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2D Turbulence
Navier–Stokes equation forvorticity ω = ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −Dω + f,

whereD = −ν∇2 represents molecular dissipation.

In Fourier space:

∂ωk

∂t
= Sk − Dkωk + fk,

whereDk = νk2.

We take the forcingfk to be awhite-noise random process,
with zero mean and covariance

〈fk(t)f∗
k′(t)〉 = Fkδk,k′δ(t − t′).

This allows one to control the mean rate of enstrophy injection
[Novikov 1964]:
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∑
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k2
be the ratio of meanenstrophy

to energyinjection.

Novikov [1964]⇒ s will lie within the band of forced
wavenumbers.

Multiply the energy equation
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by s2 and subtract the enstrophy equation
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⇒ steady-statebalance equation[Tran & Bowman 2003]:

s
∑

k=k0

(s2 − k2)DkE(k) =

∞
∑

k=s

(k2 − s2)DkE(k).



Balance Equation
Small and large scale dynamics areintricately coupled:

s
∑

k=k0

(s2 − k2)DkE(k) =
∞

∑

k=s

(k2 − s2)DkE(k).

Explains the discrepancy between the enstrophy-range KLB
predictionE(k) ∼ k−3 and the steep∼ k−5 spectrum typically
seen in numerical simulations.

Unbounded domain:everlasting inverse energy cascade.

Bounded domain:upscale energy cascade is halted at the
lowest wavenumber.

Lower spectral boundary acts like an external forcing.



Large-Scale Direct Cascade?



Energetic reflections at the lower spectral boundary eventually
lead to a large-scaledirect“cascade.”

This would agree with the large-scalek−3 spectra seen
numerically [Borue 1994] and observed in the atmosphere
[Lilly & Peterson 1983].

[Tran & Bowman 2003]: In a bounded domain, the two inertial
range exponentsmust sum to−8 (at high Reynolds number).

Large-scalek−3 spectrum⇒ a small-scalek−5 spectrum.

Consistent with rigorous [Tran & Shepherd 2002] constraint:
the spectrum must beat least as steep ask−5.



Bounded 2D Turbulence
Q. How do the energy balances associated with the hypothetical
steady-state energy spectrum

E(k) = A

{

k−α if k0 ≤ k < s,
sβ−αk−β if s ≤ k ≤ kT

behave in the limitk0 → 0+, kT → ∞?

The energy dissipation would be equal to

ǫ = 2νAs3−α

(

1

3 − α
+

1

β − 3

)

(α < 3, β > 5).

Apply steady-state constraintα + β = 8
[Tran & Bowman 2003].

Let δ = 3 − α = β − 5 :

ǫ = 2νAsδ

(

1

δ
+

1

2 + δ

)

.

If lim
ν→0+

A is finite then lim
ν→0+

δ = 0.



That is, lim
ν→0+

α = 3 and lim
ν→0+

β = 5.

Conjecture:steady-state high-resolution bounded numerical
simulations, forced at an intermediate wavenumber, approach
this limit.

However, this says nothing about thequasi-steady statein an
unbounded domaindiscussed by KLB(open problem).



Large-Scale Dissipation
If a large-scale dissipationis added to the NS equation in a
bounded domain, numerical evidence suggests that a
logarithmically correctedk−3 direct cascade is nevertheless
possible.

Over the inertial rangek1 ≤ k ≤ kν , expect a logarithmically
corrected spectrum [Kraichnan 1971, Bowman 1996]

E(k) ∼ k−3

[

log

(

k

k1

)

+ χ1

]−1/3

,

whereχ1 > 0 is determined by the large-scale dynamics.

We forced6832 dealiased modes in the wavenumber band
[1.5, 2.5] and adopted the small-scale molecular dissipation
coefficient1.25 × 10−4k2 for k ≥ kH and and large-scale
dissipation coefficient0.1k0 for k ≤ 3.



Direct k−3 Enstrophy Cascade

Zero dissipation for3 < k < kH .



Logarithmic Slope
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Logarithmic Correction
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Energy Transfer
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Enstrophy Transfer
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Spatially-Filtered Enstrophy Transfer Function
The key point that Tran and Shepherd [2002] showed was that
the enstrophy dissipation inbounded2D NS turbulencewith an
energetically localized forcingoccurs near the forcing region.

Chen, Ecke, Eyink, and Wang found that the enstrophy transfer
to small scales has a surprisinglysymmetric PDFat different
scalesl [PRL 91, 214501 (2003)].



Fourier-Filtered Enstrophy Transfer
Define thetriplet

T (k) = Re
∑

|k|=k

Skω∗
k.

We attempted to verify Chenet al.’s result by computing
Kraichnan’s Fourier-spaceenstrophy transfer functionΠ(k)

Π(k) =

∫ ∞

k
T (k) dk = −

∫ k

0

T (k) dk,

(rather than by using a Gaussian filter).

However, unlike Chenet al., we compute thespatially averaged
enstrophy transfer.



PDF of Enstrophy Transfer
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PDF of Enstrophy Transfer
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PDF of Enstrophy Transfer
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PDF of Enstrophy Transfer
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Transfer vs. Flux
Distinguish betweentransferandflux.

The rate of enstrophytransferto [k,∞) is given by

Π(k) =

∫ ∞

k
T (k) dk = −

∫ k

0

T (k) dk.

In a steady state,Π(k) will trivially be constant in any inertial
range.

The same applies to the energy transfer function [cf.
Gkioulekas and Tung 04].

The enstrophyflux through a wavenumberk is the amount of
enstrophy transferred to small scalesvia triad interactions
involving modek.



Flux Decomposition for a Single (k, p, q) Triad
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Conclusions
A directlarge-scalek−3 “cascade” resulting from reflections at
the lower spectral boundary provides a physical explanation for
numerically observed small-scalek−5 spectra.

If a large-scale dissipationis added to the NS equation in a
bounded domain, numerical evidence suggests that a
logarithmically correctedk−3 direct cascade is nevertheless
possible.

Thespatially averaged enstrophy transferin an enstrophy
cascade has an approximately Gaussian PDF, with positive
mean, in contrast to the non-Gaussian, roughly central,
pointwise enstrophy transfer computed by Chenet al. [2003].

Should distinguish betweennonlocal transferandflux.

By restricting the wavenumbers entering flux convolutions,one
can conveniently decompose the flux intolocalandnonlocal
contributions.
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