
How Important is Dealiasing for
Turbulence Simulations?

John C. Bowman

University of Alberta

June 19, 2013

www.math.ualberta.ca/∼bowman/talks

Acknowledgements: Malcolm Roberts (Aix-Marseille University)

1



Dealiasing

•Over 40 years ago, Orszag pointed out the importance of
dealiasing in the pseudospectral method.

•Dealiasing pseudospectral convolutions, either by padding or
phase-shift dealiasing is expensive.

• Some researchers in the past have therefore neglected to dealias
pseudospectral simulations of strongly damped flow.

•This shortcut is typically justified with the claim that high-
wavenumber damping is sufficiently strong so that the dealiasing
error contributes negligibly to the large energy-containing scales.

•On the other hand, Hou and Li demonstrated in 2007 that high-
order Fourier smoothing captures nearly singular solutions of the
1D inviscid Burgers equations and the 3D Euler equations more
accurately and efficiently than explicit dealiasing via 2/3 zero
padding.
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•Given that high-Reynolds number turbulence, with well-
resolved inertial ranges, falls midway between these two limiting
cases of large viscosity vs. vanishing viscosity, it seems prudent
to reconfirm the importance of properly dealiasing turbulence
simulations. . .
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A Brief History of Dealiasing

•Gauss 1866: Nachlass: Theoria interpolationis methodo nova
tractata

– Earliest example of computing Fourier transforms via divide-
and-conquer strategy (FFT)

•Phillips 1959: An example of non-linear computational
instability

•Cooley & Tukey 1965: An Algorithm for the Machine
Calculation of Complex Fourier Series

– popularized general FFT algorithm
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•Orszag 1971: Elimination of aliasing in finite-difference schemes
by filtering high-wavenumber components

– zero padding

•Patterson & Orszag 1971: Spectral calculations of isotropic
turbulence: Efficient removal of aliasing interactions

– phase-shift dealiasing

•Choi et al. 1995: Parallel matrix tranpose algorithms on
distributed memory concurrent computers

•Hou & Li 2007: Computing nearly singular solutions using
pseudo-spectral methods

•Bowman & Roberts 2011: Efficient dealiased convolutions
without padding

– implicit dealiasing
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Origin of the 2/3 Rule
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Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑
p=0

FpGk−p,

where the vectors F and G have period N .

•Define the N th primitive root of unity:

ζN = exp

(
2πi

N

)
.

•The fast Fourier transform method exploits the properties that
ζrN = ζN/r and ζNN = 1.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1∑
k=0

ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑
j=0

ζ−kjN fj k = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1∑
j=0

ζ`jN =


N if ` = sN for s ∈ Z,
1− ζ`NN
1− ζ`N

= 0 otherwise.

•The pseudospectral method requires a linear convolution.
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Convolution Theorem

N−1∑
j=0

fjgjζ
−jk
N =

N−1∑
j=0

ζ−jkN

N−1∑
p=0

ζjpN Fp

N−1∑
q=0

ζjqNGq


=

N−1∑
p=0

N−1∑
q=0

FpGq

N−1∑
j=0

ζ
(−k+p+q)j
N

=N
∑
s

N−1∑
p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are aliases; we need to remove
them by ensuring that Gk−p+sN = 0 whenever s 6= 0.

• If Fp and Gk−p+sN are nonzero only for 0 ≤ p ≤ m − 1 and
0 ≤ k − p + sN ≤ m− 1, then we want k + sN ≤ 2m− 2 to
have no solutions for positive s.

•This can be achieved by choosing N ≥ 2m− 1.
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•One can dealias by zero padding input data vectors of length m
to length N ≥ 2m− 1:

•Explicit zero padding prevents mode m− 1 from beating with
itself, wrapping around to contaminate mode N = 0 modN .

• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m.
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Aliasing Error

•The claim that aliasing error is negligible is problematic: in
an undealiased pseudospectral simulation on [−N/2, N/2], the
inertial range mode at N/3 will beat with itself to generate a
spurious harmonic at wavenumber 2N/3 = −N/3(modN).

•Moreover, as Phillips pointed out in 1959, aliasing errors not
only contaminate the largest scales, they quickly lead to high-
wavenumber explosive numerical instability.

• In one experiment, we had to increase the viscosity by a factor
of 15 to damp out the aliasing instability.

•This additional damping completely destroyed the inertial
range and modified the energy transfers and large-scale energy
spectrum.
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2D Enstrophy Cascade

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
(k
)

100 101 102

k

dealiased

aliased+damped

12



2D Enstrophy Transfer
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Partial Dealiasing with a Fourier Filter
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Fourier Filter y = e−36x36
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2D Enstrophy Cascade
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2D Enstrophy Transfer
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•The recent introduction of implicit dealiasing, which in two and
three dimensions are roughly twice as fast as explicit dealiasing,
offsets the claim that smoothing via a Fourier filter is 20% more
efficient than dealiasing. . .
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Implicit Padding

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =

2m−1∑
k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2`=

m−1∑
k=0

ζ2`k2mFk =

m−1∑
k=0

ζ`kmFk,

f2`+1=

m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk, ` = 0, 1, . . .m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.
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•Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2mFk=

2m−1∑
j=0

ζ−kj2m fj

=

m−1∑
`=0

ζ−k2`2m f2` +

m−1∑
`=0

ζ
−k(2`+1)
2m f2`+1

=

m−1∑
`=0

ζ−k`m f2` + ζ−k2m

m−1∑
`=0

ζ−k`m f2`+1 k = 0, . . . ,m− 1.

•No bit reversal is required at the highest level.

•An implicitly padded convolution is implemented as in our
FFTW++ library (version 1.13) as cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution of two complex vectors
f and g using two temporary vectors u and v, each of length m.
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•This in-place convolution requires six out-of-place transforms,
thereby avoiding bit reversal at all levels.

•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding.

{Fk}m−1
k=0 {Gk}m−1

k=0{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

{(F ∗G)k}m−1
k=0
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Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do
f[k]← ζk2mf[k];

g[k]← ζk2mg[k];
end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;
f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do
f[k]← f[k] + ζ−k2mu[k];

end
return f/(2m);
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Implicit Padding in 1D
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Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF GF GF GF G

f g

F GF G

f g

fg

F GF G

f g

fg

F ∗G

F GF G

f g

fg

F ∗GF ∗G
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Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

F GFFT−1
x {F}

nx even

FFT−1
x {F}

nx odd

FFT−1
x {G}

nx even

FFT−1
x {G}

nx odd

FFT−1
x {F ∗G}
nx even

FFT−1
x {F ∗G}
nx odd

F ∗G

25



Implicit Padding in 2D
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Implicit Padding in 3D
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Hermitian Convolutions

•Hermitian convolutions arise when the input vectors are
Fourier transforms of real data:

fN−k = fk.
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Centered Convolutions

•For a centered convolution, the Fourier origin (k = 0) is
centered in the domain:

m−1∑
p=k−m+1

fpgk−p

•Here, one needs to pad to N ≥ 3m− 2 to prevent mode m− 1
from beating with itself to contaminate the most negative (first)
mode, corresponding to wavenumber −m + 1. Since the ratio
of the number of physical to total modes, (2m − 1)/(3m − 2)
is asymptotic to 2/3 for large m, this padding scheme is often
referred to as the 2/3 padding rule.

•The Hermiticity condition then appears as

f−k = fk.
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Implicit Hermitian Centered Padding in 1D
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Implicit Hermitian Centered Padding in 2D
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Parallelization

•Our implicit and explicit convolution routines have been
multithreaded for shared-memory architectures.

•Parallel generalized slab/pencil model implementations have
recently been developed for distributed-memory architectures
(available in svn repository and upcoming 1.14 release).

•The key bottleneck is the distributed matrix transpose.

•We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under both pure
MPI and hybrid MPI/OpenMP architectures.

•Local transposition is not required within a single MPI node.

•Another advantage of hybrid MPI/OpenMP over pure MPI for
matrix transposition is that it yields a larger communication
block size.
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•Hybrid MPI/OpenMP is more efficient (by roughly a factor of 2)
than pure MPI for distributed matrix transposes.

•However, FFTs seem to be more efficiently calculated with pure
MPI.

•Nevertheless, hybrid MPI/OpenMP offers some advantages:

– smaller problems sizes to be distributed over a large number
of processors;

– more slab-like than pencil-like model; this reduces the size of
or even eliminates the need for the second transpose.

•Our attempts thus far to overlap communication and
computation have unfortunately resulted in fragmented
communication, hurting performance.
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Pure MPI Speedup of 2D Implicit vs. Explicit
Convolutions for Different Problem Sizes
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Pure MPI Scaling of 2D Implicit Convolutions

1k 2k 4k 8k
Number of cores

100

sp
ee
d
u
p

Strong scaling: cconv2

10242

20482

40962

81922

163842

35



Pure MPI Scaling of 3D Implicit Convolution
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Conclusions

•Dealiasing of pseudospectral simulations is essential for stability
and accuracy.

•For turbulence simulations, partial dealiasing via a Fourier filter
seems neither necessary nor desirable.

•With the advent of implicit dealiasing, partial Fourier filtering
is no longer the most efficient option.

•Memory savings: in d dimensions implicit padding
asymptotically uses 1/2d−1 of the memory require by
conventional explicit padding.

•The factor of 2 in computational savings is due to increased data
locality.

•Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ on top of
the FFTW library and released under the Lesser GNU Public
License: http://fftwpp.sourceforge.net/ 37
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