Math 655: Statistical Theories of Turbulence

Fall, 2015 Assignment 1
September 11, due September 28

1. For any vector fields $\boldsymbol{u}, \boldsymbol{v}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with continuous second derivatives show that if \boldsymbol{u} and \boldsymbol{v} vanish sufficiently fast at infinity then
(a)

$$
\begin{aligned}
\int \boldsymbol{u} \cdot(\boldsymbol{\nabla} \times \boldsymbol{v}) d \boldsymbol{x} & =\int \boldsymbol{v} \cdot(\boldsymbol{\nabla} \times \boldsymbol{u}) d \boldsymbol{x} \\
\int u_{k} \epsilon_{i j k} \frac{\partial v_{j}}{\partial x_{i}} d \boldsymbol{x}=-\int v_{j} \epsilon_{i j k} \frac{\partial u_{k}}{\partial x_{i}} d \boldsymbol{x} & =-\int v_{k} \epsilon_{i k j} \frac{\partial u_{j}}{\partial x_{i}} d \boldsymbol{x}=\int v_{k} \epsilon_{i j k} \frac{\partial u_{j}}{\partial x_{i}} d \boldsymbol{x}
\end{aligned}
$$

(b)

$$
\int \boldsymbol{u} \cdot \nabla^{2} \boldsymbol{v} d \boldsymbol{x}=-\int(\boldsymbol{\nabla} \times \boldsymbol{u}) \cdot(\boldsymbol{\nabla} \times \boldsymbol{v}) d \boldsymbol{x} \quad \text { if } \boldsymbol{\nabla} \cdot \boldsymbol{v}=0 .
$$

This follows from 1(a):

$$
\int(\boldsymbol{\nabla} \times \boldsymbol{u}) \cdot(\boldsymbol{\nabla} \times \boldsymbol{v}) d \boldsymbol{x}=\int \boldsymbol{u} \cdot \boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{v}) d \boldsymbol{x}=\int \boldsymbol{u} \cdot\left[\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{v})-\nabla^{2} \boldsymbol{v}\right] d \boldsymbol{x}=-\int \boldsymbol{u} \cdot \nabla^{2} \boldsymbol{v} d \boldsymbol{x}
$$

Alternatively, we can establish the identity directly:

$$
\begin{aligned}
-\int(\boldsymbol{\nabla} \times \boldsymbol{u}) \cdot(\boldsymbol{\nabla} \times \boldsymbol{v}) d \boldsymbol{x} & =-\int \epsilon_{i j k} \frac{\partial u_{j}}{\partial x_{i}} \epsilon_{i \bar{j} j} \frac{\partial v_{\bar{j}}}{\partial x_{i}} d \boldsymbol{x}=-\int\left(\frac{\partial u_{j}}{\partial x_{i}} \frac{\partial v_{j}}{\partial x_{i}}-\frac{\partial u_{j}}{\partial x_{i}} \frac{\partial v_{i}}{\partial x_{j}}\right) d \boldsymbol{x} \\
& =\int\left(u_{j} \frac{\partial^{2} v_{j}}{\partial x_{i}^{2}}-u_{j} \frac{\partial}{\partial x_{j}} \frac{\partial v_{i}}{\partial x_{i}}\right) d \boldsymbol{x}=\int \boldsymbol{u} \cdot \nabla^{2} \boldsymbol{v} d \boldsymbol{x}
\end{aligned}
$$

since $\boldsymbol{\nabla} \cdot \boldsymbol{v}=0$.
2. (a) For any vector fields $\boldsymbol{u}, \boldsymbol{v}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, where \boldsymbol{u} is differentiable, prove that

$$
\begin{gathered}
(\boldsymbol{\nabla} \times \boldsymbol{u}) \times \boldsymbol{v}=\boldsymbol{v} \cdot\left[\boldsymbol{\nabla} \boldsymbol{u}-(\boldsymbol{\nabla} \boldsymbol{u})^{T}\right] . \\
\epsilon_{i j k}(\boldsymbol{\nabla} \times \boldsymbol{u})_{i} v_{j} \hat{\boldsymbol{x}}_{k}=\epsilon_{i j k}\left(\epsilon_{i \bar{j} \bar{k}} \partial_{\bar{j}} u_{\bar{k}}\right) v_{j} \hat{\boldsymbol{x}}_{k}=v_{j}\left(\partial_{j} u_{k}-\partial_{k} u_{j}\right) \hat{\boldsymbol{x}}_{k}=\boldsymbol{v} \cdot\left[\boldsymbol{\nabla} \boldsymbol{u}-(\boldsymbol{\nabla} \boldsymbol{u})^{T}\right] .
\end{gathered}
$$

(b) Use part (a) to show that the vortex-stretching term $\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \boldsymbol{u}$ can be written in the form $\boldsymbol{D} \cdot \boldsymbol{\omega}$, where

$$
\boldsymbol{D}=\frac{1}{2}\left[\boldsymbol{\nabla} \boldsymbol{u}+(\boldsymbol{\nabla} \boldsymbol{u})^{T}\right] .
$$

In the special case where $\boldsymbol{v} \doteq \boldsymbol{\nabla} \times \boldsymbol{u}=\boldsymbol{\omega}$, we find from part (a) that

$$
0=\boldsymbol{\omega} \times \boldsymbol{\omega}=\boldsymbol{\omega} \cdot\left[\boldsymbol{\nabla} \boldsymbol{u}-(\boldsymbol{\nabla} \boldsymbol{u})^{T}\right] .
$$

Hence $\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \boldsymbol{u}=\boldsymbol{\omega} \cdot(\boldsymbol{\nabla} \boldsymbol{u})^{T}$, so

$$
\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \boldsymbol{u}=\frac{1}{2} \boldsymbol{\omega} \cdot\left[\boldsymbol{\nabla} \boldsymbol{u}+(\boldsymbol{\nabla} \boldsymbol{u})^{T}\right]=\boldsymbol{\omega} \cdot \boldsymbol{D}=\boldsymbol{D} \cdot \boldsymbol{\omega}
$$

In the last step, we used the symmetry of \boldsymbol{D} :

$$
\boldsymbol{\omega} \cdot \boldsymbol{D}=\boldsymbol{\omega}_{i} \boldsymbol{D}_{i j} \hat{\boldsymbol{x}}_{j}=\boldsymbol{\omega}_{i} \boldsymbol{D}_{j i} \hat{\boldsymbol{x}}_{j}=\hat{\boldsymbol{x}}_{j} \boldsymbol{D}_{j i} \boldsymbol{\omega}_{i}=\boldsymbol{D} \cdot \boldsymbol{\omega}
$$

3. A simple one-dimensional model for turbulence is Burgers equation,

$$
\frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}=\nu \frac{\partial^{2}}{\partial x^{2}} v
$$

What global integral invariants does the inviscid version of Burgers equation have?
The spatial integral of any continuously differentiable function f of v is an invariant of

$$
\frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}=0
$$

given either periodic boundary conditions or the condition $\lim _{x \rightarrow \pm \infty} v=0$. Let

$$
g(v)=\int_{0}^{v} f^{\prime}(\bar{v}) \bar{v} d \bar{v}
$$

(this integral always exists, since f^{\prime} is continuous). Note that $g^{\prime}(v)=f^{\prime}(v) v$. Then

$$
\frac{d}{d t} \int f(v) d x=\int f^{\prime}(v) \frac{\partial v}{\partial t} d x=-\int f^{\prime}(v) v \frac{\partial v}{\partial x} d x=-\int \frac{\partial g(v)}{\partial x} d x=0
$$

Note: One does not assume the incompressibility condition $\partial v / \partial x=0$ for Burgers equation since this leads to the trivial solution that v is independent of both space and time.
4. Prove that the helicity

$$
H \doteq \frac{1}{2} \int \boldsymbol{u} \cdot \boldsymbol{\omega} d \boldsymbol{x}
$$

is conserved by the three-dimensional inviscid incompressible Navier-Stokes equation. From 1(a) we see that

$$
\begin{aligned}
\frac{1}{2} \frac{d H}{d t} & =-\frac{1}{2} \frac{d}{d t} \int \boldsymbol{u} \cdot \boldsymbol{\omega} d \boldsymbol{x} \\
& =\frac{1}{2} \int \frac{\partial \boldsymbol{u}}{\partial t} \cdot \boldsymbol{\nabla} \times \boldsymbol{u} d \boldsymbol{x}+\frac{1}{2} \int \boldsymbol{u} \cdot \frac{\partial}{\partial t} \boldsymbol{\nabla} \times \boldsymbol{u} d \boldsymbol{x} \\
& =\frac{1}{2} \int \boldsymbol{u} \cdot \boldsymbol{\nabla} \times \frac{\partial \boldsymbol{u}}{\partial t} d \boldsymbol{x}+\frac{1}{2} \int \boldsymbol{u} \cdot \frac{\partial}{\partial t} \boldsymbol{\nabla} \times \boldsymbol{u} d \boldsymbol{x} \\
& =\int \boldsymbol{u} \cdot \frac{\partial \boldsymbol{\omega}}{\partial t} d \boldsymbol{x}=\int \boldsymbol{u} \cdot[\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \boldsymbol{u}-\boldsymbol{u} \cdot \nabla \boldsymbol{\omega}]=\int \boldsymbol{u} \cdot \boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{\omega}) \\
& =\int \boldsymbol{\nabla} \times \boldsymbol{u} \cdot(\boldsymbol{u} \times \boldsymbol{\omega})=\int \boldsymbol{\omega} \cdot(\boldsymbol{u} \times \boldsymbol{\omega})=0
\end{aligned}
$$

since $\boldsymbol{\omega}$ and $\boldsymbol{u} \times \boldsymbol{\omega}$ are perpendicular to each other.
5. Show that

$$
\frac{1}{2} \int \boldsymbol{A} \cdot \boldsymbol{\omega} d \boldsymbol{x}
$$

is an invariant of the three-dimensional inviscid incompressible Navier-Stokes equation, where \boldsymbol{A} is any vector potential for the velocity \boldsymbol{u} and $\boldsymbol{\omega}=\boldsymbol{\nabla} \times \boldsymbol{u}$.
From 1(a) we see that

$$
\frac{1}{2} \int \boldsymbol{A} \cdot \boldsymbol{\omega} d \boldsymbol{x}=\frac{1}{2} \int \boldsymbol{A} \cdot \boldsymbol{\nabla} \times \boldsymbol{u} d \boldsymbol{x}=\frac{1}{2} \int \boldsymbol{u} \cdot \boldsymbol{\nabla} \times \boldsymbol{A} d \boldsymbol{x}=\frac{1}{2} \int \boldsymbol{u} \cdot \boldsymbol{u} d \boldsymbol{x}
$$

hence this is just the total energy in the flow, which we have seen to be an invariant of the nonlinear terms of the Navier-Stokes equation.
Alternatively, we can show the invariance directly by first noting that, in the Coulomb gauge, ω and \boldsymbol{A} are related by

$$
\boldsymbol{\omega}=\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{A})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{A})-\nabla^{2} \boldsymbol{A}=-\nabla^{2} \boldsymbol{A} .
$$

Thus

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int \boldsymbol{A} \cdot \boldsymbol{\omega} d \boldsymbol{x} & =-\frac{1}{2} \frac{d}{d t} \int \boldsymbol{A} \cdot \nabla^{2} \boldsymbol{A} d \boldsymbol{x} \\
& =-\frac{1}{2} \int \frac{\partial \boldsymbol{A}}{\partial t} \cdot \nabla^{2} \boldsymbol{A} d \boldsymbol{x}-\frac{1}{2} \int \boldsymbol{A} \cdot \frac{\partial \nabla^{2} \boldsymbol{A}}{\partial t} d \boldsymbol{x} \\
& =-\frac{1}{2} \int \frac{\partial \nabla^{2} \boldsymbol{A}}{\partial t} \cdot \boldsymbol{A} d \boldsymbol{x}-\frac{1}{2} \int \boldsymbol{A} \cdot \frac{\partial \nabla^{2} \boldsymbol{A}}{\partial t} d \boldsymbol{x} \\
& =\int \boldsymbol{A} \cdot \frac{\partial \boldsymbol{\omega}}{\partial t} d \boldsymbol{x}=\int \boldsymbol{A} \cdot(\boldsymbol{\omega} \cdot \boldsymbol{\nabla}) \boldsymbol{u}-\boldsymbol{A} \cdot(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{\omega} d \boldsymbol{x} \\
& =\int-\boldsymbol{A} \cdot\left(\nabla^{2} \boldsymbol{A} \cdot \boldsymbol{\nabla}\right) \boldsymbol{\nabla} \times \boldsymbol{A}+\boldsymbol{A} \cdot(\boldsymbol{\nabla} \times \boldsymbol{A} \cdot \boldsymbol{\nabla}) \nabla^{2} \boldsymbol{A} d \boldsymbol{x} \\
& =\int-A_{k} \nabla^{2} A_{l} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{l} x_{i}}+A_{l} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}} \frac{\partial \nabla^{2} A_{l}}{\partial x_{k}} d \boldsymbol{x} \\
& =\int \frac{\partial A_{k}}{\partial x_{l}} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}} \nabla^{2} A_{l}-\frac{\partial A_{l}}{\partial x_{k}} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}} \nabla^{2} A_{l} d \boldsymbol{x}
\end{aligned}
$$

The terms where $l=k$ cancel each other, so we only need to consider the terms where $l=i$ and $l=j$. Hence

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial}{\partial t} \int \boldsymbol{A} \cdot \boldsymbol{\omega} d \boldsymbol{x} \\
= & \int_{0}\left(\frac{\partial A_{k}}{\partial x_{i}} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}} \nabla^{2} A_{i}-\frac{\partial A_{i}}{\partial x_{k}} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}} \nabla^{2} A_{i}+\frac{\partial A_{k}}{\partial x_{j}} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}} \nabla^{2} A_{j}-\frac{\partial A_{j}}{\partial x_{k}} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}} \nabla^{2} A_{j}\right) d \boldsymbol{x} \\
= &
\end{aligned}
$$

since the first and last terms vanish and the second term, after making the substitution $i \rightarrow j \rightarrow k \rightarrow i$, cancels the third term.

