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Two-Dimensional Turbulence

•Navier–Stokes equation for vorticity ω = ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −ν∇2ω + f.

• In Fourier space:

∂ωk

∂t
= Sk − νk2ωk + fk,

where Sk =
∑

p

ẑ·p×k

p2
ω∗

p ω∗
−k−p.

•When ν = 0 and fk = 0:

energy E = 1

2

∑

k

|ωk|
2

k2
and enstrophy Z = 1

2

∑

k

|ωk|
2 are

conserved.
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Fjørtoft Dual Cascade Scenario

k1 k2 k3
. . . Z1

E1

Z3

E3

Z2E2

. . .

E2 = E1 + E3, Z2 = Z1 + Z3, Zi ≈ k2

i Ei.

•When k1 = k, k2 = 2k, and k3 = 4k:

E1 ≈
4

5
E2, Z1 ≈

1

5
Z2, E3 ≈

1

5
E2, Z3 ≈

4

5
Z2.

•Fjørtoft [1953]: energy cascades to large scales and enstrophy
cascades to small scales.
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Kraichnan–Leith–Batchelor Theory

• In an infinite domain:

– large scale k−5/3 energy cascade

– small scale k−3 enstrophy cascade

• In a bounded domain, the situation may be quite different. . .
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Long-Time Behaviour in a Bounded Domain

Tran and Bowman, PRE 69, 036303, 1–7 (2004).
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Casimir Invariants

• Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.

•Any continuously differentiable function of the (scalar) vorticity
is conserved by the nonlinearity:

d

dt

∫
f (ω) dx=

∫
f ′(ω)

∂ω

∂t
dx = −

∫
f ′(ω)u·∇ω dx

=−

∫
u·∇f (ω) dx =

∫
f (ω)∇·u dx = 0.

•Do these invariants also play a fundamental role in the turbulent
dynamics, in addition to the quadratic (energy and enstrophy)
invariants?

•What is certain is that only the quadratic invariants survive
high-wavenumber truncation (Montgomery calls them rugged
invariants).
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High-Wavenumber Truncation

∂ωk

∂t
=

∑

p,q

ǫkpq

q2
ω∗

p ω∗
q.

where ǫkpq = (ẑ·p×q) δ(k + p + q).

•Enstrophy evolution:

d

dt

∑

k

|ωk|
2 =

∑

k,p,q

ǫkpq

q2
ω∗

kω
∗
p ω∗

q = 0.

• Invariance of Z3 =
∫

ω3 dx follows from:

0 =
∑

k,r,s

[∑

p,q

ǫkpq

q2
ω∗

p ω∗
qω

∗
rω

∗
s + 2 other similar terms

]
.
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•The absence of an explicit ωk in the first term means that
setting ωk = 0 for k > K will make the summations no longer
symmetric!

•However, since the missing terms involve ωp and ωq for p and
q higher than the truncation wavenumber K, one might expect
that a very well-resolved simulation would lead to almost exact
invariance of Z3.

•We will show that this is indeed the case.
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Enstrophy Balance

∂ωk

∂t
+ νk2ωk = Sk + fk,

•Multiply by ω∗
k and integrate over wavenumber angle ⇒

enstrophy spectrum Z(k) evolves as:

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) + G(k),

where T (k) and G(k) are the corresponding angular averages of
Re 〈Skω

∗
k〉 and Re 〈fkω

∗
k〉.
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Nonlinear Enstrophy Transfer Function

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) + G(k).

•Let

Π(k)
.
= 2

∫ ∞

k

T (p) dp

represent the nonlinear transfer of enstrophy into [k,∞).

• Integrate from k to ∞:

d

dt

∫ ∞

k

Z(p) dp = Π(k) − ζ(k),

where ζ(k)
.
= 2ν

∫ ∞

k

p2Z(p) dp −

∫ ∞

k

G(p) dp is the

total enstrophy transfer, via dissipation and forcing, out of
wavenumbers higher than k.
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•A positive (negative) value for Π(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

•When ν = 0 and fk = 0:

0 =
d

dt

∫ ∞

0

Z(p) dp = 2

∫ ∞

0

T (p) dp,

so that

Π(k) = 2

∫ ∞

k

T (p) dp = −2

∫ k

0

T (p) dp.

•Note that Π(0) = Π(∞) = 0.

• In a steady state, Π(k) = ζ(k).

•This provides an excellent numerical diagnostic for when a
steady state has been reached.
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Forcing at k = 2, molecular viscosity for
k ≥ 150:
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Nonlinear Casimir Transfer

•Fourier decompose the third-order Casimir invariant Z3 =

N 2
∑

j

ω3(xj) where xj are the N spatial collocation points:

Z3 =
∑

k,p

ωk ωp ω−k−p.

• In terms of the nonlinear source term Sk in ∂
∂tωk:

d

dt
Z3 =

∑

k



Sk

∑

p

ωp ω−k−p + 2ωk

∑

p

Sp ω−k−p





d

dt
Z3 =N

∑

k



Sk

∑

j

ω2(xj)e
2πij·k/N + 2ωk

∑

j

S(xj)ω(xj)e
2πij·k/N





.
=

∑

k

T3(k).
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Casimir Cascades?
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Casimir Cascades?
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Conclusions

•Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.

•We computed the transfer function of the globally integrated
ω3 inviscid invariant.

•Numerical evidence suggests that there is no systematic cascade
of this invariant: it appears to slosh back and forth between the
large and small scales.
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Asymptote: The Vector Graphics Language

symptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptote

http://asymptote.sf.net

(freely available under the GNU public license)
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