Math 422: Coding Theory

Winter, 2006 List of Theorems
Theorem 1.1 (Error Detection and Correction): In a symmetric channel with errorprobability $p>0$,
(i) a code C can detect up to t errors in every codeword $\Longleftrightarrow d(C) \geq t+1$;
(ii) a code C can correct up to t errors in any codeword $\Longleftrightarrow d(C) \geq 2 t+1$.

Corollary 1.1.1: If a code C has minimum distance d, then C can be used either (i) to detect up to $d-1$ errors or (ii) to correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors in any codeword. Here $\lfloor x\rfloor$ represents the greatest integer less than or equal to x.

Theorem 1.2 (Special Cases): For any values of q and n,
(i) $A_{q}(n, 1)=q^{n}$;
(ii) $A_{q}(n, n)=q$.

Lemma 1.1 (Reduction Lemma): If a q-ary (n, M, d) code exists, with $d \geq 2$, there also exists an $(n-1, M, d-1)$ code.

Theorem 1.3 (Even Values of d): Suppose d is even. Then a binary (n, M, d) code exists $\Longleftrightarrow a$ binary $(n-1, M, d-1)$ code exists.

Corollary 1.3.1 (Maximum Code Size for Even d): If d is even, then $A_{2}(n, d)=$ $A_{2}(n-1, d-1)$.

Lemma 1.2 (Zero Vector): Any code over an alphabet containing the symbol 0 is equivalent to a code containing the zero vector $\mathbf{0}$.

Lemma 1.3 (Counting): A sphere of radius t in F_{q}^{n}, with $0 \leq t \leq n$, contains exactly

$$
\sum_{k=0}^{t}\binom{n}{k}(q-1)^{k}
$$

vectors.
Theorem 1.4 (Sphere-Packing Bound): A q-ary ($n, M, 2 t+1$) code satisfies

$$
\begin{equation*}
M \sum_{k=0}^{t}\binom{n}{k}(q-1)^{k} \leq q^{n} \tag{1.1}
\end{equation*}
$$

Lemma 2.1 (Distance of a Linear Code): If C is a linear code in F_{q}^{n}, then $d(C)=$ $w(C)$.

Lemma 2.2 (Equivalent Cosets): Let C be a linear code in F_{q}^{n} and $a \in F_{q}^{n}$. If b is an element of the coset $a+C$, then

$$
b+C=a+C
$$

Theorem 2.1 (Lagrange's Theorem): Suppose C is an $[n, k]$ code in F_{q}^{n}. Then
(i) every vector of F_{q}^{n} is in some coset of C;
(ii) every coset contains exactly q^{k} vectors;
(iii) any two cosets are either equivalent or disjoint.

Theorem 2.2 (Minimum Distance): A linear code has minimum distance $d \Longleftrightarrow d$ is the maximum number such that any $d-1$ columns of its parity-check matrix are linearly independent.

Lemma 2.3: Two vectors \boldsymbol{u} and \boldsymbol{v} are in the same coset of a linear code $C \Longleftrightarrow$ they have the same syndrome.

Lemma 2.4: An $(n-k) \times n$ parity-check matrix H for an $[n, k]$ code generated by the matrix $G=\left[1_{k} \mid A\right]$, where A is a $k \times(n-k)$ matrix, is given by

$$
\left[-A^{t} \mid 1_{n-k}\right] .
$$

Theorem 2.3: The syndrome of a vector that has a single error of m in the i th position is m times the ith column of H.

Theorem 3.1 (Hamming Codes are Perfect): Every $\operatorname{Ham}(r, q)$ code is perfect and has distance 3.

Corollary 3.1.1 (Hamming Size): For any integer $r \geq 2$, we have $A_{2}\left(2^{r}-1,3\right)=$ $2^{2^{r}-1-r}$.

Theorem 4.1 (Extended Golay [24,12] code): The $[24,12]$ code generated by G_{24} has minimum distance 8.

Theorem 4.2 (Nonexistence of binary $\left(90,2^{78}, 5\right)$ codes): There exist no binary $\left(90,2^{78}, 5\right)$ codes.

Theorem 5.1 (Cyclic Codes are Ideals): A linear code C in R_{q}^{n} is cyclic \Longleftrightarrow

$$
f(x) \in C, r(x) \in R_{q}^{n} \Rightarrow r(x) f(x) \in C .
$$

Theorem 5.2 (Generator Polynomial): Let C be a nonzero q-ary cyclic code in R_{q}^{n}. Then
(i) there exists a unique monic polynomial $g(x)$ of smallest degree in C;
(ii) $C=\langle g(x)\rangle$;
(iii) $g(x)$ is a factor of $x^{n}-1$ in $F_{q}[x]$.

Theorem 5.3 (Lowest Generator Polynomial Coefficient): Let $g(x)=g_{0}+g_{1} x+\ldots+$ $g_{r} x^{r}$ be the generator polynomial of a cyclic code. Then g_{0} is non-zero.

Theorem 5.4 (Cyclic Generator Matrix): A cyclic code with generator polynomial

$$
g(x)=g_{0}+g_{1} x+\ldots+g_{r} x^{r}
$$

has dimension $n-r$ and generator matrix

$$
G=\left[\begin{array}{ccccccccc}
g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & 0 & \ldots & 0 \\
0 & g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & \ldots & 0 \\
0 & 0 & g_{0} & g_{1} & g_{2} & \ldots & g_{r} & \ldots & 0 \\
\vdots & \vdots & & \ddots & \ddots & \ddots & & \ddots & \vdots \\
0 & 0 & \ldots & 0 & g_{0} & g_{1} & g_{2} & \ldots & g_{r}
\end{array}\right] .
$$

Lemma 5.1 (Linear Factors): A polynomial $c(x)$ has a linear factor $x-a \Longleftrightarrow$ $c(a)=0$.

Lemma 5.2 (Irreducible 2nd or 3rd Degree Polynomials): A polynomial $c(x)$ in $F_{q}[x]$ of degree 2 or 3 is irreducible $\Longleftrightarrow c(a) \neq 0$ for all $a \in F_{q}$.

Theorem 5.5 (Cyclic Check Polynomial): An element $c(x)$ of R_{q}^{n} is a codeword of the cyclic code with check polynomial $h \Longleftrightarrow c(x) h(x)=0$ in R_{q}^{n}.

Theorem 5.6 (Cyclic Parity Check Matrix): A cyclic code with check polynomial

$$
h(x)=h_{0}+h_{1} x+\ldots+h_{k} x^{k}
$$

has dimension k and parity check matrix

$$
H=\left[\begin{array}{ccccccccc}
h_{k} & h_{k-1} & h_{k-2} & \ldots & h_{0} & 0 & 0 & \ldots & 0 \\
0 & h_{k} & h_{k-1} & h_{k-2} & \ldots & h_{0} & 0 & \ldots & 0 \\
0 & 0 & h_{k} & h_{k-1} & h_{k-2} & \ldots & h_{0} & \ldots & 0 \\
\vdots & \vdots & & \ddots & \ddots & \ddots & & \ddots & \vdots \\
0 & 0 & \ldots & 0 & h_{k} & h_{k-1} & h_{k-2} & \ldots & h_{0}
\end{array}\right] .
$$

Theorem 5.7 (Cyclic Binary Hamming Codes): The binary Hamming code Ham(r, 2) is equivalent to a cyclic code.

Corollary 5.7.1 (Binary Hamming Generator Polynomials): Any primitive polynomial of $F_{2^{r}}$ is a generator polynomial for a cyclic Hamming code $\operatorname{Ham}(r, 2)$.

Theorem 6.1 (Vandermonde Determinants): For $t \geq 2$ the $t \times t$ Vandermonde matrix

$$
\begin{gathered}
V=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
e_{1} & e_{2} & \ldots & e_{t} \\
e_{1}^{2} & e_{2}^{2} & \ldots & e_{t}^{2} \\
\vdots & \vdots & & \vdots \\
e_{1}^{t-1} & e_{2}^{t-1} & \ldots & e_{t}^{t-1}
\end{array}\right] \\
\text { has determinant } \prod_{\substack{i, j=1 \\
i>j}}^{t}\left(e_{i}-e_{j}\right) \text {. }
\end{gathered}
$$

Theorem 6.2 (BCH Bound): The minimum distance of a BCH code of odd design distance d is at least d.

Theorem 7.1 (Modified Fermat's Little Theorem): If s is prime and a and m are natural numbers, then

$$
m\left[m^{a(s-1)}-1\right]=0(\bmod s) .
$$

Corollary 7.1.1 (RSA Inversion): The RSA decoding function \mathcal{D}_{e} is the inverse of the RSA encoding function \mathcal{E}_{e}.

Theorem A. $1\left(\mathbb{Z}_{n}\right)$: The ring \mathbb{Z}_{n} is a field $\Longleftrightarrow n$ is prime.
Theorem A. 2 (Subfield Isomorphic to \mathbb{Z}_{p}): Every finite field has the order of a power of a prime p and contains a subfield isomorphic to \mathbb{Z}_{p}.
Corollary A.2.1 (Isomorphism to \mathbb{Z}_{p}): Any field F with prime order p is isomorphic to \mathbb{Z}_{p}.

Theorem A. 3 (Prime Power Fields): There exists a field F of order $n \Longleftrightarrow n$ is a power of a prime.

Theorem A. 4 (Primitive Element of a Field): The nonzero elements of any finite field can be written as powers of a single element.

Corollary A.4.1 (Cyclic Nature of Fields): Every element β of a finite field of order q is a root of the equation $\beta^{q}-\beta=0$.

Theorem A. 5 (Minimal Polynomial): Let $\beta \in F_{p^{r}}$. If $f(x) \in F_{p}[x]$ has β as a root, then $f(x)$ is divisible by the minimal polynomial of β.

Corollary A.5.1 (Minimal Polynomials Divide $x^{q}-x$): The minimal polynomial of an element of a field F_{q} divides $x^{q}-x$.

Corollary A.5.2 (Irreducibility of Minimal Polynomial): Let $m(x)$ be a monic polynomial in $F_{p}[x]$ that has β as a root. Then $m(x)$ is the minimal polynomial of $\beta \Longleftrightarrow m(x)$ is irreducible in $F_{p}[x]$.

Theorem A. 6 (Functions of Powers): If $f(x) \in F_{p}[x]$, then $f\left(x^{p}\right)=[f(x)]^{p}$.
Corollary A.6.1 (Root Powers): If α is a root of a polynomial $f(x) \in F_{p}[x]$ then α^{p} is also a root of $f(x)$.

Theorem A. 7 (Reciprocal Polynomials): In a finite field $F_{p^{r}}$ the following statements hold:
(a) If $\alpha \in F_{p^{r}}$ is a root of $f(x) \in F_{p}[x]$, then α^{-1} is a root of the reciprocal polynomial of $f(x)$.
(b) a polynomial is irreducible \Longleftrightarrow its reciprocal polynomial is irreducible.
(c) a polynomial is a minimal polynomial of $\alpha \in F_{p^{r}} \Rightarrow a$ (constant) multiple of its reciprocal polynomial is a minimal polynomial of α^{-1}.
(d) a polynomial is primitive $\Rightarrow a$ (constant) multiple of its reciprocal polynomial is primitive.

