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Theorem 1.1 (Error Detection and Correction): In a symmetric channel with error-
probability p > 0,

(i) a code C can detect up to t errors in every codeword ⇐⇒ d(C) ≥ t + 1;

(ii) a code C can correct up to t errors in any codeword ⇐⇒ d(C) ≥ 2t + 1.

Corollary 1.1.1: If a code C has minimum distance d, then C can be used either (i)
to detect up to d − 1 errors or (ii) to correct up to ⌊d−1

2
⌋ errors in any codeword.

Here ⌊x⌋ represents the greatest integer less than or equal to x.

Theorem 1.2 (Special Cases): For any values of q and n,

(i) Aq(n, 1) = qn;

(ii) Aq(n, n) = q.

Lemma 1.1 (Reduction Lemma): If a q-ary (n, M, d) code exists, with d ≥ 2, there
also exists an (n − 1, M, d − 1) code.

Theorem 1.3 (Even Values of d): Suppose d is even. Then a binary (n, M, d) code
exists ⇐⇒ a binary (n − 1, M, d − 1) code exists.

Corollary 1.3.1 (Maximum Code Size for Even d): If d is even, then A2(n, d) =
A2(n − 1, d − 1).

Lemma 1.2 (Zero Vector): Any code over an alphabet containing the symbol 0 is
equivalent to a code containing the zero vector 0.

Lemma 1.3 (Counting): A sphere of radius t in F n
q , with 0 ≤ t ≤ n, contains exactly

t
∑

k=0

(

n

k

)

(q − 1)k

vectors.

Theorem 1.4 (Sphere-Packing Bound): A q-ary (n, M, 2t + 1) code satisfies

M

t
∑

k=0

(

n

k

)

(q − 1)k ≤ qn. (1.1)

Lemma 2.1 (Distance of a Linear Code): If C is a linear code in F n
q , then d(C) =

w(C).
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Lemma 2.2 (Equivalent Cosets): Let C be a linear code in F n
q and a ∈ F n

q . If b is
an element of the coset a + C, then

b + C = a + C.

Theorem 2.1 (Lagrange’s Theorem): Suppose C is an [n, k] code in F n
q . Then

(i) every vector of F n
q is in some coset of C;

(ii) every coset contains exactly qk vectors;

(iii) any two cosets are either equivalent or disjoint.

Theorem 2.2 (Minimum Distance): A linear code has minimum distance d ⇐⇒ d

is the maximum number such that any d− 1 columns of its parity-check matrix are
linearly independent.

Lemma 2.3: Two vectors u and v are in the same coset of a linear code C ⇐⇒
they have the same syndrome.

Lemma 2.4: An (n − k) × n parity-check matrix H for an [n, k] code generated by
the matrix G = [1k |A], where A is a k × (n − k) matrix, is given by

[−At | 1n−k ] .

Theorem 2.3: The syndrome of a vector that has a single error of m in the ith
position is m times the ith column of H.

Theorem 3.1 (Hamming Codes are Perfect): Every Ham(r, q) code is perfect and
has distance 3.

Corollary 3.1.1 (Hamming Size): For any integer r ≥ 2, we have A2(2
r − 1, 3) =

22r
−1−r.

Theorem 4.1 (Extended Golay [24, 12] code): The [24, 12] code generated by G24 has
minimum distance 8.

Theorem 4.2 (Nonexistence of binary (90, 278, 5) codes): There exist no binary
(90, 278, 5) codes.

Theorem 5.1 (Cyclic Codes are Ideals): A linear code C in Rn
q is cyclic ⇐⇒

f(x) ∈ C, r(x) ∈ Rn
q ⇒ r(x)f(x) ∈ C.

Theorem 5.2 (Generator Polynomial): Let C be a nonzero q-ary cyclic code in Rn
q .

Then

(i) there exists a unique monic polynomial g(x) of smallest degree in C;
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(ii) C = 〈g(x)〉;

(iii) g(x) is a factor of xn − 1 in Fq[x].

Theorem 5.3 (Lowest Generator Polynomial Coefficient): Let g(x) = g0+g1x+ . . .+
grx

r be the generator polynomial of a cyclic code. Then g0 is non-zero.

Theorem 5.4 (Cyclic Generator Matrix): A cyclic code with generator polynomial

g(x) = g0 + g1x + . . . + grx
r

has dimension n − r and generator matrix

G =













g0 g1 g2 . . . gr 0 0 . . . 0
0 g0 g1 g2 . . . gr 0 . . . 0
0 0 g0 g1 g2 . . . gr . . . 0
...

...
. . .

. . .
. . .

. . .
...

0 0 . . . 0 g0 g1 g2 . . . gr













.

Lemma 5.1 (Linear Factors): A polynomial c(x) has a linear factor x − a ⇐⇒
c(a) = 0.

Lemma 5.2 (Irreducible 2nd or 3rd Degree Polynomials): A polynomial c(x) in Fq[x]
of degree 2 or 3 is irreducible ⇐⇒ c(a) 6= 0 for all a ∈ Fq.

Theorem 5.5 (Cyclic Check Polynomial): An element c(x) of Rn
q is a codeword of

the cyclic code with check polynomial h ⇐⇒ c(x)h(x) = 0 in Rn
q .

Theorem 5.6 (Cyclic Parity Check Matrix): A cyclic code with check polynomial

h(x) = h0 + h1x + . . . + hkx
k

has dimension k and parity check matrix

H =













hk hk−1 hk−2 . . . h0 0 0 . . . 0
0 hk hk−1 hk−2 . . . h0 0 . . . 0
0 0 hk hk−1 hk−2 . . . h0 . . . 0
...

...
. . .

. . .
. . .

. . .
...

0 0 . . . 0 hk hk−1 hk−2 . . . h0













.

Theorem 5.7 (Cyclic Binary Hamming Codes): The binary Hamming code Ham(r, 2)
is equivalent to a cyclic code.

Corollary 5.7.1 (Binary Hamming Generator Polynomials): Any primitive polyno-
mial of F2r is a generator polynomial for a cyclic Hamming code Ham(r, 2).
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Theorem 6.1 (Vandermonde Determinants): For t ≥ 2 the t×t Vandermonde matrix

V =













1 1 . . . 1
e1 e2 . . . et

e2
1 e2

2 . . . e2
t

...
...

...
et−1
1 et−1

2 . . . et−1
t













has determinant

t
∏

i,j=1

i>j

(ei − ej).

Theorem 6.2 (BCH Bound): The minimum distance of a BCH code of odd design
distance d is at least d.

Theorem 7.1 (Modified Fermat’s Little Theorem): If s is prime and a and m are
natural numbers, then

m
[

ma(s−1) − 1
]

= 0 (mod s).

Corollary 7.1.1 (RSA Inversion): The RSA decoding function De is the inverse of
the RSA encoding function Ee.

Theorem A.1 (Zn): The ring Zn is a field ⇐⇒ n is prime.

Theorem A.2 (Subfield Isomorphic to Zp): Every finite field has the order of a power
of a prime p and contains a subfield isomorphic to Zp.

Corollary A.2.1 (Isomorphism to Zp): Any field F with prime order p is isomorphic
to Zp.

Theorem A.3 (Prime Power Fields): There exists a field F of order n ⇐⇒ n is a
power of a prime.

Theorem A.4 (Primitive Element of a Field): The nonzero elements of any finite
field can be written as powers of a single element.

Corollary A.4.1 (Cyclic Nature of Fields): Every element β of a finite field of order
q is a root of the equation βq − β = 0.

Theorem A.5 (Minimal Polynomial): Let β ∈ Fpr . If f(x) ∈ Fp[x] has β as a root,
then f(x) is divisible by the minimal polynomial of β.

Corollary A.5.1 (Minimal Polynomials Divide xq − x): The minimal polynomial of
an element of a field Fq divides xq − x.

Corollary A.5.2 (Irreducibility of Minimal Polynomial): Let m(x) be a monic poly-
nomial in Fp[x] that has β as a root. Then m(x) is the minimal polynomial
of β ⇐⇒ m(x) is irreducible in Fp[x].
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Theorem A.6 (Functions of Powers): If f(x) ∈ Fp[x], then f(xp) = [f(x)]p.

Corollary A.6.1 (Root Powers): If α is a root of a polynomial f(x) ∈ Fp[x] then αp

is also a root of f(x).

Theorem A.7 (Reciprocal Polynomials): In a finite field Fpr the following statements
hold:

(a) If α ∈ Fpr is a root of f(x) ∈ Fp[x], then α−1 is a root of the reciprocal polyno-
mial of f(x).

(b) a polynomial is irreducible ⇐⇒ its reciprocal polynomial is irreducible.

(c) a polynomial is a minimal polynomial of α ∈ Fpr ⇒ a (constant) multiple of its
reciprocal polynomial is a minimal polynomial of α−1.

(d) a polynomial is primitive ⇒ a (constant) multiple of its reciprocal polynomial is
primitive.
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