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1 Introduction

In this lab we will learn how to use a three-dimensional pseudospectral simulation, a
widely used numerical tool for the study of fluid turbulence. The equation we will be
solving is the three-dimensional incompressible Navier–Stokes equation. A key step
requires solving for the pressure by inverting a Laplace operator for the pressure P :

∇·[f − (u·∇)u] = ∇2P, (1)

where f represents an external stirring force. One of the most efficient methods for
doing this is the pseudospectral method, which exploits the Fast Fourier Transform
algorithm. Strictly speaking, this method is only appropriate for periodic boundary
conditions. However, in practice it can be used even when the physical boundary
conditions are nonperiodic, as long as the turbulence decorrelation length is smaller
than the box size.

In order to set up our simulation, we will first need to determine a consistent
set of forcing and dissipation parameters so that a fully developed turbulent state is
obtained, in which net forcing balances net dissipation.

2 Theory

We begin with the three-dimensional isotropic incompressible Navier–Stokes equation
for the velocity field in the case where the density ρ is constant and, by proper choice
of units, equal to 1:

∂u

∂t
+ (u·∇)u = −∇P + νH(−1)pH−1∇2pHu + f . (2)

where on the right hand side we have included small-scale dissipation (pH ≥ 1) and
f is a random (white-noise in time) solenoidal force. [A compressive component
to f would have no effect, because of Eq. (1).] Upon taking the spatial Fourier
Transform uk =

∫
u(x)e−ik·x dx of Eq. (2) we obtain

∂uk

∂t
= Sk − νHk2pHuk + fk. (3)

where Sk denotes the nonlinear terms, fk = Fk(1−kk/k2)·ξk(t), and each of the com-
ponents of ξk(t) are independent Gaussian complex vector-valued random variables
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with zero mean and unit variance. We will use a dealiased pseudospectral method to
solve Eq. (3); this means that the convolution sum in Sk is computed in the spatial
domain, with the help of the convolution theorem.

3 Simulation

In order to determine reasonable parameters for our numerical simulation of Eq. (3),
we introduce the energy, or total mean-squared velocity, E, defined as

E
.
=

1

2

∫
|uk|

2 dk, (4)

where dk = k2 sin θ dkdθdφ is the volume element. (The notation “
.
=” denotes a def-

inition.) Upon multiplying Eq. (3) by u∗

k
, symmetries cause the nonlinear (advective

and pressure) contributions to vanish, so that in a steady state, the energy balance
equation becomes just

0 =
∂E

∂t
= −2

∫
∞

0

νHk2pHE(k) dk + Re

∫
fk·u∗

k
dk, (5)

where the over-bar denotes a time average and

E(k)
.
=

1

2
k2

∫
2π

0

∫ π

0

|uk|
2 sin θ dθ dφ

is the angle-averaged energy spectrum. The energy dissipation, described by the first
integral, occurs mostly at the small scales (high wavenumbers), where the viscous
terms dominate. We characterize these scales by the dissipation wavenumber kd. In
this lab we use the factor Fk to restrict the forcing to a narrow band, k ∈ [2, 4],
centered on the forcing wavenumber kf = 3. It turns out that it is crucial to in-
clude all contributions of the energy dissipation from the inertial range, which is the
wavenumber interval between the low forcing wavenumber kf and high dissipation
wavenumber kd. The theory of Kolmogorov [1941] predict that between kf and kd,
Eq. (3) supports power law solutions of the form

E(k) = Cǫ
2

3 k−5/3, (6)

where

ǫ
.
= 2

∫ kd

kf

νHk2pHE(k) dk, (7)

the rate of energy dissipation, is constant. In other words,

ǫ = 2CνHǫ
2

3

∫ kd

kf

k2pH−5/3 dk, (8)
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which we may solve for ǫ.
We assume that Eq. (2) is ergodic, so that ensemble averages are equivalent to

time averages. According to Novikov’s theorem [1964], if we prescribe that fk is an
isotropic white-noise random process,

〈fk(t)·f ∗

k′(t′)〉 = 2F 2

k δ(k − k′)δ(t − t′), (9)

with Fk nonzero only for k ∈ [2, 4], (the factor of 2 signifies that there are only
two independent directions, once the incompressibility constraint has been taken into
account), the second integral in Eq. (5) may be expressed in terms of the Green’s
function for Eq. (3). Equation (5) then simplifies to the balance

ǫ = 8π

∫
4

2

k2F 2

k dk. (10)

We may now finally describe the procedure that we will use to determine param-
eters for our pseudospectral run.

4 Procedure

1. Choose a resolution N×N×N where N is an odd number. See the graphical user
interface xtriad3d to the program triad for allowable values. The maximum
wavenumber kmax will then be (N − 1)/2.

2. Choose kd to be slightly less than (say 90% of) kmax.

3. Pick a value for the white-noise forcing amplitude Fk (e.g. Fk = 1). Letting
pH = 3, kf = 3, and the forcing width δf = 2, solve Eq. (8) for the high
wavenumber viscosity νH in terms of the energy dissipation rate ǫ. An approx-
imate value for the universal constant C is 1.7.

4. Next, use Eq. (10) to determine νH.

5. Now try running the simulation with these parameters by typing xtriad3d

at the command line prompt. Random initial conditions corresponding to a
statistical-mechanical equipartition will be used by default. If you select the
dynamic time-stepping option, you will not have to worry about calculating
an optimal value for the time step. Just pick some small value like 10−6 as
a starting time step; the dynamic time-stepping mechanism will then quickly
determine the best value. The various graphs and movies may be viewed even
while triad is running [the numbers in square brackets periodically displayed by
triad correspond to 100 time steps or the movie sampling interval (if nonzero),
whichever is less]. In the graph of the evolution of E =

∑
k
Ek. The blue dotted

line in the energy spectrum graph indicates the initial energy spectrum.
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