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2D Turbulence
Navier—Stokes equation foorticity w = 2-V X u:
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whereD = —vV? represents molecular dissipation.
In Fourier space:
&uk
—— =5 — D
> k — Diwr + fk;
whereD;. = vk?.

We take the forcing;, to be awhite-noise random process,
with zero mean and covariance

(fru(t)frr(t)) = Frogpo(t —t').
This allows one to control the mean rate of enstrophy inpecti
[Novikov 1964]: >, frwi = 5 > 5 Fi-

Steady-state energy spectruntigs) = 5 Z| k| =k ‘“’k'



e Lets® = Z fewy, / Z fk% be the ratio of meannstrophy
k k

to energyinjection.
e Novikov [1964]= s will lie within the band of forced
wavenumbers.

e Multiply the energy equation
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by s? and subtract the enstrophy equation
10w’

2
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2 Ot
= steady-stat@alance equatiojTran & Bowman 2003]:




Balance Equation
Small and large scale dynamics an&icately coupled

Explains the discrepancy between the enstrophy-range KLB

predictionE (k) ~ k3 and the steep £ —° spectrum typically
seen in numerical simulations.

Unbounded domaireverlasting inverse energy cascade.

Bounded domainupscale energy cascade is halted at the
lowest wavenumber.

Lower spectral boundary acts like an external forcing.
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L arge-Scale Direct Cascade?




Energetic reflections at the lower spectral boundary ewadigtu
lead to a large-scal@éirect“cascade.”

This would agree with the large-scale® spectra seen
numerically [Borue 1994] and observed in the atmosphere
[Lilly & Peterson 1983].

[Tran & Bowman 2003]: In a bounded domain, the two inertia
range exponentsiust sum to-8 (at high Reynolds number).

Large-scalé: 3 spectrum=- a small-scalé > spectrum.

Consistent with rigorous [Tran & Shepherd 2002] constraint
the spectrum must b& least as steep as®.



Bounded 2D Turbulence

Q. How do the energy balances associated with the hypod#het
steady-state energy spectrum

’ = if ko < k < s,
PR i s <k < ky

behave in the limiky — 07, bk — 00?

E(k)= A

The energy dissipation would be equal to

1 1
GZQVASB_a (3_&—|—m> (Oé<3,ﬁ>5)

Apply steady-state constraiat+ G = 8
[Tran & Bowman 2003].
leto =3 —a=0-5:
1 1
_ o (2
e = 2UAS <5—|—2+5>.
If lim A s finite thenlim 6 = 0.
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e Thatis, lim a«=3and lim § =5.
v—07t v—07t

e Conjecturesteady-state high-resolution bounded numerical
simulations, forced at an intermediate wavenumber, aghroa
this limit.

e However, this says nothing about theasi-steady staia an
unbounded domaidiscussed by KLBopen problem).




L arge-Scale Dissipation

e |f alarge-scale dissipatias added to the NS equation in a
pounded domain, numerical evidence suggests that a

ogarithmically corrected > direct cascade is nevertheless
possible.

e Over the inertial rangé; < k < k,, expect a logarithmically
corrected spectrum [Kraichnan 1971, Bowman 1996]

wherey; > 0 Is determined by the large-scale dynamics.

e We forced683? dealiased modes in the wavenumber band
11.5,2.5] and adopted the small-scale molecular dissipation
coefficientl.25 x 10~*k? for k > ky and and large-scale
dissipation coefficient.1%£" for k& < 3.
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Direct £~ Enstrophy Cascade
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L ogarithmic Slope
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logarithmic slope of E(k)
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y=[k3 E(k)]3
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L ogarithmic Correction

y=ax+b
a=0.052
- b=0.14 ]
. x,=b/a=R2.7 .

R E R S
0 0.6 1.2 1.8
x=log(k/k,)
Zero dissipation foB < k < 300.



Energy Transfer
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Cumulative energy transfer rate
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Enstrophy Transfer

Cumulative energy transfer rate
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Spatially-Filtered Enstrophy Transfer Function

e The key point that Tran and Shepherd [2002] showed was thz
the enstrophy dissipation imounde®D NS turbulencevith an
energetically localized forcingccurs near the forcing region.

e Chen, Ecke, Eyink, and Wang found that the enstrophy transt
to small scales has a surprisinglymmetric PDFat different
scaled [PRL 91, 214501 (2003)].
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Fourier-Filtered Enstrophy Transfer
e Define thetriplet

e \We attempted to verify Che#x «al.’s result by computing
Kraichnan’s Fourier-spaamstrophy transfer functioii(k)

(rather than by using a Gaussian filter).

e However, unlike Chenrt al., we compute thepatially averaged
enstrophy transfer.



PDF of Enstrophy Transfer
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PDF of enstrophy transfer at wavenumbet.



PDF of Enstrophy Transfer
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PDF of Enstrophy Transfer
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Transfer vs. Flux
Distinguish betweelransferandflux.
The rate of enstrophyansferto |k, o) IS given by

In a steady stateé] (k) will trivially be constant in any inertial
range.

The same applies to the energy transfer function [cf.
Gkioulekas and Tung 04].

The enstrophylux through a wavenumbeéris the amount of
enstrophy transferred to small scaiés triad interactions
Involving modek.



Flux Decomposition for a Single (k, p, ¢q) Triad

E(k) E(k) E(k)
p p k
q k p
k q q
k ; k
Ly =Ty Ly = -1, Ly =0
S, = 0 Sy = —T, S, =T,

In each casé., + S, =T, = —1, — T;,. In general:

* ES
L. = Re Z My p wp Wg—p wp, — Re Z Mp g—p Wp Wg—p Wy,
|k|=k |k|=k

Ip|<k Ip|<k
|lk—p|<k |lk—p|>k



Conclusions

A directlarge-scalé:—? “cascade” resulting from reflections at
the lower spectral boundary provides a physical explandto

numerically observed small-scate® spectra.

If a large-scale dissipatias added to the NS equation in a
pounded domain, numerical evidence suggests that a

ogarithmically corrected > direct cascade is nevertheless
possible.

Thespatially averaged enstrophy trangfean enstrophy
cascade has an approximately Gaussian PDF, with positive
mean, in contrast to the non-Gaussian, roughly central,
pointwise enstrophy transfer computed by Claenl. [2003].

Should distinguish betweearonlocal transfeandflux.

By restricting the wavenumbers entering flux convoluticaonmse
can conveniently decompose the flux imdoal andnonlocal
contributions.
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