Chapter 1 Measure Theory

Indicator function:

$$1_S(x) = \begin{cases} 1 & \text{if } x \in S, \\ 0 & \text{otherwise.} \end{cases}$$

Power set:

$$\mathcal{P}(S) = \{s : s \subset S\}.$$

Uncountable summation:

$$\sum_{\alpha \in A} x_{\alpha} \doteq \sup_{F \subset A \atop F \text{ finite } \alpha \in F} \sum_{\alpha \in F} x_{\alpha}.$$

Elementary set: finite union of boxes.

Jordan inner measure:

$$m_{*J}(S) \doteq \sup_{\substack{E \subset S \\ E \text{ elementary}}} m(E).$$

Jordan outer measure:

$$m^{*J}(S) \doteq \inf_{\substack{E \supset S \\ E \text{ elementary}}} m(E).$$

Jordan measurable:

$$m_{*J}(S) = m^{*J}(S).$$

Lebesgue outer measure:

$$m^*(S) \doteq \inf_{\substack{\bigcup_{k=1}^{\infty} B_k \supset S \\ B_k \text{ boxes}}} \sum_{k=1}^{\infty} |B_k|.$$

Properties of Lebesgue outer measure:

(i)
$$m^*(\emptyset) = 0;$$
 nullity
(ii) $S \subset T \subset \mathbb{R}^d \Rightarrow m^*(S) \le m^*(T);$ monotonicity
(iii) $m^*\left(\bigcup_{k=1}^{\infty} S_k\right) \le \sum_{k=1}^{\infty} m^*(S_k),$ where $S_k \subset \mathbb{R}^d.$
countable subadditivity

S, T separated: dist(S, T) > 0.

Compact disjoint sets in \mathbb{R}^d : separated.

Finite additivity for separated sets S and T:

$$m^*(S \cup T) = m^*(S) + m^*(T).$$

Closed dyadic cube in \mathbb{R}^d :

$$\left[\frac{i_1}{2^n},\frac{i_1+1}{2^n}\right]\times\ldots\times\left[\frac{i_d}{2^n},\frac{i_d+1}{2^n}\right]$$

for integers n, i_1, i_2, \ldots, i_d .

Open subset of \mathbb{R}^d : countable union of open balls.

Open subset of \mathbb{R}^d : countable union of almost disjoint closed cubes.

Outer regularity:

$$m^*(S) = \inf_{U \supset S \atop U \text{ open}} m^*(U).$$

Lebesgue measurable set S: for every $\epsilon > 0$, there exists an open set $U \supset S$ such that $m^*(U \setminus S) < \epsilon$.

Null set: Lebesgue measure zero.

Boolean algebra: closed under complements and finite unions and intersections.

 σ -algebra: closed under complements and countable unions and intersections.

Characterization of measurability. TFAE:

- (i) S is Lebesgue measurable;
- (ii) given $\epsilon > 0$, there exists an open set U_{ϵ} containing S with $m^*(U_{\epsilon} \setminus S) < \epsilon$; (outer open approximation)
- (iii) given $\epsilon > 0$, there exists an open set U_{ϵ} with $m^*(U_{\epsilon} \bigtriangleup S) < \epsilon$; (almost open)
- (iv) given $\epsilon > 0$, there exists a closed set F_{ϵ} contained in S with $m^*(S \setminus F_{\epsilon}) < \epsilon$; (inner closed approximation)
- (v) given $\epsilon > 0$, there exists a closed set F_{ϵ} with $m^*(F_{\epsilon} \Delta S) < \epsilon$; (almost closed)
- (vi) given $\epsilon > 0$, there exists a Lebesgue measurable set S_{ϵ} with $m^*(S_{\epsilon} \Delta S) < \epsilon$. (almost measurable)

Properties of Lebesgue measure:

- (i) $m(\emptyset) = 0;$
- (ii) If $S_1, S_2, \ldots \subset \mathbb{R}^d$ is a countable sequence of disjoint Lebesgue measurable sets, then $m(\bigcup_{k=1}^{\infty} S_k) = \sum_{k=1}^{\infty} m(S_k).$ countable additivity

Upward monotone convergence of increasing sequence of measurable sets:

$$m\left(\bigcup_{k=1}^{\infty} S_k\right) = \lim_{n \to \infty} m(S_n).$$

Downward monotone convergence of decreasing sequence of finite-measure sets:

$$m\left(\bigcap_{k=1}^{\infty}S_k\right) = \lim_{n \to \infty}m(S_n).$$

Dominated convergence theorem: Suppose $S_n \subset \mathbb{R}^d$, n = 1, 2, ... are Lebesgue measurable sets that converge pointwise to a set S and are all contained in a single Lebesgue measurable set F of finite measure. Then $m(S_n)$ converges to m(S).

Inner regularity:

$$m(S) = \sup_{K \subset S \atop K \text{ compact}} m(K).$$

nullity;

Characterization of finite measurability. Given $\epsilon > 0$, TFAE:

- (i) S is Lebesgue measurable with finite measure;
- (ii) there exists an open set U_{ϵ} of finite measure **containing** S with $m^*(U_{\epsilon} \setminus S) < \epsilon$; (outer open approximation)
- (iii) there exists a bounded open set U_{ϵ} with $m^*(U_{\epsilon} \triangle S) < \epsilon$; (almost open bounded)
- (iv) there exists a compact set K_{ϵ} contained in S with $m^*(S \setminus K_{\epsilon}) < \epsilon$; (inner compact approximation);
- (v) there exists a compact set K_{ϵ} with $m^*(K_{\epsilon} \Delta S) < \epsilon$;

(almost compact)

(vi) there exists a bounded Lebesgue measurable set S_{ϵ} with $m^*(S_{\epsilon} \Delta S) < \epsilon$; (almost bounded measurable)

(vii) there exists a Lebesgue measurable set S_{ϵ} with finite measure such that $m^*(S_{\epsilon} \Delta S) < \epsilon$;

(almost finite measure)

- (viii) there exists an elementary set E_{ϵ} such that $m^*(E_{\epsilon} \bigtriangleup S) < \epsilon$; (almost elementary)
- (ix) there exists a finite union F_{ϵ} of closed dyadic cubes such that $m^*(F_{\epsilon} \Delta S) < \epsilon$. (almost dyadic)

Borel σ -algebra on $\mathcal{B}[\mathbb{R}^d]$ generators:

- open;
- closed;
- compact;
- open balls;
- boxes;
- elementary

Caratheodory Criterion: $S \subset \mathbb{R}^d$ is Lebesgue measurable \iff for every $A \subset \mathbb{R}^d$,

$$m^*(A \cap S) + m^*(A \cap S^c) = m^*(A).$$

Useful techniques:

•

$$\frac{\epsilon}{2^k}$$
 trick;

- Bound measures from above and below;
- If $x < y + \epsilon$ for all $\epsilon > 0$ and x and y are *independent* of ϵ , then $x \leq y$;
- Use countable unions or intersections to build monotonic sequences of sets;
- Consider finite and infinite measure cases separately;
- Project to countable sequence of balls, annuli, or boxes;
- Supremum over a larger set can never be smaller;
- •

$$S \subset U \Rightarrow (U \setminus S) \cup S = U;$$

• Draw a Venn diagram!

The Lebesgue Integral

Almost everywhere: holds outside of a null set.

Support of a function f on \mathbb{R}^d : $\{x \in \mathbb{R}^d : f(x) \neq 0\}$.

Simple function: finite linear combination of indicator functions over (w.l.o.g. distinct) measurable sets.

Simple integral:

$$\operatorname{Simp} \int_{\mathbb{R}^d} \sum_{k=1}^n c_k \mathbf{1}_{S_k} \doteq \sum_{k=1}^n c_k m(S_k).$$

Properties of simple unsigned functions f and g:

(i)

$$\operatorname{Simp} \int_{\mathbb{R}^d} (f+g) = \operatorname{Simp} \int_{\mathbb{R}^d} f + \operatorname{Simp} \int_{\mathbb{R}^d} g$$

and

$$\operatorname{Simp} \int_{\mathbb{R}^d} cf = c \operatorname{Simp} \int_{\mathbb{R}^d} f$$

for every $c \in [0, \infty]$;

(unsigned linearity)

- (ii) $\operatorname{Simp} \int_{\mathbb{R}^d} f < \infty$ iff f is finite almost everywhere and its support has finite measure; (finiteness)
- (iii) Simp $\int_{\mathbb{R}^d} f = 0$ iff f = 0 almost everywhere; (vanishing)
- (iv) if f and g agree almost everywhere, $\operatorname{Simp} \int_{\mathbb{R}^d} f = \operatorname{Simp} \int_{\mathbb{R}^d} g$; (equivalence)
- (v) if $f(x) \le g(x)$ for almost every $x \in \mathbb{R}^d$, $\operatorname{Simp} \int_{\mathbb{R}^d} f \le \operatorname{Simp} \int_{\mathbb{R}^d} g;$ (monotonicity)
- (vi) for any Lebesgue measurable set S, $\operatorname{Simp} \int_{\mathbb{R}^d} 1_S = m(S)$. (compatibility)

Absolutely integrable: $|f|_{L^1(\mathbb{R}^d)} \doteq \int_{\mathbb{R}^d} |f| < \infty$.

 $f:\mathbb{R}^d \to [0,\infty]$:

$$\operatorname{Simp} \int_{\mathbb{R}^d} f \doteq \operatorname{Simp} \int_{\mathbb{R}^d} \max(f, 0) - \operatorname{Simp} \int_{\mathbb{R}^d} \max(-f, 0)$$

 $f: \mathbb{R}^d \to \mathbb{C}$:

$$\operatorname{Simp} \int_{\mathbb{R}^d} f \doteq \operatorname{Simp} \int_{\mathbb{R}^d} \operatorname{Re} f + i \operatorname{Simp} \int_{\mathbb{R}^d} \operatorname{Im} f$$

Measurable function: pointwise limit of a sequence of simple functions.

Relatively open set U in $X \subset \mathbb{R}^d$: \exists open V in $\mathbb{R}^d \ni U = V \cap X$.

Characterization of measurable unsigned functions. TFAE:

- (i) f is unsigned Lebesgue measurable;
- (ii) f is the pointwise limit of a sequence of unsigned simple functions;
- (iii) f is the pointwise almost everywhere limit of unsigned simple functions;
- (iv) $f = \sup_n f_n$ for an increasing sequence f_n of bounded unsigned simple functions that have finite-measure support;
- (v) for every $\lambda \in [0, \infty]$, the set $\{x \in \mathbb{R}^d : f(x) > \lambda\}$ is Lebesgue measurable;
- (vi) for every $\lambda \in [0, \infty]$, the set $\{x \in \mathbb{R}^d : f(x) \ge \lambda\}$ is Lebesgue measurable;
- (vii) for every $\lambda \in [0, \infty]$, the set $\{x \in \mathbb{R}^d : f(x) < \lambda\}$ is Lebesgue measurable;
- (viii) for every $\lambda \in [0, \infty]$, the set $\{x \in \mathbb{R}^d : f(x) \leq \lambda\}$ is Lebesgue measurable;
- (ix) for every interval $I \subset [0,\infty)$, the set $f^{-1}(I) \doteq \{x \in \mathbb{R}^d : f(x) \in I\}$ is Lebesgue measurable;
- (x) for every relatively open set $U \subset [0, \infty)$, the set $f^{-1}(U) \doteq \{x \in \mathbb{R}^d : f(x) \in U\}$ is Lebesgue measurable;
- (xi) for every relatively closed set $F \subset [0, \infty)$, the set $f^{-1}(F) \doteq \{x \in \mathbb{R}^d : f(x) \in F\}$ is Lebesgue measurable.

Unsigned measurable functions:

- every continuous unsigned function $f : \mathbb{R}^d \to [0, \infty];$
- every unsigned simple function;
- the supremum, infimum, limit superior, and limit inferior of a sequence of unsigned measurable functions;

• an unsigned function that is almost everywhere equal to an unsigned measurable function;

• the composition $\phi \circ f$ of a continuous function $\phi : [0,\infty] \to [0,\infty]$ and an unsigned measurable function f;

- the sum and product of unsigned measurable functions.
- Bounded measurable function with finite support: *uniform* limit of a bounded sequence of simple functions.

Simple functions: measurable and take on finitely many values.

Lower unsigned Lebesgue integral:

$$\underline{\int_{\mathbb{R}^d}} f \doteq \sup_{\substack{h \text{ simple}\\0 \le h \le f}} \operatorname{Simp} \int_{\mathbb{R}^d} h.$$

Upper unsigned Lebesgue integral:

$$\overline{\int_{\mathbb{R}^d}} f \doteq \inf_{\substack{h \text{ simple}\\h \ge f}} \operatorname{Simp} \int_{\mathbb{R}^d} h.$$

Properties of the lower and upper Lebesgue integrals:

Let $f, g: \mathbb{R}^d \to [0, \infty]$ be unsigned (not necessarily measurable) functions. Then

- (i) if f is simple, $\int_{\mathbb{R}^d} f = \overline{\int_{\mathbb{R}^d}} f = \operatorname{Simp} \int_{\mathbb{R}^d} f;$ compatibility
- (ii) if $f \leq q$ pointwise almost everywhere, $\int_{\mathbb{R}^d} f \leq \int_{\mathbb{R}^d} g$ and $\overline{\int_{\mathbb{R}^d}} f \leq \overline{\int_{\mathbb{R}^d}} g;$ monotonicity
- (iii) $\int_{\mathbb{R}^d} cf = c \int_{\mathbb{R}^d} f$ for every $c \in [0, \infty)$; scaling
- (iv) if f and g agree almost everywhere, $\int_{\mathbb{R}^d} f = \int_{\mathbb{R}^d} g$ and $\overline{\int_{\mathbb{R}^d}} f = \overline{\int_{\mathbb{R}^d}} g;$
- (v) $\int_{\mathbb{R}^d} (f+g) \ge \int_{\mathbb{R}^d} f + \int_{\mathbb{R}^d} g;$ lower superadditivity
- (vi) $\overline{\int_{\mathbb{R}^d}}(f+g) \leq \overline{\int_{\mathbb{R}^d}}f + \overline{\int_{\mathbb{R}^d}}g;$ upper subadditivity
- (vii) for any measurable set $S \subset \mathbb{R}^d$,

$$\underline{\int_{\mathbb{R}^d}} f = \underline{\int_{\mathbb{R}^d}} f \mathbf{1}_S + \underline{\int_{\mathbb{R}^d}} f \mathbf{1}_{S^c};$$

complementarity

equivalence

(viii)

$$\lim_{n \to \infty} \underline{\int_{\mathbb{R}^d}} \min(f(x), n) \, dx = \underline{\int_{\mathbb{R}^d}} f;$$

vertical truncation

(ix)

$$\lim_{n \to \infty} \underline{\int_{\mathbb{R}^d}} f(x) \, \mathbf{1}_{B_n[0]} \, dx = \underline{\int_{\mathbb{R}^d}} f;$$

(use the monotone convergence theorem) horizontal truncation(x) if f + g is a bounded simple function with finite measure support,

$$\operatorname{Simp} \int_{\mathbb{R}^d} (f+g) = \underline{\int_{\mathbb{R}^d}} f + \overline{\int_{\mathbb{R}^d}} g.$$

reflection

Unsigned Lebesgue integral:

$$\int_{\mathbb{R}^d} f \doteq \underline{\int_{\mathbb{R}^d}} f.$$

Markov's inequality: For $f : \mathbb{R}^d \to [0, \infty]$ measurable and every $\lambda \in (0, \infty)$,

$$m(\{x \in \mathbb{R}^d : f(x) \ge \lambda\}) \le \frac{1}{\lambda} \int_{\mathbb{R}^d} f.$$

- If $\int_{\mathbb{R}^d} f < \infty$, then f is finite almost everywhere.
- $\int_{\mathbb{R}^d} f = 0$ iff f is zero almost everywhere.

Triangle inequality: $|f + g|_{L^1(\mathbb{R}^d)} \leq |f|_{L^1(\mathbb{R}^d)} + |g|_{L^1(\mathbb{R}^d)}$ Integral triangle inequality: For $f \in L^1(\mathbb{R}^d)$,

$$\left|\int_{\mathbb{R}^d} f\right| \le \int_{\mathbb{R}^d} |f|.$$

Approximation of L^1 functions: Let $f \in L^1(\mathbb{R}^d)$ and $\epsilon > 0$. There exists

- (i) an absolutely integrable simple function g such that $|f g|_{L^1(\mathbb{R}^d)} < \epsilon$.
- (ii) a step function g such that $|f g|_{L^1(\mathbb{R}^d)} < \epsilon$.
- (iii) a continuous, compactly supported function $g \in L^1(\mathbb{R}^d)$ such that

$$|f-g|_{L^1(\mathbb{R}^d)} < \epsilon.$$

Locally uniform convergence: uniform convergence on bounded subsets.

Egorov's theorem: Let $f_n : \mathbb{R}^d \to \mathbb{C}$ be a sequence of measurable functions that converge pointwise almost everywhere to $f : \mathbb{R}^d \to \mathbb{C}$. Given $\epsilon > 0$, there exists a Lebesgue measurable set S of measure at most ϵ such that f_n converges locally uniformly to f outside of S.

Finite-measurable set: nearly a finite union of boxes.

Absolutely integrable function: nearly continuous.

Pointwise convergent functions: nearly locally uniformly convergent.

Abstract Measure Spaces

• Let X be a set. A σ -algebra on X is a collection \mathcal{B} of X such that

(i)
$$\emptyset \in \mathcal{B};$$

(empty set)

(closure under complement)

- (ii) If $S \in \mathcal{B}$, then the complement $S^c \doteq X \setminus S$ is also an element of \mathcal{B} ;
- (iii) If $S_1, S_2, \ldots \in \mathcal{B}$, then $\bigcup_{n=1}^{\infty} S_n \in \mathcal{B}$. (closure under countable union)
- Let \mathcal{B} be a σ -algebra on a set X. A measure μ on \mathcal{B} is a map $\mu : \mathcal{B} \to [0, \infty]$ such that
 - (i) $\mu(\emptyset) = 0;$ nullity
- (ii) if S_1, S_2, \ldots are disjoint elements of \mathcal{B} , then $\mu(\bigcup_{k=1}^{\infty} S_k) = \sum_{k=1}^{\infty} \mu(S_k)$.
- Let (X, \mathcal{B}, μ) be a measure space.
 - (i) If S_1, S_2, \ldots are \mathcal{B} -measurable, then

$$\mu\left(\bigcup_{k=1}^{\infty} S_k\right) \le \sum_{k=1}^{\infty} \mu(S_k).$$

countable subadditivity

(ii) If $S_1 \subset S_2 \subset \ldots$ is an increasing sequence of \mathcal{B} -measurable sets, then

$$\mu\left(\bigcup_{k=1}^{\infty} S_k\right) = \lim_{n \to \infty} \mu(S_n) = \sup_n \mu(S_n).$$

upward monotone convergence

(iii) If $S_1 \supset S_2 \supset \ldots$ is a decreasing sequence of \mathcal{B} -measurable sets and at least one of the $\mu(S_k)$ is finite, then

$$\mu\left(\bigcap_{k=1}^{\infty} S_k\right) = \lim_{n \to \infty} \mu(S_n) = \inf_n \mu(S_n).$$

downward monotone convergence

- Let (X, \mathcal{B}, μ) be a measure space. Suppose S_n , n = 1, 2, ... are \mathcal{B} -measurable sets that converge to a set S. Then
 - (i) S is \mathcal{B} -measurable.
 - (ii) If the S_n are all contained in another \mathcal{B} -measurable set of finite measure, then $m(S_n)$ converges to m(S).
- **Definition**: Let (X, \mathcal{B}) be a measurable space and let $f : X \to [0, \infty]$ (or $f : X \to \mathbb{C}$) be an unsigned or complex-valued function. We say that f is *measurable* if $f^{-1}(U)$ is \mathcal{B} -measurable for every open subset U of $[0, \infty]$ (or \mathbb{C}).

Remark: (*Characterization of measurable functions*) Let (X, \mathcal{B}) be a measurable space. Show that

- (i) a function $f: X \to [0, \infty]$ is measurable iff the level sets $\{x \in X : f(x) > \lambda\}$ are measurable for every $\lambda \in [0, \infty)$;
- (ii) an indicator function 1_S of a set $S \subset X$ is measurable iff S is measurable;
- (iii) a function $f: X \to [0, \infty]$ (or $f: X \to \mathbb{C}$) is measurable iff $f^{-1}(S)$ is measurable for every Borel-measurable subset S of $[0, \infty]$ (or \mathbb{C});
- (iv) a function $f: X \to \mathbb{C}$ is measurable iff its real and imaginary parts are measurable;
- (v) a function $f : X \to \mathbb{R}$ is measurable iff its positive and negative parts are measurable;
- (vi) the pointwise limit f of a sequence of measurable functions $f_n : X \to [0, \infty]$ (or \mathbb{C}) is also measurable;
- (vii) if $f: X \to [0, \infty]$ (or \mathbb{C}) is measurable and $\phi: [0, \infty] \to [0, \infty]$ (or $\mathbb{C} \to \mathbb{C}$) is continuous, then $\phi \circ f$ is measurable;
- (viii) the sum or product of two measurable functions in $[0, \infty]$ (or \mathbb{C}) is measurable.

Theorem 3.7 (Monotone convergence theorem): Let (X, \mathcal{B}, μ) be a measure space and $f_1 \leq f_2 \leq \ldots$ be an increasing sequence of unsigned measurable functions on X. Then

$$\int_X \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu.$$

Corollary 3.7.3 (Fatou's lemma): Let (X, \mathcal{B}, μ) be a measure space and f_1, f_2, \ldots be a sequence of unsigned measurable functions on X. Then

$$\int_X \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int_X f_n \, d\mu$$

Theorem 3.8 (Dominated convergence theorem): Let (X, \mathcal{B}, μ) be a measure space and f_1, f_2, \ldots be a sequence of complex-valued measurable functions on X that converge pointwise μ -almost everywhere on X. Suppose that there exists an unsigned absolutely integrable function $G: X \to [0, \infty]$ such that for each $n \in \mathbb{N}$, $|f_n| \leq G$ μ -almost everywhere. Then

$$\int_X \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu.$$

Modes of Convergence

- pointwise almost everywhere
- uniformly almost everywhere (in L^{∞} norm)
- almost uniformly
- in L^1 norm
- in measure

Differentiation Theorems

Theorem 5.1 (Lebesgue differentiation theorem on \mathbb{R}): Let $f : \mathbb{R} \to \mathbb{C}$ be an absolutely integrable function. Then

$$\lim_{h \to 0^+} \frac{1}{h} \int_{[x,x+h]} f(t) \, dt = f(x)$$

and

$$\lim_{h \to 0^+} \frac{1}{h} \int_{[x-h,x]} f(t) \, dt = f(x)$$

for almost every $x \in \mathbb{R}$.

Theorem 5.3 (Monotone differentiation theorem): Every monotone function f: $\mathbb{R} \to \mathbb{R}$ is differentiable almost everywhere.

Definition: The *total variation* of a function $F : \mathbb{R} \to \mathbb{R}$ on an (finite or infinite) interval I is

$$|F|_{\mathrm{TV}(\mathrm{I})} \doteq \sup_{\substack{x_0 < \dots < x_n \\ x_0, \dots, x_n \in I}} \sum_{i=1}^n |F(x_i) - F(x_{i-1})|.$$

If $|F|_{TV(I)}$ is finite, we say that F has bounded variation on I. If F has bounded variation on \mathbb{R} , we say that F has bounded variation.

- **Theorem 5.4**: A function $F : \mathbb{R} \to \mathbb{R}$ has bounded variation iff it is the difference of two bounded monotone functions.
- **Theorem 5.5** (1D Lipschitz differentiation theorem): Every Lipschitz continuous function is locally of bounded variation, and hence differentiable almost everywhere. Furthermore, its derivative, when it exists, is bounded by its Lipschitz constant.
- **Theorem 5.6** (Upper bound for fundamental theorem): Let $F : [a, b] \to \mathbb{R}$ be increasing, so that the unsigned function $F' : [a, b] \to [0, \infty]$ exists almost everywhere and is measurable. Then

$$\int_{[a,b]} F' \le F(b) - F(a).$$

Definition: A function $F : \mathbb{R} \to \mathbb{R}$ is said to be *absolutely continuous* if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $\sum_{k=1}^{n} |F(b_k) - F(a_k)| < \epsilon$ for every finite collection of disjoint intervals $(a_1, b_1) \dots (a_n, b_n)$ of total length $\sum_{k=1}^{n} (b_k - a_k) < \delta$.

Theorem 5.7 (Fundamental theorem for absolutely continuous functions): Let $F : [a, b] \to \mathbb{R}$ be absolutely continuous. Then

$$\int_{[a,b]} F' = F(b) - F(a).$$

Outer Measures, Premeasures, and Product Measures

Definition: Given a set X, an outer measure is a map $\mu^* : \mathcal{P}(X) \mapsto [0, \infty]$ such that

(i) $\mu^*(\emptyset) = 0;$ nullity

(ii)
$$S \subset T \subset X \Rightarrow \mu^*(S) \le \mu^*(T);$$
 monotonicity

(iii)
$$\mu^*\left(\bigcup_{k=1}^{\infty} S_k\right) \le \sum_{k=1}^{\infty} \mu^*(S_k)$$
, where $S_k \subset X$

countable subadditivity

Definition: Let μ^* be an outer measure on a set X. A set $S \subset X$ is said to be Carathéodory measurable if the Carathéodory criterion

$$\mu^{*}(A) = \mu^{*}(A \cap S) + \mu^{*}(A \cap S^{c})$$

holds for every set $A \subset X$.

Markov's inequality: For every $\lambda \in (0, \infty)$,

$$\mu(\{x \in X : f(x) \ge \lambda\}) \le \frac{1}{\lambda} \int_X f \, d\mu.$$

Theorem 6.1 (Carathéodory lemma): Let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ be an outer measure on a set X, let \mathcal{B} be the collection of all subsets of X that are Carathéodory measurable with respect to μ^* and let $\mu : \mathcal{B} \to [0, \infty]$ be the restriction of μ^* to \mathcal{B} . Then \mathcal{B} is a σ -algebra and μ is a measure.

- **Definition:** A premeasure on a Boolean algebra \mathcal{B}_0 is a finitely additive measure $\mu_0 : \mathcal{B}_0 \to [0,\infty]$ such that $\mu_0(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu_0(E_k)$ whenever E_1, E_2, \ldots are disjoint subsets of \mathcal{B}_0 such that $\bigcup_{k=1}^{\infty} E_k \in \mathcal{B}_0$.
- **Theorem 6.2** (Hahn–Kolmogorov): Every premeasure $\mu_0 : \mathcal{B}_0 \to [0, \infty]$ on a Boolean algebra \mathcal{B}_0 in X can be extended to a countably additive measure $\mu : \mathcal{B} \to [0, \infty]$.
- **Corollary 6.5.3** (Fubini's theorem): Let $(X, \mathcal{B}_X, \mu_X)$ and $(Y, \mathcal{B}_Y, \mu_Y)$ be complete σ -finite measure spaces and let $f : X \times Y \to \mathbb{C}$ be absolutely integrable with respect to $\overline{\mathcal{B}_X \times \mathcal{B}_Y}$. Then

$$\int_{X \times Y} f(x,y) \, d\overline{\mu_X \times \mu_Y}(x,y) = \int_X \int_Y f(x,y) \, d\mu_Y(y) \, d\mu_X(x) = \int_Y \int_X f(x,y) \, d\mu_X(x) \, d\mu_Y(y).$$