#### Local vs. Nonlocal Enstrophy Flux in Two-Dimensional Turbulence

John C. Bowman and Chuong V. Tran Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada

Jahanshah Davoudi

Philipps-Universität Marburg, Fachbereich Physik, Marburg, Germany

http://www.math.ualberta.ca/~bowman/talks

## Outline

#### 1 2D Turbulence

- A Balance Equation
- B Bounded 2D Turbulence
- C Tran & Shepherd Constraint
- D Large-Scale Dissipation
- 2 Enstrophy Transfer
- 3 Transfer vs. Flux
- 4 Conclusions

## **2D Turbulence**

• Navier–Stokes equation for vorticity  $\omega = \hat{z} \cdot \nabla \times u$ :

$$\frac{\partial \omega}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \omega = -\mathcal{D} \omega + f,$$

where  $\mathcal{D} = -\nu \nabla^2$  represents molecular dissipation.

• In Fourier space:

$$\frac{\partial \omega_{\boldsymbol{k}}}{\partial t} = S_{\boldsymbol{k}} - D_{\boldsymbol{k}} \omega_{\boldsymbol{k}} + f_{\boldsymbol{k}},$$

where  $D_k = \nu k^2$ .

• We take the forcing  $f_k$  to be a white-noise random process, with zero mean and covariance

$$\langle f_{\boldsymbol{k}}(t)f_{\boldsymbol{k}'}^*(t)\rangle = F_{\boldsymbol{k}}\delta_{\boldsymbol{k},\boldsymbol{k}'}\delta(t-t').$$

• This allows one to control the mean rate of enstrophy injection [Novikov 1964]:  $\overline{\sum_{k} f_{k} \omega_{k}^{*}} = \frac{1}{2} \sum_{k} F_{k}$ .

• Steady-state energy spectrum is  $E(k) = \frac{1}{2} \sum_{|\mathbf{k}|=k} \frac{|\omega_{\mathbf{k}}|^2}{k^2}$ 

• Let  $s^2 = \sum_{k} f_k \omega_k^* / \sum_{k} f_k \frac{\omega_k^*}{k^2}$  be the ratio of mean enstrophy

to energy injection.

- Novikov [1964]  $\Rightarrow$  *s* will lie within the band of forced wavenumbers.
- Multiply the energy equation

$$\frac{1}{2k^2} \frac{\partial |\omega_{\boldsymbol{k}}|^2}{\partial t} + D_k \frac{|\omega_{\boldsymbol{k}}|^2}{k^2} = S_{\boldsymbol{k}} \frac{\omega_{\boldsymbol{k}}^*}{k^2} + f_{\boldsymbol{k}} \frac{\omega_{\boldsymbol{k}}^*}{k^2}$$

by  $s^2$  and subtract the enstrophy equation

$$\frac{1}{2} \frac{\partial |\omega_{\boldsymbol{k}}|^2}{\partial t} + D_k |\omega_{\boldsymbol{k}}|^2 = S_{\boldsymbol{k}} \omega_{\boldsymbol{k}}^* + f_{\boldsymbol{k}} \omega_{\boldsymbol{k}}^*$$

 $\Rightarrow$  steady-state balance equation [Tran & Bowman 2003]:

$$\sum_{k=k_0}^{s} (s^2 - k^2) D_k E(k) = \sum_{k=s}^{\infty} (k^2 - s^2) D_k E(k).$$

### **Balance Equation**

#### • Small and large scale dynamics are intricately coupled:

$$\sum_{k=k_0}^{s} (s^2 - k^2) D_k E(k) = \sum_{k=s}^{\infty} (k^2 - s^2) D_k E(k).$$

- Explains the discrepancy between the enstrophy-range KLB prediction  $E(k) \sim k^{-3}$  and the steep  $\sim k^{-5}$  spectrum typically seen in numerical simulations.
- Unbounded domain: everlasting inverse energy cascade.
- Bounded domain: upscale energy cascade is halted at the lowest wavenumber.
- Lower spectral boundary acts like an external forcing.

#### **Large-Scale Direct Cascade?**



- Energetic reflections at the lower spectral boundary eventually lead to a large-scale direct "cascade."
- This would agree with the large-scale k<sup>-3</sup> spectra seen numerically [Borue 1994] and observed in the atmosphere [Lilly & Peterson 1983].
- [Tran & Bowman 2003]: In a bounded domain, the two inertial range exponents must sum to -8 (at high Reynolds number).
- Large-scale  $k^{-3}$  spectrum  $\Rightarrow$  a small-scale  $k^{-5}$  spectrum.
- Consistent with rigorous [Tran & Shepherd 2002] constraint: the spectrum must be at least as steep as  $k^{-5}$ .

## **Bounded 2D Turbulence**

• Q. How do the energy balances associated with the hypothetical steady-state energy spectrum

$$E(k) = A \begin{cases} k^{-\alpha} & \text{if } k_0 \le k < s, \\ s^{\beta - \alpha} k^{-\beta} & \text{if } s \le k \le k_T \end{cases}$$

behave in the limit  $k_0 \to 0^+, k_T \to \infty$ ?

• The energy dissipation would be equal to

$$\epsilon = 2\nu A s^{3-\alpha} \left( \frac{1}{3-\alpha} + \frac{1}{\beta-3} \right) \qquad (\alpha < 3, \ \beta > 5).$$

- Apply steady-state constraint  $\alpha + \beta = 8$  [Tran & Bowman 2003].
- Let  $\delta = 3 \alpha = \beta 5$ :

$$\epsilon = 2\nu A s^{\delta} \left( \frac{1}{\delta} + \frac{1}{2+\delta} \right).$$

• If  $\lim_{\nu \to 0^+} A$  is finite then  $\lim_{\nu \to 0^+} \delta = 0$ .

- That is,  $\lim_{\nu \to 0^+} \alpha = 3$  and  $\lim_{\nu \to 0^+} \beta = 5$ .
- Conjecture: steady-state high-resolution bounded numerical simulations, forced at an intermediate wavenumber, approach this limit.
- However, this says nothing about the quasi-steady state in an unbounded domain discussed by KLB (open problem).

## **Large-Scale Dissipation**

- If a large-scale dissipation is added to the NS equation in a bounded domain, numerical evidence suggests that a logarithmically corrected k<sup>-3</sup> direct cascade is nevertheless possible.
- Over the inertial range  $k_1 \le k \le k_{\nu}$ , expect a logarithmically corrected spectrum [Kraichnan 1971, Bowman 1996]

$$E(k) \sim k^{-3} \left[ \log \left( \frac{k}{k_1} \right) + \chi_1 \right]^{-1/3},$$

where  $\chi_1 > 0$  is determined by the large-scale dynamics.

• We forced  $683^2$  dealiased modes in the wavenumber band [1.5, 2.5] and adopted the small-scale molecular dissipation coefficient  $1.25 \times 10^{-4}k^2$  for  $k \ge k_H$  and and large-scale dissipation coefficient  $0.1k^0$  for  $k \le 3$ .

**Direct**  $k^{-3}$  **Enstrophy Cascade** 



### **Logarithmic Slope**



### **Logarithmic Correction**



#### **Energy Transfer**



### **Enstrophy Transfer**



### **Spatially-Filtered Enstrophy Transfer Function**

- The key point that Tran and Shepherd [2002] showed was that the enstrophy dissipation in bounded 2D NS turbulence with an energetically localized forcing occurs near the forcing region.
- Chen, Ecke, Eyink, and Wang found that the enstrophy transfer to small scales has a surprisingly symmetric PDF at different scales *l* [PRL 91, 214501 (2003)].



### **Fourier-Filtered Enstrophy Transfer**

• Define the triplet

$$T(k) = \operatorname{Re} \sum_{|\boldsymbol{k}|=k} S_{\boldsymbol{k}} \omega_{\boldsymbol{k}}^{*}.$$

• We attempted to verify Chen *et al.*'s result by computing Kraichnan's Fourier-space enstrophy transfer function  $\Pi(k)$ 

$$\Pi(k) = \int_k^\infty T(k) \, dk = -\int_0^k T(k) \, dk,$$

(rather than by using a Gaussian filter).

• However, unlike Chen *et al.*, we compute the spatially averaged enstrophy transfer.



PDF of enstrophy transfer at wavenumber 121.



PDF of enstrophy transfer at wavenumber 241.

**PDF of Enstrophy Transfer** 



PDF of enstrophy transfer at wavenumber 361.

**PDF of Enstrophy Transfer** 



PDF of enstrophy transfer at wavenumber 481.

## **Transfer vs. Flux**

- Distinguish between transfer and flux.
- The rate of enstrophy transfer to  $[k, \infty)$  is given by

$$\overline{\Pi(k)} = \int_{k}^{\infty} \overline{T(k)} \, dk = -\int_{0}^{k} \overline{T(k)} \, dk.$$

- In a steady state,  $\overline{\Pi(k)}$  will trivially be constant in any inertial range.
- The same applies to the energy transfer function [cf. Gkioulekas and Tung 04].
- The enstrophy flux through a wavenumber k is the amount of enstrophy transferred to small scales via triad interactions involving mode k.

## Flux Decomposition for a Single (k, p, q) Triad



 $L_k = T_k \qquad L_k = -T_p \qquad L_k = 0$  $S_k = 0 \qquad S_k = -T_q \qquad S_k = T_k$ 

In each case  $L_k + S_k = T_k = -T_p - T_q$ . In general:

$$\boldsymbol{L}_{\boldsymbol{k}} = \operatorname{Re} \sum_{\substack{|\boldsymbol{k}|=k\\|\boldsymbol{p}|k}} M_{\boldsymbol{p},\boldsymbol{k}-\boldsymbol{p}} \, \omega_{\boldsymbol{p}} \, \omega_{\boldsymbol{k}-\boldsymbol{p}} \, \omega_{\boldsymbol{k}}^*.$$

# Conclusions

- A direct large-scale  $k^{-3}$  "cascade" resulting from reflections at the lower spectral boundary provides a physical explanation for numerically observed small-scale  $k^{-5}$  spectra.
- If a large-scale dissipation is added to the NS equation in a bounded domain, numerical evidence suggests that a logarithmically corrected k<sup>-3</sup> direct cascade is nevertheless possible.
- The spatially averaged enstrophy transfer in an enstrophy cascade has an approximately Gaussian PDF, with positive mean, in contrast to the non-Gaussian, roughly central, pointwise enstrophy transfer computed by Chen *et al.* [2003].
- Should distinguish between nonlocal transfer and flux.
- By restricting the wavenumbers entering flux convolutions, one can conveniently decompose the flux into local and nonlocal contributions.