Math 422: Coding Theory
Winter, 2006 List of Theorems

Theorem 1.1 (Error Detection and Correction): In a symmetric channel with error-
probability p > 0,

(i) a code C' can detect up to t errors in every codeword <= d(C) >1t+1;
(i1) a code C' can correct up to t errors in any codeword <= d(C) > 2t + 1.

Corollary 1.1.1: If a code C' has minimum distance d, then C' can be used either (i)

to detect up to d — 1 errors or (ii) to correct up to |%41] errors in any codeword.

Here |x| represents the greatest integer less than or equal to .
Theorem 1.2 (Special Cases): For any values of ¢ and n,

(1) Ag(n, 1) = q";

(i) Ay(n,n) =q.

Lemma 1.1 (Reduction Lemma): If a g-ary (n, M,d) code exists, with d > 2, there
also ezists an (n — 1, M,d — 1) code.

Theorem 1.3 (Even Values of d): Suppose d is even. Then a binary (n, M, d) code
exists <= a binary (n — 1, M,d — 1) code ezists.

Corollary 1.3.1 (Maximum Code Size for Even d): If d is even, then Ay(n,d) =
AQ(TZ — 1, d— 1)

Lemma 1.2 (Zero Vector): Any code over an alphabet containing the symbol O is
equivalent to a code containing the zero vector 0.

Lemma 1.3 (Counting): A sphere of radius t in F', with 0 <t < n, contains exactly

i (Z) (¢—1)*

k=0

vectors.

Theorem 1.4 (Sphere-Packing Bound): A g-ary (n, M, 2t + 1) code satisfies

MZ (-1 <o (1)

Lemma 2.1 (Distance of a Linear Code): If C' is a linear code in F}', then d(C) =
w(C).



Lemma 2.2 (Equivalent Cosets): Let C' be a linear code in F)' and a € Fy. Ifb is
an element of the coset a + C, then

b+C=a+C.
Theorem 2.1 (Lagrange’s Theorem): Suppose C is an [n, k] code in F'. Then
(i) every vector of I} is in some coset of C;
(ii) every coset contains exactly ¢* vectors;
(7ii) any two cosets are either equivalent or disjoint.

Theorem 2.2 (Minimum Distance): A linear code has minimum distance d <= d
is the maximum number such that any d — 1 columns of its parity-check matriz are
linearly independent.

Lemma 2.3: Two vectors w and v are in the same coset of a linear code C <=
they have the same syndrome.

Lemma 2.4: An (n — k) x n parity-check matriz H for an [n,k| code generated by
the matriz G = [1j | A], where A is a k x (n — k) matriz, is given by

[—A [ Tk ].

Theorem 2.3: The syndrome of a wvector that has a single error of m in the ith
position is m times the ith column of H.

Theorem 3.1 (Hamming Codes are Perfect): Every Ham(r, q) code is perfect and
has distance 3.

Corollary 3.1.1 (Hamming Size): For any integer r > 2, we have Ay(2" — 1,3) =
92" —1-r

Theorem 4.1 (Extended Golay [24,12] code): The [24,12] code generated by Gay has
minimum distance 8.

Theorem 4.2 (Nonexistence of binary (90,2 5) codes): There exist no binary
(90,278, 5) codes.

Theorem 5.1 (Cyclic Codes are Ideals): A linear code C' in Ry is cyclic <=
fx)e Cr(z) € Ry = r(x)f(x) € C.

Theorem 5.2 (Generator Polynomial): Let C' be a nonzero g-ary cyclic code in Ry .
Then

(i) there exists a unique monic polynomial g(x) of smallest degree in C;

2



(i) C = (g(x));
(i1i) g(x) is a factor of x™ — 1 in F,lx].

Theorem 5.3 (Lowest Generator Polynomial Coefficient): Let g(z) = go+g12+. ..+
gr-x" be the generator polynomial of a cyclic code. Then gy is non-zero.

Theorem 5.4 (Cyclic Generator Matrix): A cyclic code with generator polynomial
gx)=go+qr+...+ga"

has dimension n —r and generator matriz

9 9 92 ... ¢g 0 0 ... O

0 g9 ¢ ¢o ... g 0 .0
G=10 0 9 a 9 - o 0
o 0 ... 0 g9 ¢ g2 ... Gr

Lemma 5.1 (Linear Factors): A polynomial c(x) has a linear factor x — a <=
c(a) = 0.

Lemma 5.2 (Irreducible 2nd or 3rd Degree Polynomials): A polynomial ¢(x) in F,[x]
of degree 2 or 3 is irreducible <= c(a) # 0 for all a € F}.

Theorem 5.5 (Cyclic Check Polynomial): An element c(x) of Ry is a codeword of
the cyclic code with check polynomial h <= c(x)h(x) =0 in R}.

Theorem 5.6 (Cyclic Parity Check Matrix): A cyclic code with check polynomial

h(z) = ho 4+ hix + ... + hpa”

has dimension k and parity check matriz

he hi_1 hipo ... ho 0 0 .. 0

0 hr hp1 hpo ... ho 0 0

H = 0 0 hk hk—l hk_g C ho C 0
0 0 e 0 hy  hp1 hio ... hg

Theorem 5.7 (Cyclic Binary Hamming Codes): The binary Hamming code Ham(r, 2)
18 equivalent to a cyclic code.

Corollary 5.7.1 (Binary Hamming Generator Polynomials): Any primitive polyno-
mial of Fy- is a generator polynomial for a cyclic Hamming code Ham(r, 2).



Theorem 6.1 (Vandermonde Determinants): Fort > 2 the t Xt Vandermonde matriz

1 | |
€1 €9 c. €
2 2 2
V = (e e ... &
t—1 t—1 t—1
61 62 DEEIEY et

t
has determinant H (e; —€j).

i,j=1
i>7

Theorem 6.2 (BCH Bound): The minimum distance of a BCH code of odd design
distance d s at least d.

Theorem 7.1 (Modified Fermat’s Little Theorem): If s is prime and a and m are
natural numbers, then
m [m**™ — 1] =0 (mod s).

Corollary 7.1.1 (RSA Inversion): The RSA decoding function D, is the inverse of
the RSA encoding function &,.

Theorem A.1 (Z,): The ring Z, is a field <= n is prime.

Theorem A.2 (Subfield Isomorphic to Z,): Every finite field has the order of a power
of a prime p and contains a subfield isomorphic to Z,.

Corollary A.2.1 (Isomorphism to Z,): Any field F' with prime order p is isomorphic
to Z,.

Theorem A.3 (Prime Power Fields): There ezists a field F' of order n <= n is a
power of a prime.

Theorem A.4 (Primitive Element of a Field): The nonzero elements of any finite
field can be written as powers of a single element.

Corollary A.4.1 (Cyclic Nature of Fields): Every element /3 of a finite field of order
q is a root of the equation f¢ — 3 = 0.

Theorem A.5 (Minimal Polynomial): Let 5 € F,r. If f(x) € Fp[z]| has B as a root,
then f(z) is divisible by the minimal polynomial of 3.

Corollary A.5.1 (Minimal Polynomials Divide 2% — z): The minimal polynomial of
an element of a field Fj, divides 27 — x.

Corollary A.5.2 (Irreducibility of Minimal Polynomial): Let m(x) be a monic poly-
nomial in Fp[z| that has § as a root. Then m(z) is the minimal polynomial
of f <= m(x) is irreducible in F,[z].



Theorem A.6 (Functions of Powers): If f(x) € Fp[x], then f(aP) = [f(z)]".

Corollary A.6.1 (Root Powers): If a is a root of a polynomial f(z) € F,[z]| then o
is also a root of f(z).

Theorem A.7 (Reciprocal Polynomials): In a finite field Fr the following statements
hold:

(a) If a« € Fyr is a root of f(x) € F,[z], then o™ is a root of the reciprocal polyno-
mial of f(x).

(b) a polynomial is irreducible <= its reciprocal polynomial is irreducible.

(¢) a polynomial is a minimal polynomial of o € F,,r = a (constant) multiple of its
reciprocal polynomial is a minimal polynomial of a~*.

(d) a polynomial is primitive = a (constant) multiple of its reciprocal polynomial is
primitive.



