Math 422: Coding Theory

Winter, 2006 List of Theorems

- **Theorem 1.1** (Error Detection and Correction): In a symmetric channel with errorprobability p > 0,
 - (i) a code C can detect up to t errors in every codeword $\iff d(C) \ge t+1$;
 - (ii) a code C can correct up to t errors in any codeword $\iff d(C) \ge 2t + 1$.
- **Corollary 1.1.1**: If a code *C* has minimum distance *d*, then *C* can be used either (i) to detect up to d 1 errors or (ii) to correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors in any codeword. Here $\lfloor x \rfloor$ represents the greatest integer less than or equal to *x*.

Theorem 1.2 (Special Cases): For any values of q and n,

- (*i*) $A_q(n,1) = q^n$;
- (ii) $A_q(n,n) = q$.
- **Lemma 1.1** (Reduction Lemma): If a q-ary (n, M, d) code exists, with $d \ge 2$, there also exists an (n 1, M, d 1) code.
- **Theorem 1.3** (Even Values of d): Suppose d is even. Then a binary (n, M, d) code exists \iff a binary (n 1, M, d 1) code exists.
- **Corollary 1.3.1** (Maximum Code Size for Even d): If d is even, then $A_2(n,d) = A_2(n-1,d-1)$.
- **Lemma 1.2** (Zero Vector): Any code over an alphabet containing the symbol 0 is equivalent to a code containing the zero vector $\mathbf{0}$.
- **Lemma 1.3** (Counting): A sphere of radius t in F_q^n , with $0 \le t \le n$, contains exactly

$$\sum_{k=0}^{t} \binom{n}{k} (q-1)^k$$

vectors.

Theorem 1.4 (Sphere-Packing Bound): A q-ary (n, M, 2t+1) code satisfies

$$M\sum_{k=0}^{t} \binom{n}{k} (q-1)^{k} \le q^{n}.$$
 (1.1)

Lemma 2.1 (Distance of a Linear Code): If C is a linear code in F_q^n , then d(C) = w(C).

Lemma 2.2 (Equivalent Cosets): Let C be a linear code in F_q^n and $a \in F_q^n$. If b is an element of the coset a + C, then

$$b + C = a + C.$$

Theorem 2.1 (Lagrange's Theorem): Suppose C is an [n, k] code in F_q^n . Then

- (i) every vector of F_q^n is in some coset of C;
- (ii) every coset contains exactly q^k vectors;
- (iii) any two cosets are either equivalent or disjoint.
- **Theorem 2.2** (Minimum Distance): A linear code has minimum distance $d \iff d$ is the maximum number such that any d-1 columns of its parity-check matrix are linearly independent.
- **Lemma 2.3**: Two vectors u and v are in the same coset of a linear code $C \iff$ they have the same syndrome.
- **Lemma 2.4**: An $(n k) \times n$ parity-check matrix H for an [n, k] code generated by the matrix $G = [1_k | A]$, where A is a $k \times (n k)$ matrix, is given by

$$[-A^t | 1_{n-k}]$$

- **Theorem 2.3**: The syndrome of a vector that has a single error of m in the *i*th position is m times the *i*th column of H.
- **Theorem 3.1** (Hamming Codes are Perfect): Every $\operatorname{Ham}(r,q)$ code is perfect and has distance 3.
- Corollary 3.1.1 (Hamming Size): For any integer $r \ge 2$, we have $A_2(2^r 1, 3) = 2^{2^r 1 r}$.
- **Theorem 4.1** (Extended Golay [24, 12] code): The [24, 12] code generated by G_{24} has minimum distance 8.
- **Theorem 4.2** (Nonexistence of binary $(90, 2^{78}, 5)$ codes): There exist no binary $(90, 2^{78}, 5)$ codes.
- **Theorem 5.1** (Cyclic Codes are Ideals): A linear code C in \mathbb{R}^n_q is cyclic \iff

$$f(x) \in C, r(x) \in R_a^n \Rightarrow r(x)f(x) \in C.$$

- **Theorem 5.2** (Generator Polynomial): Let C be a nonzero q-ary cyclic code in \mathbb{R}_q^n . Then
 - (i) there exists a unique monic polynomial g(x) of smallest degree in C;

- (*ii*) $C = \langle g(x) \rangle$;
- (iii) g(x) is a factor of $x^n 1$ in $F_q[x]$.

Theorem 5.3 (Lowest Generator Polynomial Coefficient): Let $g(x) = g_0 + g_1 x + \ldots + g_r x^r$ be the generator polynomial of a cyclic code. Then g_0 is non-zero.

Theorem 5.4 (Cyclic Generator Matrix): A cyclic code with generator polynomial

$$g(x) = g_0 + g_1 x + \ldots + g_r x^r$$

has dimension n - r and generator matrix

	$\int g_0$	g_1	g_2	•••	g_r	0	0	• • •	0]
	0	g_0	g_1	g_2		g_r	0		0
G =	0	0	g_0	g_1	g_2		g_r		0 .
	:	:		۰.	· · .	· · .		· · .	:
	$\begin{bmatrix} 0 \end{bmatrix}$	0		0	g_0	g_1	g_2		g_r

- **Lemma 5.1** (Linear Factors): A polynomial c(x) has a linear factor $x a \iff c(a) = 0$.
- **Lemma 5.2** (Irreducible 2nd or 3rd Degree Polynomials): A polynomial c(x) in $F_q[x]$ of degree 2 or 3 is irreducible $\iff c(a) \neq 0$ for all $a \in F_q$.
- **Theorem 5.5** (Cyclic Check Polynomial): An element c(x) of R_q^n is a codeword of the cyclic code with check polynomial $h \iff c(x)h(x) = 0$ in R_q^n .

Theorem 5.6 (Cyclic Parity Check Matrix): A cyclic code with check polynomial

$$h(x) = h_0 + h_1 x + \ldots + h_k x^k$$

has dimension k and parity check matrix

	$\lceil h_k \rceil$	h_{k-1}	h_{k-2}		h_0	0	0		0]
	0	h_k	h_{k-1}	h_{k-2}		h_0	0		0
H =	0	0	h_k	h_{k-1}	h_{k-2}		h_0		0
	:	:		·	·	·		۰.	:
		0		0	h_k	h_{k-1}	h_{k-2}		h_0

Theorem 5.7 (Cyclic Binary Hamming Codes): The binary Hamming code $\operatorname{Ham}(r, 2)$ is equivalent to a cyclic code.

Corollary 5.7.1 (Binary Hamming Generator Polynomials): Any primitive polynomial of F_{2^r} is a generator polynomial for a cyclic Hamming code $\operatorname{Ham}(r, 2)$.

Theorem 6.1 (Vandermonde Determinants): For $t \ge 2$ the $t \times t$ Vandermonde matrix

$$V = \begin{bmatrix} 1 & 1 & \dots & 1 \\ e_1 & e_2 & \dots & e_t \\ e_1^2 & e_2^2 & \dots & e_t^2 \\ \vdots & \vdots & & \vdots \\ e_1^{t-1} & e_2^{t-1} & \dots & e_t^{t-1} \end{bmatrix}$$

has determinant $\prod_{i,j=1 \ i>j}^t (e_i - e_j).$

- **Theorem 6.2** (BCH Bound): The minimum distance of a BCH code of odd design distance d is at least d.
- **Theorem 7.1** (Modified Fermat's Little Theorem): If s is prime and a and m are natural numbers, then

$$m\left[m^{a(s-1)}-1\right] = 0 \pmod{s}.$$

- **Corollary 7.1.1** (RSA Inversion): The RSA decoding function \mathcal{D}_e is the inverse of the RSA encoding function \mathcal{E}_e .
- **Theorem A.1** (\mathbb{Z}_n): The ring \mathbb{Z}_n is a field \iff n is prime.
- **Theorem A.2** (Subfield Isomorphic to \mathbb{Z}_p): Every finite field has the order of a power of a prime p and contains a subfield isomorphic to \mathbb{Z}_p .
- **Corollary A.2.1** (Isomorphism to \mathbb{Z}_p): Any field F with prime order p is isomorphic to \mathbb{Z}_p .
- **Theorem A.3** (Prime Power Fields): There exists a field F of order $n \iff n$ is a power of a prime.
- **Theorem A.4** (Primitive Element of a Field): The nonzero elements of any finite field can be written as powers of a single element.
- **Corollary A.4.1** (Cyclic Nature of Fields): Every element β of a finite field of order q is a root of the equation $\beta^q \beta = 0$.
- **Theorem A.5** (Minimal Polynomial): Let $\beta \in F_{p^r}$. If $f(x) \in F_p[x]$ has β as a root, then f(x) is divisible by the minimal polynomial of β .
- **Corollary A.5.1** (Minimal Polynomials Divide $x^q x$): The minimal polynomial of an element of a field F_q divides $x^q x$.
- **Corollary A.5.2** (Irreducibility of Minimal Polynomial): Let m(x) be a monic polynomial in $F_p[x]$ that has β as a root. Then m(x) is the minimal polynomial of $\beta \iff m(x)$ is irreducible in $F_p[x]$.

Theorem A.6 (Functions of Powers): If $f(x) \in F_p[x]$, then $f(x^p) = [f(x)]^p$.

- **Corollary A.6.1** (Root Powers): If α is a root of a polynomial $f(x) \in F_p[x]$ then α^p is also a root of f(x).
- **Theorem A.7** (Reciprocal Polynomials): In a finite field F_{p^r} the following statements hold:
 - (a) If $\alpha \in F_{p^r}$ is a root of $f(x) \in F_p[x]$, then α^{-1} is a root of the reciprocal polynomial of f(x).
 - (b) a polynomial is irreducible \iff its reciprocal polynomial is irreducible.
 - (c) a polynomial is a minimal polynomial of $\alpha \in F_{p^r} \Rightarrow a$ (constant) multiple of its reciprocal polynomial is a minimal polynomial of α^{-1} .
 - (d) a polynomial is primitive \Rightarrow a (constant) multiple of its reciprocal polynomial is primitive.