
Chapter 1

Measure Theory

Indicator function:
1S(x) =

{
1 if x ∈ S,
0 otherwise.

Power set:
P(S) = {s : s ⊂ S}.

Uncountable summation: ∑
α∈A

xα
.
= sup

F⊂A
F finite

∑
α∈F

xα.

Elementary set: finite union of boxes.

Jordan inner measure:
m∗J(S)

.
= sup

E⊂S

E elementary

m(E).

Jordan outer measure:
m∗J(S)

.
= inf

E⊃S

E elementary

m(E).

Jordan measurable:
m∗J(S) = m∗J(S).

Lebesgue outer measure:

m∗(S)
.
= inf⋃∞

k=1
Bk⊃S

Bk boxes

∞∑
k=1

|Bk|.
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Properties of Lebesgue outer measure:

(i) m∗(∅) = 0; nullity

(ii) S ⊂ T ⊂ Rd ⇒ m∗(S) ≤ m∗(T ); monotonicity

(iii) m∗

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

m∗(Sk), where Sk ⊂ Rd.

countable subadditivity

S, T separated: dist(S, T ) > 0.

Compact disjoint sets in Rd: separated.

Finite additivity for separated sets S and T :

m∗(S ∪ T ) = m∗(S) +m∗(T ).

Closed dyadic cube in Rd:[
i1
2n
,
i1 + 1

2n

]
× . . .×

[
id
2n
,
id + 1

2n

]
for integers n, i1, i2, . . . , id.

Open subset of Rd: countable union of open balls.

Open subset of Rd: countable union of almost disjoint closed cubes.

Outer regularity:
m∗(S) = inf

U⊃S

Uopen

m∗(U).

Lebesgue measurable set S: for every ε > 0, there exists an open set U ⊃ S such
that m∗(U \ S) < ε.

Null set: Lebesgue measure zero.

Boolean algebra: closed under complements and finite unions and intersections.

σ-algebra: closed under complements and countable unions and intersections.
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Characterization of measurability. TFAE:

(i) S is Lebesgue measurable;

(ii) given ε > 0, there exists an open set Uε containing S with m∗(Uε\S) < ε;
(outer open approximation)

(iii) given ε > 0, there exists an open set Uε with m∗(Uε4 S) < ε; (almost
open)

(iv) given ε > 0, there exists a closed set Fε contained in S withm∗(S\Fε) < ε;
(inner closed approximation)

(v) given ε > 0, there exists a closed set Fε with m∗(Fε4 S) < ε; (almost
closed)

(vi) given ε > 0, there exists a Lebesgue measurable set Sε with m∗(Sε4S) < ε.
(almost measurable)

Properties of Lebesgue measure:

(i) m(∅) = 0; nullity ;

(ii) If S1, S2, . . . ⊂ Rd is a countable sequence of disjoint Lebesgue measurable
sets, then m(

⋃∞
k=1 Sk) =

∑∞
k=1m(Sk). countable additivity

Upward monotone convergence of increasing sequence of measurable sets:

m

(
∞⋃
k=1

Sk

)
= lim

n→∞
m(Sn).

Downward monotone convergence of decreasing sequence of finite-measure sets:

m

(
∞⋂
k=1

Sk

)
= lim

n→∞
m(Sn).

Dominated convergence theorem: Suppose Sn ⊂ Rd, n = 1, 2, . . . are Lebesgue
measurable sets that converge pointwise to a set S and are all contained in a
single Lebesgue measurable set F of finite measure. Then m(Sn) converges to
m(S).

Inner regularity:
m(S) = sup

K⊂S

K compact

m(K).
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Characterization of finite measurability. Given ε > 0, TFAE:

(i) S is Lebesgue measurable with finite measure;

(ii) there exists an open set Uε of finite measure containing S with
m∗(Uε \ S) < ε; (outer open approximation)

(iii) there exists a bounded open set Uε with m∗(Uε4 S) < ε;
(almost open bounded)

(iv) there exists a compact set Kε contained in S with m∗(S \Kε) < ε;
(inner compact approximation);

(v) there exists a compact set Kε with m∗(Kε4 S) < ε;
(almost compact)

(vi) there exists a bounded Lebesgue measurable set Sε with m∗(Sε4 S) < ε;
(almost bounded measurable)

(vii) there exists a Lebesgue measurable set Sε with finite measure such that
m∗(Sε4 S) < ε;

(almost finite measure)

(viii) there exists an elementary set Eε such that m∗(Eε4 S) < ε;
(almost elementary)

(ix) there exists a finite union Fε of closed dyadic cubes such thatm∗(Fε4 S) < ε.
(almost dyadic)

Borel σ-algebra on B[Rd] generators:

• open;

• closed;

• compact;

• open balls;

• boxes;

• elementary

Caratheodory Criterion: S ⊂ Rd is Lebesgue measurable ⇐⇒ for every A ⊂ Rd,

m∗(A ∩ S) +m∗(A ∩ Sc) = m∗(A).

4



Useful techniques:

•
ε

2k
trick;

• Bound measures from above and below;

• If x < y + ε for all ε > 0 and x and y are independent of ε, then x ≤ y;

• Use countable unions or intersections to build monotonic sequences of sets;

• Consider finite and infinite measure cases separately;

• Project to countable sequence of balls, annuli, or boxes;

• Supremum over a larger set can never be smaller;

•
S ⊂ U ⇒ (U \ S) ∪ S = U ;

• Draw a Venn diagram!
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Chapter 2

The Lebesgue Integral

Almost everywhere: holds outside of a null set.

Support of a function f on Rd: {x ∈ Rd : f(x) 6= 0}.

Simple function: finite linear combination of indicator functions over (w.l.o.g. dis-
tinct) measurable sets.

Simple integral:

Simp

∫
Rd

n∑
k=1

ck1Sk

.
=

n∑
k=1

ckm(Sk).

Properties of simple unsigned functions f and g:

(i)

Simp

∫
Rd

(f + g) = Simp

∫
Rd

f + Simp

∫
Rd

g

and

Simp

∫
Rd

cf = c Simp

∫
Rd

f

for every c ∈ [0,∞]; (unsigned linearity)

(ii) Simp
∫
Rd f <∞ iff f is finite almost everywhere and its support has finite

measure; (finiteness)

(iii) Simp
∫
Rd f = 0 iff f = 0 almost everywhere; (vanishing)

(iv) if f and g agree almost everywhere, Simp
∫
Rd f = Simp

∫
Rd g; (equivalence)

(v) if f(x) ≤ g(x) for almost every x ∈ Rd,
Simp

∫
Rd f ≤ Simp

∫
Rd g; (monotonicity)

(vi) for any Lebesgue measurable set S, Simp
∫
Rd 1S = m(S). (compatibility)
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Absolutely integrable: |f |L1(Rd)
.
=
∫
Rd |f |<∞.

f : Rd → [0,∞]:

Simp

∫
Rd

f
.
= Simp

∫
Rd

max(f, 0)− Simp

∫
Rd

max(−f, 0)

f : Rd → C:

Simp

∫
Rd

f
.
= Simp

∫
Rd

Re f + i Simp

∫
Rd

Im f

Measurable function: pointwise limit of a sequence of simple functions.

Relatively open set U in X ⊂ Rd: ∃ open V in Rd 3 U = V ∩X.

Characterization of measurable unsigned functions. TFAE:

(i) f is unsigned Lebesgue measurable;

(ii) f is the pointwise limit of a sequence of unsigned simple functions;

(iii) f is the pointwise almost everywhere limit of unsigned simple functions;

(iv) f = supn fn for an increasing sequence fn of bounded unsigned simple
functions that have finite-measure support;

(v) for every λ ∈ [0,∞], the set {x ∈ Rd : f(x) > λ} is Lebesgue measurable;

(vi) for every λ ∈ [0,∞], the set {x ∈ Rd : f(x) ≥ λ} is Lebesgue measurable;

(vii) for every λ ∈ [0,∞], the set {x ∈ Rd : f(x) < λ} is Lebesgue measurable;

(viii) for every λ ∈ [0,∞], the set {x ∈ Rd : f(x) ≤ λ} is Lebesgue measurable;

(ix) for every interval I ⊂ [0,∞), the set f−1(I)
.
= {x ∈ Rd : f(x) ∈ I} is

Lebesgue measurable;

(x) for every relatively open set U ⊂ [0,∞), the set f−1(U)
.
= {x ∈ Rd :

f(x) ∈ U} is Lebesgue measurable;

(xi) for every relatively closed set F ⊂ [0,∞), the set f−1(F )
.
= {x ∈ Rd :

f(x) ∈ F} is Lebesgue measurable.

Unsigned measurable functions:

• every continuous unsigned function f : Rd → [0,∞];

• every unsigned simple function;

• the supremum, infimum, limit superior, and limit inferior of a sequence of
unsigned measurable functions;
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• an unsigned function that is almost everywhere equal to an unsigned measur-
able function;

• the composition φ ◦ f of a continuous function φ : [0,∞] → [0,∞] and an
unsigned measurable function f ;

• the sum and product of unsigned measurable functions.

Bounded measurable function with finite support: uniform limit of a bounded
sequence of simple functions.

Simple functions: measurable and take on finitely many values.

Lower unsigned Lebesgue integral:∫
Rd

f
.
= sup

h simple
0≤h≤f

Simp

∫
Rd

h.

Upper unsigned Lebesgue integral:∫
Rd

f
.
= inf

h simple
h≥f

Simp

∫
Rd

h.

Properties of the lower and upper Lebesgue integrals:
Let f, g : Rd → [0,∞] be unsigned (not necessarily measurable) functions. Then

(i) if f is simple,
∫
Rdf =

∫
Rdf = Simp

∫
Rd f ; compatibility

(ii) if f ≤ g pointwise almost everywhere,∫
Rdf ≤

∫
Rdg and

∫
Rdf ≤

∫
Rdg; monotonicity

(iii)
∫
Rdcf = c

∫
Rdf for every c ∈ [0,∞); scaling

(iv) if f and g agree almost everywhere,∫
Rdf =

∫
Rdg and

∫
Rdf =

∫
Rdg; equivalence

(v)
∫
Rd(f + g) ≥

∫
Rdf +

∫
Rdg; lower superadditivity

(vi)
∫
Rd(f + g) ≤

∫
Rdf +

∫
Rdg; upper subadditivity

(vii) for any measurable set S ⊂ Rd,∫
Rd

f =

∫
Rd

f1S +

∫
Rd

f1Sc ;

complementarity
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(viii)

lim
n→∞

∫
Rd

min(f(x), n) dx =

∫
Rd

f ;

vertical truncation

(ix)

lim
n→∞

∫
Rd

f(x) 1Bn[0] dx =

∫
Rd

f ;

(use the monotone convergence theorem) horizontal truncation

(x) if f + g is a bounded simple function with finite measure support,

Simp

∫
Rd

(f + g) =

∫
Rd

f +

∫
Rd

g.

reflection

Unsigned Lebesgue integral: ∫
Rd

f
.
=

∫
Rd

f.

Markov’s inequality: For f : Rd → [0,∞] measurable and every λ ∈ (0,∞),

m({x ∈ Rd : f(x) ≥ λ}) ≤ 1

λ

∫
Rd

f.

• If
∫
Rd f <∞, then f is finite almost everywhere.

•
∫
Rd f = 0 iff f is zero almost everywhere.

Triangle inequality: |f + g|L1(Rd)≤ |f |L1(Rd)+|g|L1(Rd)

Integral triangle inequality: For f ∈ L1(Rd),∣∣∣∣∫
Rd

f

∣∣∣∣ ≤ ∫
Rd

|f |.

Approximation of L1 functions: Let f ∈ L1(Rd) and ε > 0. There exists

(i) an absolutely integrable simple function g such that |f − g|L1(Rd)< ε.

(ii) a step function g such that |f − g|L1(Rd)< ε.

(iii) a continuous, compactly supported function g ∈ L1(Rd) such that

|f − g|L1(Rd)< ε.
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Locally uniform convergence: uniform convergence on bounded subsets.

Egorov’s theorem: Let fn : Rd → C be a sequence of measurable functions that
converge pointwise almost everywhere to f : Rd → C. Given ε > 0, there exists
a Lebesgue measurable set S of measure at most ε such that fn converges locally
uniformly to f outside of S.

Finite-measurable set: nearly a finite union of boxes.

Absolutely integrable function: nearly continuous.

Pointwise convergent functions: nearly locally uniformly convergent.
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Chapter 3

Abstract Measure Spaces

• Let X be a set. A σ-algebra on X is a collection B of X such that

(i) ∅ ∈ B; (empty set)

(ii) If S ∈ B, then the complement Sc
.
= X \ S is also an element of B;

(closure under complement)

(iii) If S1, S2, . . . ∈ B, then
⋃∞
n=1 Sn ∈ B. (closure under countable union)

• Let B be a σ-algebra on a set X. A measure µ on B is a map µ : B → [0,∞] such
that

(i) µ(∅) = 0; nullity

(ii) if S1, S2, . . . are disjoint elements of B, then µ(
⋃∞
k=1 Sk) =

∑∞
k=1 µ(Sk).

countable additivity

• Let (X,B, µ) be a measure space.

(i) If S1, S2, . . . are B-measurable, then

µ

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

µ(Sk).

countable subadditivity

(ii) If S1 ⊂ S2 ⊂ . . . is an increasing sequence of B-measurable sets, then

µ

(
∞⋃
k=1

Sk

)
= lim

n→∞
µ(Sn) = sup

n
µ(Sn).

upward monotone convergence
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(iii) If S1 ⊃ S2 ⊃ . . . is a decreasing sequence of B-measurable sets and at least one
of the µ(Sk) is finite, then

µ

(
∞⋂
k=1

Sk

)
= lim

n→∞
µ(Sn) = inf

n
µ(Sn).

downward monotone convergence

• Let (X,B, µ) be a measure space. Suppose Sn, n = 1, 2, . . . are B-measurable sets
that converge to a set S. Then

(i) S is B-measurable.

(ii) If the Sn are all contained in another B-measurable set of finite measure, then
m(Sn) converges to m(S).

Definition: Let (X,B) be a measurable space and let f : X → [0,∞] (or f : X → C)
be an unsigned or complex-valued function. We say that f is measurable if f−1(U)
is B-measurable for every open subset U of [0,∞] (or C).

Remark: (Characterization of measurable functions)
Let (X,B) be a measurable space. Show that

(i) a function f : X → [0,∞] is measurable iff the level sets {x ∈ X : f(x) > λ}
are measurable for every λ ∈ [0,∞);

(ii) an indicator function 1S of a set S ⊂ X is measurable iff S is measurable;

(iii) a function f : X → [0,∞] (or f : X → C) is measurable iff f−1(S) is measurable
for every Borel-measurable subset S of [0,∞] (or C);

(iv) a function f : X → C is measurable iff its real and imaginary parts are measur-
able;

(v) a function f : X → R is measurable iff its positive and negative parts are
measurable;

(vi) the pointwise limit f of a sequence of measurable functions fn : X → [0,∞] (or
C) is also measurable;

(vii) if f : X → [0,∞] (or C) is measurable and φ : [0,∞] → [0,∞] (or C → C) is
continuous, then φ ◦ f is measurable;

(viii) the sum or product of two measurable functions in [0,∞] (or C) is measurable.
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Theorem 3.7 (Monotone convergence theorem): Let (X,B, µ) be a measure space
and f1 ≤ f2 ≤ . . . be an increasing sequence of unsigned measurable functions
on X. Then ∫

X

lim
n→∞

fn dµ = lim
n→∞

∫
X

fn dµ.

Corollary 3.7.3 (Fatou’s lemma): Let (X,B, µ) be a measure space and f1, f2, . . .
be a sequence of unsigned measurable functions on X. Then∫

X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ.

Theorem 3.8 (Dominated convergence theorem): Let (X,B, µ) be a measure space
and f1, f2, . . . be a sequence of complex-valued measurable functions on X that con-
verge pointwise µ-almost everywhere on X. Suppose that there exists an unsigned
absolutely integrable function G : X → [0,∞] such that for each n ∈ N, |fn|≤ G
µ-almost everywhere. Then∫

X

lim
n→∞

fn dµ = lim
n→∞

∫
X

fn dµ.
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Chapter 4

Modes of Convergence

• pointwise almost everywhere

• uniformly almost everywhere (in L∞ norm)

• almost uniformly

• in L1 norm

• in measure
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Chapter 5

Differentiation Theorems

Theorem 5.1 (Lebesgue differentiation theorem on R): Let f : R → C be an abso-
lutely integrable function. Then

lim
h→0+

1

h

∫
[x,x+h]

f(t) dt = f(x)

and

lim
h→0+

1

h

∫
[x−h,x]

f(t) dt = f(x)

for almost every x ∈ R.

Theorem 5.3 (Monotone differentiation theorem): Every monotone function f :
R→ R is differentiable almost everywhere.

Definition: The total variation of a function F : R → R on an (finite or infinite)
interval I is

|F |TV(I)
.
= sup

x0<...<xn
x0,...,xn∈I

n∑
i=1

|F (xi)− F (xi−1)|.

If |F |TV(I) is finite, we say that F has bounded variation on I. If F has bounded
variation on R, we say that F has bounded variation.

Theorem 5.4: A function F : R → R has bounded variation iff it is the difference
of two bounded monotone functions.

Theorem 5.5 (1D Lipschitz differentiation theorem): Every Lipschitz continuous
function is locally of bounded variation, and hence differentiable almost everywhere.
Furthermore, its derivative, when it exists, is bounded by its Lipschitz constant.

Theorem 5.6 (Upper bound for fundamental theorem): Let F : [a, b] → R be in-
creasing, so that the unsigned function F ′ : [a, b]→ [0,∞] exists almost everywhere
and is measurable. Then ∫

[a,b]

F ′ ≤ F (b)− F (a).
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Definition: A function F : R → R is said to be absolutely continuous if for every
ε > 0 there exists a δ > 0 such that

∑n
k=1|F (bk) − F (ak)|< ε for every finite

collection of disjoint intervals (a1, b1) . . . (an, bn) of total length
∑n

k=1(bk − ak) < δ.

Theorem 5.7 (Fundamental theorem for absolutely continuous functions): Let F :
[a, b]→ R be absolutely continuous. Then∫

[a,b]

F ′ = F (b)− F (a).
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Chapter 6

Outer Measures, Premeasures, and
Product Measures

Definition: Given a set X, an outer measure is a map µ∗ : P(X) 7→ [0,∞] such that

(i) µ∗(∅) = 0; nullity

(ii) S ⊂ T ⊂ X ⇒ µ∗(S) ≤ µ∗(T ); monotonicity

(iii) µ∗

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

µ∗(Sk), where Sk ⊂ X.

countable subadditivity

Definition: Let µ∗ be an outer measure on a set X. A set S ⊂ X is said to be
Carathéodory measurable if the Carathéodory criterion

µ∗(A) = µ∗(A ∩ S) + µ∗(A ∩ Sc)

holds for every set A ⊂ X.

Markov’s inequality: For every λ ∈ (0,∞),

µ({x ∈ X : f(x) ≥ λ}) ≤ 1

λ

∫
X

f dµ.

Theorem 6.1 (Carathéodory lemma): Let µ∗ : P(X)→ [0,∞] be an outer measure
on a set X, let B be the collection of all subsets of X that are Carathéodory mea-
surable with respect to µ∗ and let µ : B → [0,∞] be the restriction of µ∗ to B. Then
B is a σ-algebra and µ is a measure.
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Definition: A premeasure on a Boolean algebra B0 is a finitely additive measure
µ0 : B0 → [0,∞] such that µ0(

⋃∞
k=1Ek) =

∑∞
k=1 µ0(Ek) whenever E1, E2, . . . are

disjoint subsets of B0 such that
⋃∞
k=1 Ek ∈ B0.

Theorem 6.2 (Hahn–Kolmogorov): Every premeasure µ0 : B0 → [0,∞] on a Boolean
algebra B0 in X can be extended to a countably additive measure µ : B → [0,∞].

Corollary 6.5.3 (Fubini’s theorem): Let (X,BX , µX) and (Y,BY , µY ) be complete
σ-finite measure spaces and let f : X×Y → C be absolutely integrable with respect
to BX × BY . Then∫
X×Y

f(x, y) dµX × µY (x, y) =

∫
X

∫
Y

f(x, y) dµY (y) dµX(x) =

∫
Y

∫
X

f(x, y) dµX(x) dµY (y).
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