem 1 (Dascaliuc, Foias, and Jolly [2005])
For all u € A,

| f
lul]” < “—|ul.
1%

e That is,

7 < vGVE.
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Z—F Plane Bounds: Constant Forcing
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Extended Norm: Random Forcing

e For a random variable o, with probability density function P,

define the ensemble average

o o)

e The extended inner product is

e e ([ e
with norm
o= ([ (rP)a )/
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Dynamical Behaviour: Random Forcing

e Energy balance:

1d
2dt

where € is the rate of energy injection.

—|u|’ + v(Au, w) + (B(u,u),u) = (f,u) = ¢,

e From the energy conservation identity (B(w,w),u) = 0,

Sl vl = e

e The Poincaré inequality ||u|| > |ul| leads to

ld

~ful’ < e~ vlul

1 — —2ut
which implies that |u(t)]* < e”**|u(0)|* + ( - )e.

vV

e So for every u € A, we expect |u(t)]* < ¢/v.
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e From |u(t)| < \/€/v we then obtain a lower bound for | f:

e € ) _Ifll

Tlul o fu] T

e [t is convenient to use this lower bound for | f| to define a lower
bound for the Grashof number G = |f|/v?, which we use as
the normalization G for random forcing:

e We recently proved the following theorem (submitted to JDE):

Theorem 2 (?) For all w € A with energy injection rate e,

€
Jull < /< ol

e 'This leads to the same form as for a constant force: 7 < vGVE.
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Z—F Plane Bounds: Random Forcing

27 A
22
1 ___________________

I
I
I
I
I
:
I

A in !

here :
I
I
I
I
I
I
' .

0 1 2k
V2G2

21



DNS code

e We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.

e [t uses our FFTW++ library to implicitly dealias the advective
convolution, while exploiting Hermitian symmetry 7, 7.

e Advanced computer memory management, such as implicit
padding, memory alignment, and dynamic moment averaging
allow DNS to attain its extreme performance.

e [t uses the formulation proposed by 7 to reduce the number of
FFTs required for 2D (3D) incompressible turbulence to 4 (8).

e We also include simplified 2D (146 lines) and 3D (287 lines)

versions called ProtoDNS for educational purposes:
https://github.com/dealias/dns/tree/master/
protodns.

22
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Vorticity Field with Hypoviscosity
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Energy Spectrum with Hypoviscosity
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Bounds in the

Z—FE plane for random forcing.
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Energy Transfer with Hypoviscosity

Cumulative enstropy transfer
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Vorticity Field without Hypoviscosity
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Energy Spectrum without Hypoviscosity
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Bounds in the Z—FE plane for random forcing.
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Energy Transfer without Hypoviscosity
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opecial Case: White-Noise Forcing

e The Fourier transform of an isotropic Gaussian white-noise
solenoidal force f has the form

kk

Jr(t) = Fy (1 — ﬁ) Lr(t), k-fr=0,

where Fj, is a real number and &(%) is a unit central real Gaussian
random 2D vector that satisfies

(Ek(D)Ew(t)) = orwlo(t —1).

e This implies

(Fe(t)-fr(t) = Fporw ot —t').
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opecial Case: White-Noise Forcing

e As in the constant forcing case, the rate of energy injection € is
given by

= (et ule,t) = [ (Flat ule.t) de = Re 3 (fultanlo)

Q2 k

e Here uy(t) is functional of the forcing:

wn(t) = wp(f) + / Adu(r)dr + [ fulr)ir

0 Ag|u(7)]

SFo ) 1s bounded.

where Ag 1s a functional of v such that

e Nonlinear Green’s function:

oup(t) (" OAgu(7) -
0 fr(t) B /t’ 0 fr(t') dT + O LH (t — 1),

where H is the Heaviside unit step tunction.
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e To prescribe the forcing amplitude Fj, in terms of e:

Theorem 3 (?) If f(x,t) is a Gaussian process, and u is a
functional of f, then

o) = [ [t s, ) (5o ) aot i

e For white-noise forcing, we obtain

k kK 0f w(t)
kk kk
2 .
k
1 2
— §ZF/€7
k

on noting that H(0) = 1/2.
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3D Basdevant Formulation: 8 FFT's

e Using incompressibility, the 3D momentum equation can be
written in terms of the symmetric tensor D;; = u;u;:

ot i ox; - _8xi+yﬁx§

+ F;.

e Naive implementation: 3 backward FEFTs to compute the
velocity components from their spectral representations, 6
forward FE'T's of the independent components of D;;.

e?7: avoid one FEFT by subtracting the divergence of the
symmetric matrix S;; = d;; tr D/3 from both sides:
8uz- n 6(DU — Sz ) ({9(]?(52] -+ SZ]> (‘921@

= — —I—V

ot 0x ox; c%?

+ F;.

e To compute the velocity components u;, 3 backward FFT's are
required. Since the symmetric matrix D;; — .5;; is traceless, it
has just 5 independent components.
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e Hence, a total of only 8 FF'T's are required per integration stage.

o The effective pressure po;; + S;; is solved as usual from the
inverse Laplacian of the force minus the nonlinearity:.
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2D Basdevant Formulation: 4 FF'T's

e The vorticity w = V Xu evolves according to

%_C; + (uV)w = (w-V)u + W+ VXF,

where in 2D the vortex stretching term (w-V )u vanishes and w
is normal to the plane of motion.

e For C*? velocity fields, the curl of the nonlinearity can be written
in terms of Dj; = D;; — S

0 0 ~ 0 0 ~ 0> 0> o 0
Dy — Dy = ( )D12+ (D22 — D1y1),

Or10z; ~  Ory0x; 02 02 11 0x9

on recalling that S is diagonal and S7; = S99.

e The scalar vorticity w thus evolves as

ow [P O 2, , OF, OF
§+(a_:v%_a_x;)(u1“2)+axlaxz(u2_“)”Vw+8_:z:1_8—:cz'
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e To compute up and wug in physical space, we need 2 backward
FFTs.

e The quantities ujus and u3—u? can then be calculated and then

transformed to Fourier space with 2 additional forward FFTs.

e The advective term in 2D can thus be calculated with just 4
FETs.
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Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N-—1
> R
p=0

where the vectors F' and G have period N.

e The backward 1D discrete Fourier transform of a complex vector

{F;,:k=0,...,N — 1} is defined as

N—-1
f]:ZCg\/{CFka ija*“aN_]-a
k=0

211 /N

where (y = ¢ denotes the Nth primitive root of unity.

e The fast Fourier transform (FFT) method exploits the
properties that ¢y = (ny, and (y =1

38



Convolution Theorem

N—-1 N-1 N-1 N—-1
—Jjk __ —Jjk Jp 74
139N = Gy E :CNFP E :CNGCI
7=0 j=0 p=0 q=0
N—-1N-1 N-1
_ (—k+p+q)J
— Fqu CN
p=0 ¢q=0 7=0
N-1
=N E E Fka—p—i—sN
s  p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e If only the first m entries of the input vectors are nonzero, aliases

can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e Faplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod V.
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Implicit Dealiasing

eLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1

fi= Y Gub
k=0

olf F;. = 0 for & > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

Jar = ZCM ZC%FM

Jory1 = Z CQMH F. = Z Cﬁcngk, ¢=0,1,...m—1.
k=0

e This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy m.
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e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fe}isy {Gr}isy



http://fftwpp.sourceforge.net/

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fe}isy {Gr}isy
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http://fftwpp.sourceforge.net/

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fkl%\‘ {le}%\‘
{ fae} i { farr1 105" {920} 15" {20117

. ——

{ foegae 7"

{ fort192011 050"
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e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fkl%\‘ {le}%\‘
{ fae} i { farr1 105" {920} 15" {20117

. ——

{ foegae 7"

{ fort192011 050"

{(F* Gy
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Conclusions

e The upper bound in the Z—F plane obtained for constant forcing
also works for the white-noise forcing.

e Adding hypoviscosity to the Navier—Stokes equation has a
dramatic effect on the turbulent dynamics: it restricts the global
attractor to the region characterized by the forcing annulus.

e With these tools, it should now be possible to study the relation
between white-noise and constant forcings by examining their
effects on the global attractor.

e This may lead to an explicit relation for the energy and
enstrophy injection rates for constant forcing.

e Analytical bounds for random forcing provide a means to
evaluate various heuristic turbulent subgrid (and supergrid!)
models by characterizing the behaviour of the global attractor
under these models.
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