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Chapter 1

Turbulence in Two and Three
Dimensions

1.A Introduction

“Turbulence is the last great unsolved problem of classical physics.” 1

The problem of turbulence, particularly the problem of predicting the drag on a
body moving through a turbulent fluid, has occupied the attention of scientists for
centuries. Even today, this problem remains one of the most elusive yet fascinating
unsolved puzzles of science. There are vital interests, both scientific and commercial,
in understanding and reducing the detrimental effects of enhanced turbulent drag or
diffusion in a wide range of applications. Our modern interests in energy-efficient
transportation, in accurate weather forecasting, in the prediction of large-scale ocean
movements, in global climate modeling, and in magnetic fusion attach great importance
to the problem of turbulence. Despite the intense effort that, over the years, has been
devoted to an understanding of turbulence, only limited progress has been made
toward the development of a satisfactory mathematical theory.

For a flow with sufficiently small velocities, the motion is laminar and can be
readily analyzed by perturbation analysis of the Navier–Stokes equations. However,
if the flow involves high velocities, the motion becomes turbulent, or highly chaotic.
While the Navier–Stokes equations provide, in principle, an adequate model for the
behaviour of such a fluid, a new difficulty enters. One finds that the solution of these
equations for this case requires so many Fourier harmonics (or other orthogonal basis
functions) that the problem becomes intractable, both analytically and numerically.
For example, Orszag [1970] estimates that solution of highly developed turbulence
can require on the order of 1020 numerical operations!

1Holmes, P., J. L. Lumley and G. Berkooz, “Turbulence, Coherent Structures, Dynamical
Systems, and Symmetry,” Cambridge University Press (1996) and references therein.
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1.B. INCOMPRESSIBLE HOMOGENEOUS TURBULENCE 5

Thus, to this day much of our quantitative knowledge of turbulence is empirical.
The experimental database is limited since it is difficult to make the necessary measurements
even in controlled laboratory systems, let alone in the turbulent systems of the real
world. Turbulence experiments are particularly hard to repeat with the same initial
conditions. Until we have a better understanding, it is also not clear which parameters
are important and which measurements should be made. Numerical simulation of
turbulent systems has become a popular alternative to costly experiments since the
advent of the supercomputer, but for the foreseeable future the resolution of even
these advanced machines will be insufficient to discern the fine-scale features of fully
developed turbulence.

Even the highly idealized problem of homogeneous isotropic incompressible turbulence
continues to defy both analytical and numerical efforts. Here, one of the principle
questions is to characterize the distribution of turbulent energy among various scales
in the flow. A particularly intriguing challenge is to derive, directly from the equations
of motion, the power-law scaling of the inertial-range energy spectrum that was
obtained on dimensional grounds by Kolmogorov [1941] and has since been the subject
of extensive numerical and experimental scrutiny.

1.B Incompressible Homogeneous Turbulence

A field is homogeneous if its statistical properties are independent of x, so that there
is no preferred origin. There can then be no walls; the domain is unbounded (a
periodic domain is also possible). Let u(x, t) be the velocity field of the fluid, ρ(x, t)
be the fluid density, P (x, t) be the pressure, ν be the kinematic viscosity (assumed
constant), and F (x, t) be an homogeneous external stirring force (per unit mass).
The equations for incompressible homogeneous turbulence are then

(1.1)
∂u

∂t
+ (u·∇)u = −1

ρ
∇P + ν∇2u+ F ,

(1.2)
∂ρ

∂t
+∇·(ρu) = 0,

(1.3)
∂ρ

∂t
+ (u·∇)ρ = 0,

(1.4)∇ρ(x, 0) = 0 ∀x.

The first equation is the Navier–Stokes equation. The continuity equation, Eq. (1.2),
can be used to reduce the incompressibility equation, Eq. (1.3), to the perhaps more
familiar form ∇·u = 0. Recall that for a C1 vector field u on a simply connected
domain

∇·u = 0 ⇐⇒ u =∇×A′
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for some C2 vector potential A′. The vector potential is unique only to within the
gradient of some scalar function. It is often convenient to transform to the Coulomb
gauge by defining

A
.
= A′ +∇φ,

where φ satisfies the Poisson equation

∇2φ = −∇·A′,
so that ∇·A = ∇·A′ + ∇2φ = 0 (we emphasize definitions with the notation

.
=).

Hence we can restate Eq. (1.B) as

∇·u = 0 ⇐⇒ u =∇×A with ∇·A = 0.

Equations (1.3) and(1.4) imply that

∂ρ

∂t
=∇ρ = 0 ∀t ≥ 0.

Without loss of generality, we choose units for mass such that ρ = 1. Upon taking
the divergence of Eq. (1.1), we obtain an equation for the pressure P :

(1.5)∇·[F − (u·∇)u] = ∇2P.

Given suitable boundary conditions, this Poisson equation can then be solved for the
pressure P .2

Alternatively, one may eliminate P from the problem entirely by taking the curl
of Eq. (1.1). It is helpful to first use the identity

(u·∇)u =
1

2
∇u2 − u×(∇×u)

to rewrite Eq. (1.1) as

(1.6)
∂u

∂t
+

1

2
∇u2 − u×(∇×u) = −∇P + ν∇2u+ F .

It is convenient to introduce the vorticity ω
.
= ∇×u, a measure of the amount of

rotation in the flow. Upon exploiting the fact that both u and ω are solenoidal fields
(∇·u =∇·ω = 0), we can express

∇×((u·)∇u) =∇×
[

1

2
∇u2 − u×(∇×u)

]
= −∇×(u×ω)
= u·∇ω − ω·∇u.

The curl of Eq. (1.6) thus simplifies to

(1.7)
∂ω

∂t
+ (u·∇)ω = (ω·∇)u+ ν∇2ω +∇×F .

2In particular, for periodic boundary conditions, it is easy to verify the solvability condition that
the spatial integral of the left-hand side vanishes. This remark also applies to Eq. (1.B).
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1.C Symmetries

Equation (1.1) has the following symmetries:

Space-translation: (t, r,u)→ (t, r + ρ,u), ρ ∈ R3;

Time-translation: (t, r,u)→ (t+ τ, r,u), τ ∈ R;

Galilean transformation: (t, r,u)→ (t, r +U t,u+U), U ∈ R3;

Parity: (t, r,u)→ (t,−r,−u);

Rotation: (t, r,u)→ (t,Ar,Au), A ∈ SO(R3);

Gradient: P (r, t)→ P (r, t) +G(t);

(1.8a)Reynolds: (t, r,u, ν)→
(
γt, λr,

λ

γ
u,
λ2

γ
ν

)
, λ, γ ∈ R, γ 6= 0.

The final symmetry preserves the value of the dimensionless parameter

R =
ur

ν
,

known as the Reynolds number, and encapsulates the famous similarity principle of
fluid dynamics. Strictly speaking, for γ 6= λ2, it is a symmetry of the turbulent
medium and not of the differential equation per se since it rescales the viscosity
parameter in addition to the independent and dependent variables. For λ > 0,
defining h = 1− log γ

log λ
allows us to rewrite λ/γ = λh, so that the Reynolds symmetry

may be equivalently expressed as

(t, r,u, ν)→
(
λ1−ht, λr, λhu, λ1+hν

)
, λ ∈ R+, h ∈ R.

Note that for the particular case h = −1, the viscosity remains unchanged.
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1.D Conservation Laws

When the flow is inviscid (ν = 0) and forcing is absent (F = 0), Eq. (1.1) conserves
the energy (mean-squared velocity)

E
.
=

1

2

∫
u2 dx.

To see this, consider the time derivative of the integral of the dot product of
Eq. (1.6) with u:

dE

dt
=

∫
u·∂u
∂t

dx

= −
∫
u·
[
∇
(
u2

2
+ P

)
+ u×(∇×u) + ν∇2u+ F

]
dx

=

∫ (
u2

2
+ P

)
∇·u dx+ ν

∫
u·∇2u dx+

∫
u·F dx, (1.9)

assuming zero boundary conditions at infinity (or periodic boundary conditions). We
thus see that the global energy is conserved when ν = 0 and F = 0. Moreover, when
ν 6= 0 we can express the decay rate of energy for unforced turbulence as

dE

dt
= ν

∫
u·∇2u dx,

= −ν
∫
u·
[
∇(∇·u)−∇2u

]
dx

= −ν
∫
u·∇×(∇×u) dx

= −ν
∫
u·∇×ω dx

= ν

∫
∇·(u×ω)− ω·∇×u dx

= −ν
∫
ω2 dx

= −2νZ, (1.10)

in terms of the enstrophy (mean-squared vorticity),

Z
.
=

1

2

∫
ω2 dx.

The energy is an inviscid invariant in both two and three dimensional turbulence.
In two dimensions the enstrophy Z is also an invariant: if u = (u, v, 0) and is
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independent of the z coordinate, it follows that ω = ωẑ and the vortex-stretching
term ω·∇u in Eq. (1.7) will vanish, so that

(1.11)
∂ω

∂t
+ (u·∇)ω = 0.

Then
dZ

dt
=

∫
ω
∂ω

∂t
dx

= −
∫

(u·∇)

(
w2

2

)
dx

=

∫ (
ω2

2

)
∇·u dx

= 0.

In fact in two dimensions there exists uncountably many other invariants, known as
Casimir invariants, of the inviscid equations. Any continuously differentiable function
of the (scalar) vorticity is conserved by Eq. (1.11):

d

dt

∫
f(ω) dx =

∫
f ′(ω)

∂ω

∂t
dx = −

∫
f ′(ω)(u·∇)ω dx

= −
∫

(u·∇)f(ω) dx =

∫
f(ω)∇·u dx = 0. (1.12)

However, it is believed that only the positive-semidefinite quadratic invariants (energy
and enstrophy) play a fundamental role in the turbulent dynamics.

Another important property of two-dimensional turbulence is that it may be cast
in terms of a single scalar field. The vorticity ω = ωẑ is related to the vector potential
A = (Ax, Ay, Az) in the Coulomb gauge by

(1.13)
ωẑ =∇×(∇×A)

=∇(∇·A)−∇2A

= −∇2A.

Hence ∇2Ax = ∇2Ay = 0. Given periodic or infinite boundary conditions one may
then without loss of generality take Ax = Ay = 0 so that A, like ω, has only one
component, in the direction normal to the plane of motion. It is conventional to
define ψ

.
= −Az to be the stream function. Thus

u =∇×A
= ẑ×∇ψ.

We see from Eq. (1.13) that the stream function is related to the vorticity by ω = ∇2ψ.
In two dimensions, Eq. (1.7) thus simplifies to

(1.14)
∂∇2ψ

∂t
+ (ẑ×∇ψ·∇)∇2ψ = ν∇4ψ + ẑ·∇×F .
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As mentioned above, the reason that enstrophy is conserved in two dimensions is
that u and ω are always perpendicular. This implies that the mean helicity

H
.
=

1

2

∫
u·ω dx

vanishes in two dimensions. In three dimensions, the total helicity may have a nonzero
value, but that value is still conserved by the inviscid dynamics. We leave the proof of
this statement as an exercise. Although the helicity is a quadratic invariant, it differs
from the energy and enstrophy in that it can be zero or negative in a turbulent flow.

1.E The Energy Spectrum

The energy spectrum of fully developed homogeneous turbulence is thought to be
composed of three distinct wavenumber regions: a region of energy injection (by the
force F in Eq. (1.1) at the largest scales, an intermediate inertial range characterized
by zero forcing and zero dissipation, and, at the very smallest scales, a region dominated
by viscosity. In 1941, Kolmogorov proposed his famous k−5/3 scaling law for the
inertial-range energy spectrum of homogeneous and isotropic three-dimensional turbulence.
This conjecture is believed to apply only when the forcing and dissipation scales are
widely separated.

The distribution of energy with scale is conveniently studied by introducing the
integral Fourier transform from the n-dimensional spatial coordinate x to the n-
dimensional wavenumber k:

uk =

∫
u(x)e−ik·x dx.

Note that when u is a real field, Eq. (1.E) implies that u∗−k = uk.

We can recover the original field u(x) from uk using the inverse Fourier Transform

u(x) =
1

(2π)n

∫
uke

ik·x dk.

Another way of expressing this relationship is the identity∫
eik·(x−x

′) dk = (2π)nδ(x− x′).
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In order to study the distribution of energy over various scales, we will soon want
to transform Eq. (1.1) and Eq. (1.7) with the aid of the Fourier Convolution Theorem:∫

f(x)g(x)e−ik·x dx =
1

(2π)2n

∫ ∫
fpe

ip·x dp

∫
gqe

iq·x dq e−ik·x dx

=
1

(2π)2n

∫ ∫
fpgq

∫
ei(p+q−k)·x dx dp dq

=
1

(2π)n

∫ ∫
fpgqδ(p+ q − k) dp dq

=
1

(2π)n

∫
fpgk−p dp. (1.15)

For identical real fields f and g, Eq. (1.15) reduces to Parseval’s Theorem when
k = 0: ∫

f 2(x) dx =
1

(2π)n

∫
fpf−p dp

=
1

(2π)n

∫
|fk|2 dk,

which may be used to express the total energy E in n-dimensional Fourier space:

E =
1

2

∫
u2 dx

=
1

2

1

(2π)n

∫
|uk|2 dk

=

∫ ∞
0

E(k) dk,

where in three dimensions the energy spectrum E(k) is given by

E(k) =
1

2

1

(2π)3

∫ 2π

0

∫ π

0

|uk|2 k2 sin θ dθ dφ.

In any dimension, the total energy is simply the area under the graph of E(k) with
respect to k.

It is worth mentioning that pseudospectral numerical simulations of turbulence in
a periodic domain use the N -point discrete Fourier transform

ûk =
N−1∑
j=0

uje
− 2πijk

N

which has the inverse

uj =
1

N

N−1∑
k=0

ûke
2πijk
N .
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The orthogonality relationship underlying this transform pair is elucidated on substituting
z = e2πi(j+j)/N :

N−1∑
k =0

e2πi(j+j)k/N =
N−1∑
k=0

zk =

{
N if j + j = mN for m ∈ Z,
1−zN
1−z = 0 otherwise.

1.F 3D Inertial Range

“Big whirls have little whirls that feed on their velocity, and little whirls have lesser
whirls and so on to viscosity.” [Richardson, 1922]

In 1941, Kolmogorov conjectured that the inertial-range energy spectrum of three-
dimensional turbulence exhibits a power-law scaling of the form

(1.16)E(k) = Cεαkβ,

where C is a univeral constant, known as the Kolmogorov constant.
In the simplest formulation of this dimensional argument, one observes that the

energy spectrum E(k) has units of energy times length (L3/T 2); noting that one must
integrate over k to get the total energy. The energy injection rate ε has units of energy
per unit time: L2/T 3. Balancing[

L3

T 2

]
=

[
L2

T 3

]α[
1

L

]β
is then equivalent to requiring that 3 = 2α − b and 2 = 3a, from which we deduce
that α = 2/3 and b = −5/3:

(1.17)E(k) = ε2/3k−5/3.

There are several problems with this dimensional reasoning. For example, it is
not clear that k is the only spatial scale that should enter Eq. (1.16). Perhaps the
largest and smallest scales in the inertial range (as well as the box size L in a bounded
domain of size Ln) could also play a role. The smallest scale in the inertial range, the
dissipation wavenumber kd, clearly depends on the value of the viscosity.

Kolmogorov assumed that in the limit of zero viscosity, the inertial-range energy
spectrum does not depend on kd. Equation (1.16) can be extended to the dissipation
range in terms of a (dimensionsless) function f (which he conjectured to be universal):

E(k) = ε2/3k−5/3f

(
k

kd

)
,

where limk→0 f(k/kd) > 0.
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We can use the Kolmogorov spectrum to derive an expression for the dissipation
wavenumber kd. First, we recall from Eq. (1.10) that the energy dissipation is 2νZ.
It is convenient to use Parseval’s theorem to express the enstrophy Z in terms of
the energy spectrum E(k). On noting that the incompressibility condition k·uk = 0
implies that |ωk|2 = |k×uk|2 = k2 |uk|2, we see that

Z =
1

2

∫
|k×uk|2 dk =

1

2

∫
k2 |uk|2 dk =

∫
k2E(k) dk.

Kolmogorov defined the dissipation wavenumber kd for steady-state turbulence as
the scale where the energy dissipation balances the energy injection ε:

ε = ν

∫ kd

0

k2E(k) dk

On substituting Eq. (1.17), this balance becomes

ε = νC

∫ kd

0

ε2/3k1/3 dk.

One finds
ε1/3 ∝ νk

4/3
d ,

so that

(1.18)kd ∝
( ε
ν3

)1/4

.

Denote the energy dissipation as a function of ν by ε(ν). Kolmogorov assumed
that lim

ν→0
ε(ν) = ε0 > 0, so that lim

ν→0
kd =∞. This is equivalent to requiring that

lim
ν→0

f

(
k

κd

)
= f(0)

exists.
However, it is also possible that f is singular in this limit; i.e. for some ζ > 0

lim
x→0

xζf(x) = const > 0.

This alternative admits the possibility of intermittency.
Another problem with Equation (1.17) is that it is intended to describe only the

asymptotic limit of the energy spectrum (of infinite-Reynold’s number turublence) as
k → ∞. We now present some phenomenological arguments that suggest how the
Kolmogorov spectrum can be matched up to the large-scale dynamics.
• Turbulence consists of a sea of eddies, or energy disturbances, of many sizes.
• Small eddies are more numerous than large eddies.
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• The large eddies will significantly distort the small eddies.
• Random interactions of the many small eddies on the large eddies tend to average

out their distorting effect on the large eddies.
• Energy is not created or destroyed within the inertial range; it is merely redistributed

among the inertial-range wavenumbers.
• The total energy in all eddies larger than k−1 is

∫ k
0
E(k) dk, where E(k) is the

energy spectrum.
• Energy transfer rate from large eddies to eddies of size k−1 [and energy kE(k)] is

Π(k)
.
= η(k) kE(k),

where the eddy turnover rate η(k) is the rate at which a unit amount of energy is
transferred.
Dimensional analysis:

η2 ∼
∫ k

0

p2E(p) dp

i .e.

(
1

t

)2

∼
(

1

`

)2(
`

t

)2

. (1.19)

• Thus, energy transfer rate is proportional to

Π(k)
.
=

[∫ k

0

k2E(k) dk

]1/2

kE(k).

The constant of proportionality is related to the Kolmogorov constant. Kolmogorov [1941]:
significant interactions between the turbulent eddies are local in wavenumber
space.
• Very large eddies will not interact directly with very small eddies, but only via

eddies of an intermediate size.
• For stationary turbulence, Kolmogorov’s locality hypothesis ⇒ Π independent of
k.
Denote f(k) = kE(k). Differentiate the identity

Π
2

f 2(k)
=

∫ k

0

kf(k) dk

with respect to k to obtain

−2Π
2 f ′

f 4
= k.

Integrate this result between k0 and k, where k0 is the smallest wavenumber in the
inertial range ⇒

E(k) = k−1

[
3

4Π
2 (k2 − k2

0) + k−3
0 E−3(k0)

]−1/3

(k ≥ k0).
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This modified Kolmogorov law [Bowman 1996] may be rewritten as

E(k) =

(
4

3

)1/3

Π
2/3
k−5/3χ−1/3(k) (k ≥ k0),

in terms of the correction factor

χ(k)
.
= 1− k2

0

k2
(1− χ0),

where χ0
.
= 4Π

2
k−5

0 E−3(k0)/3 = χ(k0) > 0.

For k � k0 |1− χ0|1/2, we obtain the usual Kolmogorov scaling

E(k) =

(
4

3

)1/3

Π
2/3
k−5/3.

Three regimes:
• If χ0 < 1, energy spectrum will be steeper than k−5/3 near k0.
• If χ0 ≈ 1, energy spectrum will scale as k−5/3.
• If χ0 > 1, energy spectrum will be shallower than k−5/3 near k0.

1.G 2D Enstrophy Inertial Range

Previous arguments were based on conservation of

E =

∫ ∞
0

E(k) dk.

• Turbulence in two dimensions is complicated by the presence of an additional
enstrophy invariant:

Z =

∫ ∞
0

k2E(k) dk.

• Kolmogorov’s picture of energy transfer to the smallest scales can no longer be
correct.
• Such a redistribution of the energy ⇒ creation of new enstrophy since Z(k) =
k2E(k).
• Kraichnan [1967], Kraichnan [1971a]: enstrophy transfer rate is independent of k.

Enstrophy transfer rate is proportional to

ΠZ(k)
.
=

[∫ k

0

k2E(k) dk

]1/2

k3E(k).
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Let f(k) = k3E(k). Differentiate with respect to k:

−2Π
2 f ′

f 4
=

1

k
.

Let k1 be the smallest wavenumber in the inertial range. Integrate between k1 and k
to obtain

E(k) = k−3

[
3

2Π
2
Z

log

(
k

k1

)
+ k−9

1 E−3(k1)

]−1/3

(k ≥ k1).

Rewrite as

E(k) =

(
2

3

) 1
3

Π
2/3
Z k−3χ−1/3(k) (k ≥ k1),

where

χ(k)
.
= log

(
k

k1

)
+ χ1

and χ1
.
= 2Π

2
Zk
−9
1 E−3(k1)/3 = χ(k1) > 0.

• Since χ1 > 0, there is no divergence at k = k1, in contrast to Kraichnan’s result:

E(k) ∼ k−3

[
log

(
k

k1

)]−1/3

.

• The logarithmic factor will be significant when χ1 � 1 and for wavenumbers near
k1.

1.H 2D Energy Inertial Range

In two dimensions, Fjørtoft[1953] demonstrated that the energy cannot cascade downscale
as Kolmogorov had argued in the case of three-dimensional turbulence. Fjørtoft’s
argument is based on the fact that nonlinear term (ẑ×∇ψ·∇)∇2ψ in Eq. (1.14)
conserves both the energy

1

2

∫
|ẑ×∇ψ|2 dx =

1

2

∫
|∇ψ|2 dx

=
1

2

(
1

2π

)n ∫
k2 |ψk|2 dk

.
=

∫
E(k) dk
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k1 k2 k3
. . . Z1

E1

Z3

E3

Z2E2

. . .

Figure 1.1: Energy and enstrophy transfers in two-dimensional turbulence.

and enstrophy
1

2

∫
|ω|2 dx =

1

2

∫ ∣∣∇2ψ
∣∣2 dx

=
1

2

(
1

2π

)n ∫
k4 |ψk|2 dk

.
=

∫
Z(k) dk.

Note that Z(k) = k2E(k). Now partition the inertial range into three consecutive
narrow wavenumber bins containing characteristic wavenumber magnitudes k1, k2,
and k3, with k1 < k2 < k3, as illustrated in Fig. 1.1. We obtain the following balance
of energy and enstrophy for the middle wavenumber bin, under the assumption that
the turbulence is local:

(1.20)E2 = E1 + E3,

(1.21)Z2 = Z1 + Z3.

Since Zi ≈ k2
iEi for i = 1, 2, 3, Eq. (1.21) becomes

(1.22)k2
2E2 ≈ k2

1E1 + k2
3E3.

Upon solving Eqs. (1.20) and(1.22) we find that

E1 ≈
k2

3 − k2
2

k2
3 − k2

1

E2,

E3 ≈
k2

2 − k2
1

k2
3 − k2

2

E2.

For example, when k1 = k, k2 = 2k, and k3 = 4k, we find that

E1 ≈
4

5
E2, Z1 ≈

1

5
Z2,
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E3 ≈
1

5
E2, Z3 ≈

4

5
Z2.

We see in this example that energy cascades to large scales and enstrophy cascades
to small scales. The upscale transfer of energy occurs at a uniform rate; consequently,
an energy inertial range of the form

E(k) ∼ k−5/3χ−1/3(k)

will develop at the large scales.
If we force at an intermediate wavenumber k1, with k0 < k1 < kd, where kd is a

characteristic dissipation wavenumber, a dual cascade will result:

E(k) ∼
{
k−5/3 if k0 ≤ k ≤ k1

k−3 if k1 ≤ k ≤ kd

• Q: If energy cascades to large scales, where does it go, if there is no large-scale
dissipation?

1.I Energy Balance

How does Eq. (1.1) appear in Fourier space? Using Eq. (1.5) to eliminate the pressure
and denoting the nonlinear terms by Sk, we may write Eq. (1.1) as

∂uk

∂t
+ νk2uk = Sk +

(
1− kk

k2

)
F .

Upon multiplying by u∗k and integrating over wavenumber angle, we obtain an equation
for E(k) of the form

(1.23)
∂E(k)

∂t
+ 2νk2E(k) = 2T (k) +G(k),

where T (k) arises from the nonlinearity and G(k) arises from the forcing. Let

(1.24)Π(k)
.
= 2

∫ ∞
k

T (k) dk

represent the transfer of energy by the nonlinear terms into the wavenumber magnitude
region [k,∞). Upon integrating Eq. (1.23) from k to∞ we obtain the energy balance
equation

∂

∂t

∫ ∞
k

E(k) dk = Π(k)− ε(k),



1.J. STATISTICAL EQUIPARTITION 19

where

ε(k)
.
= 2ν

∫ ∞
k

k2E(k) dk −
∫ ∞
k

G(k) dk

is the total transfer, via dissipation and forcing, out of wavenumbers higher than k.
• A positive (negative) value for Π(k) represents a flow of energy to wavenumbers

higher (lower) than k.
• From Eq. (1.9) we find that when ν = 0 and F = 0,

0 =
∂

∂t

∫ ∞
0

E(k) dk

= 2

∫ ∞
0

T (k) dk,

so that we may rewrite Eq. (1.24) as

Π(k) = −2

∫ k

0

T (k) dk.

• Note that Π(0) = Π(∞) = 0.
• In a steady state, the left-hand side of Eq. (1.I) vanishes and Π(k) = ε(k). This

serves as an excellent numerical diagnostic for when a steady state has been
reached.

1.J Statistical Equipartition

In two dimensions, we have seen that the vortex stretching term (ω·∇)u vanishes in
the vorticity equation Eq. (1.7), and the vorticity vector ω = ωẑ is normal to the
plane of motion. The equation for the scalar vorticity ω is

∂ω

∂t
+ (u·∇)ω = ν∇2ω + f,

where f = ẑ·∇×F and u = ẑ×∇∇−2ω.

1.K Statistical Closures

Statistical closures constitute an intriguing alternative to conventional numerical
simulations of the primitive dynamical equations of turbulence. The Navier–Stokes
equation at high Reynolds number, for example, defies direct numerical computation,
primarily because the solutions of this strongly nonlinear equation vary rapidly in both
space and time. In contrast, statistical closures provide approximate descriptions
of the average behavior of an ensemble of turbulent realizations; these statistical
solutions are relatively smooth.
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The construction of a statistical description of turbulence is far from unambiguous.
The averaging of a nonlinear equation leads to an infinite hierarchy of moment
equations that is usually closed by adopting some approximate relation between high-
order moments and low-order moments.

We begin with the fundamental equation(
∂

∂t
+ νk

)
ψk(t) =

1

2

∫
∆k

dp dqMkpqψp
∗ψq

∗,

where
∫

∆k
dp dq

.
=
∫
dp dq δ(k + p + q). The mode-coupling coefficients Mkpq can

always be symmetrized so that

Mkpq = Mkqp.

They also satisfy one more more symmetries of the form

σkMkpq + σpMpqk + σqMqkp = 0,

where σk are real time-independent factors. For example in two dimensions, if ψ
represents the stream function, the symmetrized mode-coupling coefficients

Mkpq =
ẑ·p×q
k2

(q2 − p2)

satisfy the symmetry Eq. (1.K) for both σk = k2 and σk = k4, leading directly to
the conservation of energy and enstrophy, respectively. An important property of
mode-coupling coefficients (for most applications) is that

Mkpq = 0 whenever p = ±q or p = q.

It is convenient to define the two-time correlation function

Ck(t, t′)
.
= 〈ψk(t)ψk

∗(t′)〉 .

The energy E
.
= 1

2

∑
k

〈
|ψk|2

〉
may be defined in terms of the equal-time correlation

function
Ck(t)

.
= Ck(t, t)

=
〈
|ψk(t)|2

〉
.

The nonlinear Green’s function Rk(t, t′) is the infinitesimal response to a source func-
tion ηk added to the right-hand side of Eq. (1.K):

Rk(t, t′)
.
=

〈
δψk(t)

δηk(t′)

〉∣∣∣∣
ηk=0

.
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Here is a schematic illustration of the construction of a statistical closure for a
prototype nonlinear equation in the random variable ψ

.
= ψ(t):

∂ψ

∂t
+ νψ = Mψψ.

• Second moment:

∂ 〈ψψ〉
∂t

= 2

〈
∂

∂t
ψψ

〉
= −2ν 〈ψψ〉+ 2M 〈ψψψ〉 .

• The normal (Gaussian) approximation 〈ψψψ〉 = 0 amounts to linear theory!
• Instead, formulate the equation for 〈ψψψ〉:

∂

∂t
〈ψψψ〉+ 3ν 〈ψψψ〉 = 3M 〈ψψψψ〉 .

If we prescribe Gaussian initial conditions at t = 0, then we can solve this equation
to obtain

〈ψψψ〉 = 3M

∫ t

0

dt e−3ν(t−t) 〈ψψψψ〉 ,
where ψ

.
= ψ(t).

• Make the quasinormal approximation:〈
ψψψψ

〉
= 3

〈
ψψ
〉 〈
ψψ
〉

For Gaussian statistics, this holds exactly.
• We arrive at the quasinormal closure:

∂

∂t
〈ψψ〉+ 2ν 〈ψψ〉 = 18MM

∫ t

0

dt e−3ν(t−t) 〈ψψ〉 〈ψψ〉 .
• Ogura [1963], Orszag [1977] demonstrated that the quasinormal closure can incorrectly

predict negative energies!
• A superior closure is obtained by renormalizing.
• The effect of this renormalization is to replace the unperturbed (linear) Green’s

function
R(0)(t, t) ≡ e−3ν(t−t)H(t− t),

where H is the Heaviside step function, by the statistical mean R of the perturbed
(nonlinear) Green’s function ᵀR, which satisfies

∂

∂t
ᵀR + ν ᵀR− 2Mψ ᵀR = δ(t− t).
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• The equation for C
.
= 〈ψψ〉 then takes on the form

∂

∂t
C + 2νC = 18MM

∫ t

0

dtRC C.

• One obtains a similar equation for R:

∂

∂t
R + νR = 9MM

∫ t

0

dtRC R + δ(t− t).

1.K.1 General form of a closure:

(
∂

∂t
+ νk

)
Ck(t, t′) +

nonlinear (eddy) damping︷ ︸︸ ︷∫ t

0

dtΣk(t, t)Ck(t, t′)

=

∫ t′

0

dtFk(t, t)R∗k(t′, t)︸ ︷︷ ︸
nonlinear noise

,

(1.25)

(
∂

∂t
+ νk

)
Rk(t, t′) +

∫ t

t′
dtΣk(t, t)Rk(t, t′) = δ(t− t′),

1.L Direct-interaction approximation (DIA)

Σk(t, t) = −
∫

∆k

dp dqMkpqM
∗
pqkR

∗
p(t, t)C∗q(t, t).

Fk(t, t) =
1

2

∫
∆k

dp dqMkpqM
∗
kpqC

∗
p(t, t)C∗q(t, t),

Advantages of the DIA [Kraichnan 1958], [Kraichnan 1959], [Kraichnan 1961],
[Leslie 1973], [Krommes 1984]
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• Reduces correctly to perturbation theory.

• Handles self-consistency in a reasonable way.

• Produces two-time spectral information.

• Can be obtained from an underlying stochastic model.

Disadvantages:

• Contains time-history integrals, so is nontrivial to compute.

• In 3D, predicts an energy inertial range E(k) ∼ k−3/2 instead of k−5/3.

• In 2D, predicts an enstrophy inertial range E(k) ∼ k−5/2 instead of k−3.

• Only handles second-order statistics; mistreats higher-order coherent structures.

1.L.1 Inertial-range scaling of the DIA

The equal-time DIA covariance equation may be written in the compact form

∂

∂t
Ck(t) + 2 ReNk(t) = 2Fk(t),

where

Nk(t)
.
= νkCk(t)−

∫
∆k

dp dqMkpqM
∗
pqkΘ

∗
pqk(t),

Fk(t)
.
=

1

2
Re

∫
∆k

dp dq |Mkpq|2 Θ
∗
kpq(t),

and

Θkpq(t)
.
=

∫ t

−∞
dtRk(t, t)Cp(t, t)Cq(t, t),

given initial conditions at t = −∞. Let us now find determine steady-state self-
similar inertial-range solutions in d dimensions to closures of the form(1.L.1). The
turbulence could be forced with a linear instability, incorporated with dissipation into
the linear coefficient νk, or else a random force could be added to the right-hand side
of Eq. (1.L.1).

By definition, both the external forcing and dissipation νk vanish in the inertial
range. The symmetry Eq. (1.K) then implies that the nonlinear terms in Eq. (1.L.1),
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weighted by certain real quantities σk, must balance. It is convenient to define

Sk
.
= σk(Fk − ReNk)

=
1

2
Re

∫
∆k

dp dq σkMkpqM
∗
kpqΘkpq + Re

∫
∆k

dp dq σkMkpqM
∗
pqkΘ

∗
pqk

= −1

2
Re

∫
∆k

dp dqMkpq(σpM
∗
pqk + σqM

∗
qkp)Θkpq

+ Re

∫
∆k

dp dq σkMkpqM
∗
pqkΘ

∗
pqk

= −Re

∫
∆k

dp dq σpMkpqM
∗
pqkΘkpq + Re

∫
∆k

dp dq σkMkpqM
∗
pqkΘ

∗
pqk

= Re

∫
∆k

dp dqMkpqM
∗
pqk(σkΘ

∗
pqk − σpΘkpq). (1.26)

Let us seek self-similar solutions of the DIA that obey the scalings (for λ > 0)

Mλk,λp,λq = λmMkpq,

σλk = λsσk,

Rλk(t, t′) = Rk(t, t− λ−`(t− t′)),

Cλk(t, t′) = λnCk(t, t− λ−`(t− t′)),

so that, upon making the change of variables s
.
= t− λ−`(t− t) in Eq. (1.L.1),

Θλk,λp,λq = λ`+2nΘkpq.

Once we have determined suitable values of the scaling exponent n, we may use
Parseval’s theorem to compute the wavenumber exponent β for the energy spectrum
E(k) ∼ εαkβ. If the total energy E is related to the correlation function Ck of the
fundamental variable ψ by

E =

∫
dk kγCk

=

∫
dk E(k),

then β = d− 1 + γ + n.
Following Orszag [1977], we will use the change of variables

z =
k2

p
, w

=
kq

p
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to determine values of the exponents ` and n for which the angular average S(k) of
Sk vanishes. In terms of the scaling factor λ = k/z we note that

k = λz p
= λk, q
= λw.

Letting z = zp̂ and ω = wq̂, we may then express

dp dq = λ3ddz dω

and
δ(k + p+ q) = λ−dδ(zk̂ + kp̂+ ω).

Hence, upon interchanging p̂ and k̂ in the integration, we deduce

S(k)
.
=

∫
dk̂ Sk

= Re

∫
dk̂

∫
∆k

dz dω λ3d−d+2m+s+`+2nMz,k,ωM
∗
k,ω,z(σzΘ

∗
k,ω,z − σkΘz,k,ω)

= −Re

∫
dk̂

∫
∆k

dz dω λ2d+2m+s+`+2nM∗
k,z,ωMz,ω,k(σkΘz,ω,k − σzΘ

∗
k,z,ω)

= −S(k), (1.28)

provided that
2d+ 2m+ s+ `+ 2n = 0.

The condition(1.L.1) guarantees that the angle-averaged nonlinear terms in Eq. (1.L.1)
will balance in a steady state and lead to an inertial range.

The exponent ` can be determined by integrating the DIA response function
equation

∂

∂t
Rk(t, t′)−

∫ t

−∞
dt

∫
∆k

dp dqMkpqM
∗
pqkR

∗
p(t, t)C∗q(t, t)Rk(t, t′)

= δ(t− t′),

over all t′, using the steady-state condition

lim
t→∞

∂

∂t

∫ ∞
−∞

dt′R(t, t′) = 0.

One obtains

−
∫ ∞
−∞

dt

∫
∆k

dp dqMkpqM
∗
pqkR

∗
p(∞, t)C∗q(∞, t)

∫ ∞
−∞

dt′Rk(t, t′) = 1.
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Upon replacing k by λk (for any constant λ) and exploiting the self-similar scalings
given in Eqs. (1.27), we make the change of variable s′ = t− λ−`(t− t′) to obtain

−λd+2m+`+n

∫ ∞
−∞

dt

∫
∆k

dp dqMkpqM
∗
pqkR

∗
p(∞, s)C∗q(∞, s)

∫ ∞
−∞

ds′Rk(t, s′) = 1,

where s
.
= t−λ−`(t− t). The integral over t is dominated by contributions from large

t, for which the integral over s′ asymptotically approaches a constant (with respect
to t), according to Eq. (1.L.1). Hence, after making a final change of variables from
t to s, we see that the balance expressed in Eq. (1.L.1) is recovered if

λd+2m+2`+n = 1,

from which we conclude that ` = −(d + n)/2 − m. If one inserts this result into
Eq. (1.L.1), one obtains the Kolmogorov scalings

` =
1

3
s− 2

3
m,

n = −d− 2

3
(m+ s),

β = γ − 1− 2

3
(m+ s).

Alternatively, one could adopt instead of Eq. (1.L.1) the stronger condition of stationarity,
Rk(t, t′) = rk(t− t′) and Ck(t, t′) = ck(t− t′). Equation (1.L.1) is then readily seen to
follow directly from Eq. (1.L.1). In either case we have only shown that Eq. (1.L.1)
is a necessary condition for self-similar solutions of the form(1.27) to exist. In order
that these solutions actually satisfy Eq. (1.L.1), it is also necessary at the very least
that the wavenumber integral in Eq. (1.L.1) converges.

Unfortunately, the scaling expressed in Eq. (1.L.1) often leads to a divergence of
the q integral in Eq. (1.L.1), preventing self-similar solutions from existing. Typically,
the mode-coupling coefficients Mk,−k−q,q asymptotically approach a constant as q goes
to zero while k is held fixed. Upon performing the p integration in Eq. (1.L.1), we then
see that the q integrand will scale like qd−1C∗q(t, t) for small q. If Cq asymptotically
scales as qn, then the integrand will scale like qd−1+n. But Eq. (1.29) implies that
d−1+n = −1−2(m+s)/3. Normally m+s > 0 (see Table 1.1); in these cases there
would be a divergence of the q integral in Eq. (1.L.1) if self-similar solutions really
were to exist [Edwards 1964], [Leslie 1973].

This divergence indicates that the dominant contributions to the eddy-turnover
time come from the energy spectrum at large scales, where self-similarity no longer
holds. (For this reason, the DIA is not invariant to random Galilean transformations.)
The actual value of the scaling ` that appears in the DIA response must be calculated
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by taking into account that Cq does not actually behave as qn for small q. The DIA
equations apply to the case of zero mean flow, where the energy spectrum goes to
zero at low wavenumbers. This means that the integration in Eq. (1.L.1) must be
effectively cut off at some fixed large-scale wavenumber k0. The introduction of this
cutoff wavenumber removes the divergence in the integral, but it also changes the
above scaling argument. Since the dominant contribution to Eq. (1.L.1) still comes
from small q, we need to identify the scaling of the mode-coupling coefficients with k
for q � k,

Mλk,−λk,λq = λm
′
Mk,−k,q (q

� k).

Since the lower wavenumber limit is now fixed, no self-similar scaling in q can be
made; the scaling with k for small q then leads to λ2`+2m′

= 1. Hence for the DIA
equations the actual scalings of the response function, correlation function, and energy
spectrum are given by

`DIA = −m′,

nDIA = −d−m+
m′ − s

2
,

βDIA = γ − 1−m+
m′ − s

2
.

In Table 1.1 we compare the scalings in Eqs. (1.29) with the anomalous DIA
scalings given by Eq. (1.30). The scalings given by Eq. (1.29) are consistent with
Kolmogorov’s dimensional analysis. We emphasize that these scalings would have
also been obtained for the DIA equations (they too are dimensionally consistent) had
the wavenumber integral in Eq. (1.L.1) converged.

1.M Test-Field Model (TFM)

The test-field model [Kraichnan 1971b], [Kraichnan 1972] approximates the DIA time-
history convolutions in favour of a characteristic “triad interaction time” θkpq.

Advantages of the TFM:
• Predicts the correct k−3 inertial-range energy spectrum.
• Much faster than DIA.

Disadvantages:
• Only predicts equal-time spectral information.
• Does not take account of time-history effects accurately.
• Assumes a fluctuation-dissipation relation (not exact except in thermal equilibrium).
• Can predict negative energies if wave effects are present!
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Cascade ψ d s γ m m’ ` n β `DIA nDIA βDIA

2D enstrophy ψ 2 4 2 2 1 0 −6 −3 −1 −11
2

−5
2

2D energy ψ 2 2 2 2 1 −2
3
−14

3
−5

3
−1 −9

2
−3

2

3D energy u 3 0 0 1 1 −2
3
−11

3
−5

3
−1 −7

2
−3

2

3D helicity u 3 1 0 1 1 −1 −13
3
−7

3
−1 −4 −2

Table 1.1: Scaling exponents for two and three-dimensional cascades.

1.N Realizable Test-Field Model (RTFM)

• The realizable test-field model [Bowman and Krommes 1997] adopts a nonstationary
form for the Fluctuation Dissipation relation [Bowman et al. 1993]. For t ≥ t′,

finite amplitude︷ ︸︸ ︷
Ck(t, t′)

C
1/2
k (t)C

1/2
k (t′)︸ ︷︷ ︸

correlation coefficient

=

infinitesimal︷ ︸︸ ︷
Rk(t, t′)︸ ︷︷ ︸

response function

.

i.e.Time scales for amplitude decorrelation and decay of infinitesimal disturbances
are comparable since these processes both occur by interaction with the turbulent
background.
• The RTFM always predicts non-negative energies.
• The RTFM has an underlying Langevin equation, which, unlike the TFM, does

not assume δ-correlated statistics for the noise term f :

∂

∂t
ψ + ηψ = f.
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