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Software & Tools

Asymptote: A vector graphics language

John C. Bowman and Andy Hammerlindl

Abstract

Asymptote is a powerful descriptive vector graph-
ics language inspired by METAPOST that features
robust floating-point numerics, automatic picture siz-
ing, native three-dimensional graphics, and a C++/
Java-like syntax enhanced with high-order functions.

1 Motivation

The descriptive vector graphics language Asymptote1

was developed to provide a standard for drawing
mathematical figures, just as TEX and LATEX have
become the standard for typesetting equations in the
mathematics, physics, and computer science commu-
nities. Asymptote has been aptly described as “the
ruler and compass of typesetting” [1]. For profes-
sional quality and portability, Asymptote natively
produces PostScript or PDF output. Graphics la-
bels are typeset directly by TEX to achieve overall
document consistency: identical fonts and equations
should be used in graphics and text portions of a
document.

In this article we first highlight Asymptote’s ba-
sic graphics capabilities with an example and then
proceed to review the origins and distinguishing fea-
tures of this powerful vector graphics language. Fur-
ther examples of Asymptote diagrams, graphs, and
animations are available in the Asymptote gallery
and user-written wiki:
http://asymptote.sourceforge.net/gallery/
http://asymptote.sourceforge.net/links.html

2 An example

The following example illustrates the four Asymptote
graphics primitives (draw, fill, clip, and label):

size(0,100);
pair z1=(-1,0);
pair z2=(1,0);
real r=1.5;
path c1=circle(z1,r);
path c2=circle(z2,r);

fill(c1,lightred);
fill(c2,lightgreen);

1 Andy Hammerlindl, John Bowman, and Tom Prince,
available under the GNU General Public License from
http://asymptote.sourceforge.net/

picture intersection;
fill(intersection,c1,lightred+lightgreen);
clip(intersection,c2);
add(intersection);

draw(c1);
draw(c2);

label("$A$",z1);
label("$B$",z2);
path g=(0,-2)--(0,-0.25);
draw(Label("$A\cap B$",0),g,Arrow);

A B

A ∩ B

3 History

Asymptote began as a University of Alberta sum-
mer undergraduate research project in 2002, after
looking into the feasibility of overhauling Hobby’s
METAPOST

2 to use floating-point numerics. Many
of the current limitations of METAPOST derive from
METAFONT: numbers are stored in a low-precision
fixed-point format that is adequate for representing
points in a glyph but restrictive for diagrams and sci-
entific computations. While the IEEE floating-point
numeric format was not standardized until 1985,
the initial development of TEX dates back to 1978.
At that time, the decision to use only fixed-point
(integer-based) arithmetic was perfectly reasonable:
Knuth wanted to guarantee that TEX and META-
FONT would produce exactly the same bit-mapped
output on any existing hardware.

We quickly determined that a complete rewrite
of the underlying graphics engine would be necessary.
After six months of work, our compiler for a new
graphics language could finally draw a sine curve.
One of the four Asymptote primitives had now been
implemented!

From this very humble beginning, Asymptote
evolved rapidly. The basic fill operation was straight-
forward to implement. The most crucial advance,

2
METAPOST is a modified version of METAFONT, the

program that Knuth wrote to produce the Computer Modern
fonts used with TEX.

http://asymptote.sourceforge.net/gallery/
http://asymptote.sourceforge.net/links.html
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aligning TEX labels at the correct positions, was ac-
complished three months later, using compass direc-
tions or arbitrary angles to specify label alignments:

size(0,2cm);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);
label("$A$",(0,0),SW);
label("$B$",(1,0),SE);
label("$C$",(1,1),NE);
label("$D$",(0,1),NW);

A B
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The idea was to leave the entire label type-
setting to LATEX, inserting PostScript layers with
\includegraphics, and thereby avoid the complica-
tions and kerning issues inherent in the METAPOST

approach of post-processing the DVI file. To accom-
plish this, Asymptote communicates with TEX via
a bidirectional pipe in two passes: the first pass is
used to obtain label sizing information, while the
second pass performs the final typesetting directly
into DVI/PostScript or PDF. Label clipping and
transforms are implemented with PostScript or PDF

specials.
A third co-developer, Tom Prince, joined us

in 2004. He contributed a method for embedding
Asymptote code directly in LATEX source files. With
Tom’s help, we ported more reliable versions of the
METAPOST algorithms for basic Bézier path oper-
ations such as splitting into subpaths, computing
points of tangency, determining path bounds, and
finding intersection points. Robust arc length and
arc time computations were implemented with adap-
tive Simpson integration, which was determined to
be more efficient than Bézier subdivision.

On November 7, 2004, we posted our first pub-
lic release, version 0.51, on sourceforge.net. Since
then, the user base and the list of new features have
grown dramatically. The current version at the time
of this writing is 1.42. Like METAPOST, Asymptote
runs on GNU/Linux and other UNIX-like operating
systems, Microsoft Windows, and Mac OSX. Pre-
compiled Asymptote binaries are now included in
several major Linux distributions.

4 Language features

Asymptote uses lexical analysis, parsing, and inter-
mediate code generation to compile commands into
virtual machine code, optimizing speed without sac-
rificing portability. Double-precision floating-point
numbers and 64-bit integers make arithmetic over-

flow, underflow, and loss of precision issues much
less troublesome than they are in METAPOST pro-
grams. Asymptote represents curves as cubic Bézier
splines, but can easily handle large data values and
the pathological behaviour of functions like x sin(1/x)
near the origin. It also supports new path operations
like computing the winding number of a path relative
to a given point, which is useful for identifying the
region bounded by a closed path.

Most users find the Asymptote language much
easier to program in, with its C++/Java-like syn-
tax (augmented to support high-order functions),
than METAPOST, with its awkward and somewhat
confusing vardef macros. Asymptote also borrows
several ideas from Python, such as named function
arguments and array slices. High-level graphics com-
mands are implemented in the Asymptote language
itself, allowing them to be easily tailored to specific
user applications.

Like METAPOST, Asymptote is mathematically
oriented. For example, one can rotate vectors by
complex multiplication and apply affine transforma-
tions (shifts, rotations, reflections, and scalings) to
pairs, triples, paths, pens, strings, pictures, and other
transforms.

4.1 Functions

Asymptote is the only language we know of that
treats functions as variables, but allows overloading
by distinguishing variables based on their signatures.
In fact, function definitions are just syntactic sugar
for assigning function objects to variables:

real square(real x) {return x^2;}

is equivalent to

real square(real x);
square=new real(real x) {return x^2;};

Asymptote supports a more flexible mechanism
for default function arguments than C++: they may
appear anywhere in the function prototype. This
feature underlies Asymptote’s greatest strength: sen-
sible default values for the basic graphical elements
allow beautiful graphs and drawings to be created
with extremely short scripts, without sacrificing the
flexibility for detailed customization. Default argu-
ments are evaluated as Asymptote expressions in the
scope where the function is defined.

Because certain data types are implicitly cast
to more sophisticated types, one can often avoid
ambiguities in function calls by ordering function
arguments from the simplest to the most complicated.
For example, given

real f(int a=1, real b=0) {return a+b;}
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the call f(1) returns 1.0, but f(1.0) returns 2.0.
It is sometimes difficult to remember the order in
which arguments appear in a function declaration.
Python-style named (keyword) arguments make call-
ing functions with multiple arguments easier: the
above examples could respectively be written f(a=1)
and f(b=1). An assignment of a function argument
is interpreted as an assignment to a parameter of
the same name in the function signature, not in the
local scope of the calling routine.

Rest arguments allow one to write functions that
take a variable number of arguments. For example,
the following function sums its arguments:

real sum(... real[] nums) {
real total=0;
for(real x : nums)
total += x;

return total;
}

As in other modern languages, functions can call
themselves recursively. Operators, including all of
Asymptote’s built-in arithmetic and path operations,
are just syntactic sugar for functions that can be
addressed and defined with the operator keyword.

Asymptote functions are first-class values, al-
lowing them to be defined within, passed to, and
returned by other functions. This is convenient when
one wants to graph a sequence of functions such as
fn(x) = n sin(x/n) for n = 1 to 5 from x = −10 to
10:

import graph;
typedef real function(real);

function f(int n) {
real fn(real x) {
return n*sin(x/n);

}
return fn;

}

for(int n=1; n <= 5; ++n)
draw(graph(f(n),-10,10));

Anonymous functions can be created with the key-
word new, so that the function definition in the pre-
vious example could be simplified to

function f(int n) {
return new real(real x) {
return n*sin(x/n);

};
}

5 Modules

Function and structure definitions can be grouped
into modules:

// powers.asy
real square(real x) {return x^2;}
real cube(real x) {return x^3;}

and imported:

import powers;
path square(real x) {
return scale(x)*unitsquare;

}
real four=powers.square(2.0);
real eight=cube(2.0);

For example, Asymptote ships with modules for
Feynman diagrams:
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and algebraic knot theory:

0 1 2

Modules are written in high-level Asymptote code.
Users have contributed modules tailored to many
other specialized applications (such as flowcharts
and computer-aided design).
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6 Graphics features

METAPOST does not support many important fea-
tures of PostScript. For example, only connected
PostScript subpaths are supported. Regions must
be simply connected (have no holes) and can only
be filled with uniform RGB colours. In addition to
native support for three-dimensional graphics, also
lacking in METAPOST, these missing features have
been implemented in Asymptote.

6.1 Pens

Pens provide a context for the four primitive drawing
commands: they specify attributes such as color, line
type, line width, text alignment, font, font size, fill
rule, and filling patterns. For non-solid line types,
dash lengths are by default slightly adjusted to fit the
path arc length (for example, to allow publication
quality legend entries in graphs with multiple line
types). Interesting calligraphic effects are possible by
applying transforms to the (normally circular) pen
nib or even using a polygonal pen nib (which need
not be convex):

The default pen, called currentpen, provides the
same functionality as the METAPOST pickup com-
mand. Colors can be specified in any one of the
PostScript colorspaces: grayscale, RGB, and CMYK.

6.2 Subpaths

An Asymptote path, being connected, is equivalent to
a PostScript subpath. The binary operator ^^, which
requests that the pen be moved (without drawing or
affecting endpoint curvatures) from the final point
of the left-hand path to the initial point of the right-
hand path, may be used to group several Asymptote
connected paths into a path[] array (equivalent to
a PostScript path). While this facility is merely
convenient for drawing an object like the skeleton of
a cube (without retracing), it is essential for filling
nonsimply-connected regions:
path g=scale(2)*unitcircle;

filldraw(unitcircle^^g, evenodd+yellow, black);

The PostScript even-odd fill rule here specifies that
only the region bounded between the two unit circles

is to be filled. In this example, the same effect can be
achieved by using the default zero winding number
fill rule, if one is careful to alternate the orientation
of the paths:

filldraw(unitcircle^^reverse(g), yellow,
black);

6.3 Patterns

One can also construct custom pictures to be used as
tiling patterns for fill or draw operations. The tiling
pattern can be assigned a name that can subsequently
be used to construct a patterned pen. For example,
a hatch pattern can be generated like this:

import patterns;
add("hatch",hatch());
filldraw(unitcircle,pattern("hatch"));

6.4 Shading

Asymptote supports axial and radial gradient shad-
ing, lattice shading, Gouraud shading, and shading of
Coons and tensor product patches; the latter forms
are essential for three-dimensional rendering in the
presence of a light source. Asymptote also supports
a true unfill operation implemented with clipping
(the METAPOST unfill command simply fills with a
fixed background color).

6.5 Automatic picture sizing

A frame is a canvas for drawing in PostScript coordi-
nates, much like a picture in METAPOST. However,
working directly in PostScript coordinates is often
inconvenient, requiring the tedious introduction of
manual scaling factors.

Pictures are high-level structures that provide
canvases for drawing in a user-specified Cartesian
coordinate system. Automatic sizing allows pictures
to be constructed in user coordinates and then auto-
matically scaled to the desired final size:

x

y

(a, 0) (2a, 0)

size(0,50);

x

y

(a, 0) (2a, 0)

size(0,100);
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Eventually, one must fit a picture to a Post-
Script frame. This requires deferred drawing: a
graphical object cannot be drawn until the actual
scaling of the user coordinates (in terms of Post-
Script coordinates) is known. One needs to queue
a function that can draw the scaled object later,
when this scaling is known. For example, the draw
function for pictures in scalable user coordinates is
implemented in terms of the underlying PostScript-
coordinate draw primitive for frames like this:

void draw(picture pic=currentpicture,
path g, pen p=currentpen) {

pic.add(new void(frame f, transform t) {
draw(f,t*g,p);

});
pic.addPoint(min(g),min(p));
pic.addPoint(max(g),max(p));

}

Here, the addPoint function stores bounding box
information as user (e.g. path) coordinates, which
scale linearly with the picture size, and true-size (e.g.
pen) coordinates, which remain fixed.

The sizing constraints that arise between scal-
able objects and fixed-sized attributes (typically la-
bels, dots, linewidths, and arrowheads) reduce to a
linear programming problem that is solved by the sim-
plex method. However, a figure can easily produce
thousands of restrictions, making direct application
of the simplex method time consuming. In practice,
most of these restrictions are redundant: in the case
of concentric circles, only the largest circle needs to
be accounted for. When sizing a picture, Asymptote
first determines which coordinates are maximal (or
minimal) and sends only active constraints to the
simplex algorithm. The entire picture-sizing algo-
rithm, including the simplex method, is implemented
in high-level Asymptote code.

This example illustrates how deferred drawing
can be used to draw paths around text labels and
then connect them (an object is a unifying structure
that a label or frame can be implicitly cast to):

size(0,100);
pair A=(0,1);
pair B=(0,0);

object small=draw("small",box,A,1mm);
object big=draw("\huge BIG",ellipse,B,1mm);

add(new void(frame f, transform t) {
draw(f,point(small,SW,t){SW}

..{SW}point(big,NE,t));
});

small

BIG

6.6 Three-dimensional graphics

We now describe our three-dimensional generaliza-
tion of Hobby’s prescription for drawing an aesthet-
ically pleasing, numerically efficient, interpolating
spline through a set of nodes, given optional tangent
directions and endpoint curvatures [2, 3]. This gener-
alization is shape invariant under three-dimensional
rotation, scaling, and translation. In the planar case,
it reduces to the two-dimensional algorithms found
in METAFONT, METAPOST, and Asymptote.

In two dimensions, a tridiagonal system of linear
equations is first solved to determine any unspecified
directions θk and φk through each node zk:

θk−1 − 2φk

`k
=

φk+1 − 2θk

`k+1
.

ℓk

ℓk+1

θk

φk

zk−1

zk

zk+1

The resulting shape may be adjusted by modifying
the default tension parameters and curl boundary
conditions (cf. [3]).

Having prescribed outgoing and incoming path
directions eiθ at node z0 and eiφ at node z1 relative
to the vector z1 − z0, any unspecified control points
are then determined by the equations

u = z0 + eiθ(z1 − z0)f(θ,−φ),

v = z1 − eiφ(z1 − z0)f(−φ, θ),
where the relative distance function f(θ, φ) is given
in [2] and [3].

In three dimensions, it is natural to require that
our generalization reduce in the planar case to the
usual two-dimensional algorithm. Therefore, any
unknown incoming or outgoing tangent directions
are first determined by applying Hobby’s direction
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algorithm in successive planes containing the three
points zk−1, zk, and zk+1. The only ambiguity that
can arise is in the overall sign of the angles, which
relates to viewing each local two-dimensional plane
from opposing normal directions. A reference vector
constructed from the mean unit normal of successive
segments is used to resolve such ambiguities.

A formula for the three-dimensional control
points u and v follows on expressing Hobby’s algo-
rithm in terms of the absolute incoming and outgoing
unit direction vectors ω0 and ω1, respectively:

u = z0 + ω0 |z1 − z0| f(θ,−φ),

v = z1 − ω1 |z1 − z0| f(−φ, θ),

ω0

ω1

θ

φ

z0

z1

where we interpret θ and φ as the angle between the
corresponding path direction vector and z1 − z0. In
this case there is an unambiguous reference vector for
determining the relative sign of the angles θ and φ.

Unfortunately, PostScript and PDF support only
Bézier splines, which are shape invariant under affine
(orthographic) projections (parallel lines being pro-
jected to parallel lines), but not perspective projec-
tions. In any dimension, applying an affine trans-
formation x′i = Aijxj + Ci to a cubic Bézier curve
x(t) =

∑3
k=0 Bk(t)Pk for t ∈ [0, 1], where Bk(t) is

the kth cubic Bernstein polynomial yields the Bézier
curve

x′i(t) =
3∑

k=0

Bk(t)Aij(Pk)j + Ci =
3∑

k=0

Bk(t)P ′
k

in terms of the transformed kth control points P ′
k,

noting that
∑3

k=0 Bk(t) = 1. Thus, for orthographic
projections, both the nodes and control points of
three-dimensional Bézier curves can simply be pro-
jected to obtain their two-dimensional counterparts.

Non-uniform rational B-splines have the advan-
tage of being invariant even in the presence of per-
spective distortion, since they are Bézier curves in
the projective space described by homogeneous coor-
dinates, where (x, y, z, w) is considered as equivalent
to ( x

w , y
w , z

w , 1). For example, the Asymptote syntax

(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle

describes a saddle-like path in three dimensions. The
result of simply projecting the nodes and control
points of this three-dimensional Bézier curve to a
two dimensional Bézier curve is indicated by the
dashed path in the following perspective projection.
The true projection, described by the two-dimension-
al nonuniform rational B-spline represented by the
solid curve, can be efficiently approximated as a two-
dimensional Bézier curve by introducing additional
nodes and control points. An algorithm for doing this
efficiently will be presented in a future publication.

The three-dimensional graph of the sinc function
below illustrates Gouraud shading, advanced contour
path computations, and PDF transparency:
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6.7 Scientific graphs

Asymptote ships with a sophisticated graph module
that quickly allows one to draw publication-quality
scientific and textbook-style graphs, such as the two-
dimensional polar coordinate graph of the cardioid
shown in Section 6.5 and the three-dimensional sur-
face plot shown in Section 6.6. It supports features
such as legends, custom graph markers, secondary
axes, custom (e.g. base 2) axes scalings, broken axes,
and custom tick label formats and locations.

7 Graphical user interface

Recent versions of Asymptote include an innovative
graphical user interface, written in Python/TK, that
allows one to modify existing graphical objects and
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draw new ones. The modified figure can then be
saved and processed as a normal Asymptote file.
This allows the user to exploit the best features of
the script (command-driven) and graphical-interface
methods for producing figures.

8 Slide presentations

Asymptote also includes a convenient slide module
for preparing slide presentations, including embedded
clickable high-resolution PDF movies (with optional
control panels). This module has the advantage over
existing LATEX presentation packages of providing
built-in graphics support, including object alignment,
in addition to the full power of TEX.

9 Animations

While Asymptote can create MPEG and animated
GIF movies, the lossless inline PDF movies it can
generate with the help of the LATEX animate.sty
package are of a much higher quality. Sample anima-
tions can be found in the Asymptote gallery.

10 Equation solving

Unlike METAFONT and METAPOST, Asymptote is
not built on top of an implicit linear equation solver
and therefore does not automatically have the no-
tion of a whatever unknown. Although such an
implicit equation facility could certainly be added
(perhaps using the notation ?= since = denotes as-
signment in Asymptote), we have noticed that the
most common uses of whatever in METAPOST are
covered by explicit functions like extension in the
math module (which returns the intersection point
of the extensions of two line segments). We find the
use of routines like extension to be more explicit
and less confusing, particularly to new users. But we
could be persuaded to add implicit equation solving
if someone can justify the need (so far no one has
provided us with an example that cannot already
be done elegantly in Asymptote). In the meantime,
one can always use the explicit built-in linear solver
solve (based on LU decomposition) or one of the
numerically robust specialized solvers tridiagonal,
quadraticroots, cubicroots, and quarticroots.

11 Future plans

Thanks to the LATEX movie15 package, Asymptote
can embed three-dimensional U3D files into PDF

files. In the near future, we plan to generate U3D

data (or possibly the more advanced PRC format)
directly from Asymptote’s internal three-dimensional
representations. This will provide the scientific com-
munity with a self-contained and powerful facility for
generating interactive three-dimensional PDF files.
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