Math 655: Statistical Theories of Turbulence

Fall, 2015 Assignment 2
September 25 2015, due October 26

1. Use the phenomenological arguments of Kolmogorov and Kraichnan to determine the exponent of the inertial-range energy spectrum power law consistent with a cascade characterized by k-independent helicity transfer.

The helicity transfer is proportional to the quantity

$$
\bar{\Pi}_{H}(k) \doteq\left[\int_{0}^{k} \bar{k}^{2} E(\bar{k}) d \bar{k}\right]^{1 / 2} k^{2} E(k)
$$

Let $f(k)=k^{2} E(k)$, so that

$$
\frac{\bar{\Pi}}{f^{2}}=\int_{0}^{k} f d k
$$

Differentiate this expression with respect to k to obtain

$$
-2 \bar{\Pi}^{2} \frac{f^{\prime}}{f^{4}}=1
$$

Let k_{0} be the smallest wavenumber in the inertial range. Integrate between k_{0} and k to obtain

$$
E(k)=k^{-7 / 3}\left[\frac{3}{2 \bar{\Pi}_{H}^{2}}\left(1-\frac{k_{0}}{k}\right)+\left(\frac{k_{0}}{k}\right) k_{0}^{-7} E^{-3}\left(k_{0}\right)\right]^{-1 / 3} \quad\left(k \geq k_{0}\right)
$$

We can rewrite this as

$$
E(k)=\left(\frac{2}{3}\right)^{\frac{1}{3}} \bar{\Pi}_{H}^{2 / 3} k^{-7 / 3} \chi^{-1 / 3}(k) \quad\left(k \geq k_{0}\right)
$$

where

$$
\chi(k) \doteq 1-\frac{k_{0}}{k}\left(1-\chi_{0}\right)
$$

and $\chi_{0} \doteq 2 \bar{\Pi}_{H}^{2} k_{0}^{-7} E^{-3}\left(k_{0}\right) / 3=\chi\left(k_{0}\right)>0$. Notice that for $k \gg k_{0}\left|1-\chi_{0}\right|$ we have $E(k) \sim k^{-7 / 3}$.
2. (a) Show that for two-dimensional unforced incompressible turbulence, the pressure P is related to the stream function ψ by

$$
\nabla^{2} P=2 \operatorname{det}\left(\begin{array}{ll}
\psi_{x x} & \psi_{x y} \\
\psi_{y x} & \psi_{y y}
\end{array}\right)
$$

The velocity field is $\boldsymbol{u}=\hat{\boldsymbol{z}} \times \boldsymbol{\nabla} \psi=\left(-\psi_{y}, \psi_{x}\right)$. The Laplacian of the pressure satisfies

$$
\begin{aligned}
\nabla^{2} P & =-\boldsymbol{\nabla} \cdot[(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u}]=-\frac{\partial}{\partial x}\left[\psi_{y}\left(\psi_{y x}\right)-\psi_{x} \psi_{y y}\right]-\frac{\partial}{\partial y}\left[-\psi_{y}\left(\psi_{x x}\right)+\psi_{x} \psi_{x y}\right] \\
& =-\psi_{y x}^{2}-\psi_{y} \psi_{y x x}+\psi_{x x} \psi_{y y}+\psi_{x} \psi_{y y x}+\psi_{y y} \psi_{x x}+\psi_{y} \psi_{x x y}-\psi_{x y}^{2}-\psi_{x} \psi_{x y y} \\
& =2\left(\psi_{x x} \psi_{y y}-\psi_{x y}^{2}\right) \\
& =2\left(\psi_{x x} \psi_{y y}-\psi_{x y} \psi_{y x}\right) .
\end{aligned}
$$

(b) What is the pressure field required to maintain the incompressibility of the velocity field $\boldsymbol{u}=(\sin y, \sin x, 0)$?
Let $u=\sin y, v=\sin x$. From part (a), we see that

$$
\nabla^{2} P=2\left(-v_{x} u_{y}-u_{x}^{2}\right)=-2 \cos x \cos y
$$

from which we deduce $P(x, y)=\cos x \cos y$ (plus any solution of Laplaces equation that satisfies the boundary conditions; for periodic boundary conditions, this means to within a constant).
3. In two dimensions, the statistical equipartition theory predicts that the ensembleaveraged energy for the inviscid unforced incompressible Navier-Stokes (Euler) equation should be distributed according to

$$
E_{k}=\frac{1}{2}\left(\frac{1}{\alpha+\beta k^{2}}\right)
$$

where the constants α and β are related to the total energy $E=\sum_{k} E_{k}$ and enstrophy Z in the flow. Here the sum is over all excited (nonzero) Fourier modes.
(a) Given α and β, it is straighforward to calculate E and Z. What is the formula for Z ?

$$
Z=\frac{1}{2} \sum_{k}\left(\frac{k^{2}}{\alpha+\beta k^{2}}\right)
$$

(b) Given E and Z, the inverse problem of determining α and β is more difficult. Suppose that only a finite number $2 N$ of Fourier modes are excited. Show that the problem of determining (α, β) from (E, Z) may be reduced to the problem of solving for the root of a single nonlinear equation.
The constants α and β may be determined from the initial energy E and enstrophy Z by expressing the ratio $r \doteq \frac{Z}{E}$ in terms of $\rho \doteq \frac{\alpha}{\beta}$, using the relation

$$
Z=\frac{1}{2 \beta} \sum_{k}\left(1-\frac{\alpha}{\alpha+\beta k^{2}}\right)=\frac{1}{\beta}(N-\alpha E) .
$$

We find that

$$
r=\frac{N}{\beta E}-\rho
$$

or

$$
r=2 N\left[\sum_{k} \frac{1}{\rho+k^{2}}\right]^{-1}-\rho
$$

Upon inverting the last equation for $\rho(r)$ with a numerical root solver, we may determine α and β from the relations

$$
\beta=\frac{N}{\rho E+Z}, \quad \alpha=\rho \beta
$$

(c) Does a solution to (b) exist for all possible combinations of E and Z ? Why or why not?
No, because if $k_{\min } \leq|\boldsymbol{k}| \leq k_{\max }$, then

$$
\frac{1}{2} k_{\min }^{2} \sum_{\boldsymbol{k}}\left(\frac{1}{\alpha+\beta k^{2}}\right) \leq \frac{1}{2} \sum_{\boldsymbol{k}}\left(\frac{k^{2}}{\alpha+\beta k^{2}}\right) \leq \frac{1}{2} k_{\max }^{2} \sum_{\boldsymbol{k}}\left(\frac{1}{\alpha+\beta k^{2}}\right)
$$

so that

$$
k_{\min }^{2} E \leq Z \leq k_{\max }^{2} E
$$

Therefore if the quantity $r=Z / E$ lies outside the interval $\left[k_{\min }^{2}, k_{\max }^{2}\right]$, then no solution can exist.
(d) In three-dimensional inviscid turbulence, one obtains an equipartition of the modal energies $E_{\boldsymbol{k}}$, since the Lagrange multiplier β corresponding to the enstrophy is zero. What quantity is in equipartition in two dimensions, when α and β are both nonzero?

$$
\left(\alpha+\beta k^{2}\right)\left|\boldsymbol{u}_{\boldsymbol{k}}\right|^{2}
$$

4. Consider two-dimensional flow in a plane perpendicular to $\hat{\boldsymbol{z}}$.
(a) Show that the tensor

$$
\epsilon_{\boldsymbol{k} p \boldsymbol{q}} \doteq(\hat{\boldsymbol{z}} \cdot \boldsymbol{p} \times \boldsymbol{q}) \delta_{\boldsymbol{k}+\boldsymbol{p}+\boldsymbol{q}, 0}
$$

is antisymmetric under interchange of any two indices.
The antisymmetry with respect to interchange of the last two indices follows from the antisymmetry of the cross product. Also,

$$
\epsilon_{\boldsymbol{p} \boldsymbol{k} \boldsymbol{q}}=(\hat{\boldsymbol{z}} \cdot \boldsymbol{k} \times \boldsymbol{q}) \delta_{\boldsymbol{k}+\boldsymbol{p}+\boldsymbol{q}, 0}=-(\hat{\boldsymbol{z}} \cdot \boldsymbol{p} \times \boldsymbol{q}) \delta_{\boldsymbol{k}+\boldsymbol{p}+\boldsymbol{q}, 0}=-\epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}}
$$

and

$$
\epsilon_{q p k}=-\epsilon_{p q k}=\epsilon_{p k q}=-\epsilon_{k p q}
$$

(b) Prove that the two-dimensional Euler equation

$$
\frac{\partial \omega_{k}}{\partial t}=\frac{\epsilon_{k p q}}{q^{2}} \omega_{p}^{*} \omega_{q}^{*}
$$

may be written as the noncanonical Hamiltonian system

$$
\dot{\omega}_{k}=J_{k q} \frac{\partial H}{\partial \omega_{q}}
$$

(where H is the Hamiltonian, in this case the total energy), by showing that that the symplectic tensor

$$
J_{k q} \doteq \epsilon_{k p q} \omega_{p}^{*}
$$

obeys both the antisymmetry

$$
J_{k q}=-J_{q k}
$$

and the Jacobi identity

$$
J_{k \ell} \frac{\partial J_{p q}}{\partial \omega_{\ell}}+J_{p \ell} \frac{\partial J_{q k}}{\partial \omega_{\ell}}+J_{q \ell} \frac{\partial J_{k p}}{\partial \omega_{\ell}}=0
$$

The Euler equation can be put into the above Hamiltonian form since

$$
H=\frac{1}{2} \sum_{k} \frac{\left|\omega_{\boldsymbol{k}}\right|^{2}}{k^{2}}=\frac{1}{2} \sum_{\boldsymbol{k}} \frac{\omega_{k} \boldsymbol{\omega}_{-k}}{k^{2}} \Rightarrow \frac{\partial H}{\partial \omega_{\boldsymbol{q}}}=\frac{1}{2} \frac{\omega_{\boldsymbol{q}}^{*}}{q^{2}}+\frac{1}{2} \frac{\boldsymbol{\omega}_{-\boldsymbol{q}}}{q^{2}}=\frac{\omega_{\boldsymbol{q}}^{*}}{q^{2}} .
$$

To prove that the result is indeed a Hamiltonian, we first note that $J_{\boldsymbol{k q}}$ inherits the antisymmetry of $\epsilon_{k p q}$ that we established in part(a). To establish the Jacobi symmetry, we first compute
$J_{\boldsymbol{k} \ell} \frac{\partial J_{\boldsymbol{p} \boldsymbol{q}}}{\partial \omega_{\ell}}=\epsilon_{\boldsymbol{k j} \ell} \omega_{j}^{*} \epsilon_{\boldsymbol{p} \boldsymbol{r} \boldsymbol{q}} \frac{\partial \omega_{-\boldsymbol{r}}}{\partial \omega_{\ell}}=\epsilon_{\boldsymbol{k j} \ell} \epsilon_{\boldsymbol{p}(-\ell) \boldsymbol{q}} \omega_{j}^{*}=\hat{z} \cdot \boldsymbol{k} \times(\boldsymbol{p}+\boldsymbol{q}) \hat{\boldsymbol{z}} \cdot \boldsymbol{p} \times \boldsymbol{q} \delta(\boldsymbol{k}+\boldsymbol{j}+\boldsymbol{p}+\boldsymbol{q}) \omega_{j}^{*}$
Since $\epsilon_{k p q}$ is invariant under cyclic permutations of its indices, the sum of the cyclic permutations of $J_{k \ell} \frac{\partial J_{p q}}{\partial \omega_{\ell}}$ may be written as $A_{k p q} \omega_{k+p+\boldsymbol{q}}$, where

$$
A_{k p q}=\hat{z} \cdot k \times(p+q) \hat{z} \cdot p \times q+\hat{z} \cdot p \times(q+k) \hat{z} \cdot q \times k+\hat{z} \cdot q \times(k+p) \hat{z} \cdot k \times p
$$

Of the six terms in the above expression, the first and last, the second and third, and the fourth and fifth cancel each other pairwise, so that $A_{k p q}=0$.
5. (a) Prove the Gaussian integration by parts formula

$$
\langle v f(v)\rangle=\left\langle v^{2}\right\rangle\left\langle\frac{\partial f}{\partial v}\right\rangle
$$

for a (scalar) centered Gaussian random variable v and a continuously differentiable $\left(C^{1}\right)$ function $f: \mathbb{R} \rightarrow \mathbb{R}$ that vanishes at $\pm \infty$.

$$
\begin{aligned}
\langle v f(v)\rangle=\int v f(v) d P & =\frac{1}{\sqrt{2 \pi} \sigma} \int f(v) v e^{-\frac{v^{2}}{2 \sigma^{2}}} d v \\
& =-\frac{\sigma^{2}}{\sqrt{2 \pi} \sigma} \int f(v) \frac{\partial}{\partial v} e^{-\frac{v^{2}}{2 \sigma^{2}}} d v \\
& =\frac{\sigma^{2}}{\sqrt{2 \pi} \sigma} \int \frac{\partial f}{\partial v} e^{-\frac{v^{2}}{2 \sigma^{2}}} d v \\
& =\sigma^{2} \int \frac{\partial f}{\partial v} d P=\sigma^{2}\left\langle\frac{\partial f}{\partial v}\right\rangle
\end{aligned}
$$

Upon setting $f(v)=v$ we see that the second moment of v is just the variance of v :

$$
\left\langle v^{2}\right\rangle=\sigma^{2}\langle 1\rangle=\sigma^{2} .
$$

Hence

$$
\langle v f(v)\rangle=\left\langle v^{2}\right\rangle\left\langle\frac{\partial f}{\partial v}\right\rangle .
$$

(b) Use part (a) to show that that the odd-order moments of a centered Gaussian distribution are zero.
First, we note that

$$
\langle v\rangle=0
$$

since v is centered.
Part (a) implies that

$$
\left\langle v^{2 n+1}\right\rangle=\left\langle v^{2}\right\rangle\left\langle\frac{\partial v^{2 n}}{\partial v}\right\rangle=2 n\left\langle v^{2}\right\rangle\left\langle v^{2 n-1}\right\rangle .
$$

Therefore, by induction, $\left\langle v^{2 n-1}\right\rangle=0$ for all $n \in \mathbb{N}$.

