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Chapter 1

Measure Theory

[Tao 2011]

The measure m(E) of a solid body E is a fundamental concept in Euclidean
geometry. In one, two, and three dimensions, we refer to this measure as the length,
area, or volume of E respectively.

In classical geometry, the measure of a body is typically determined by partitioning
the body into components that can be translated or rotated and then reassembled
into a simpler body with the same measure. Alternatively, lower and upper bounds on
the measure of a body can be obtained by computing the measure of some inscribed
or circumscribed body. Such arguments were justified by viewing the measure of a
macroscopic body as the sum of the measures of its microscopic components.

With the advent of analytic geometry, Euclidean geometry was reinterpreted as the
study of Cartesian products Rd of the real line R. Within this analytical framework, it
is no longer intuitively obvious how to define the measure m(E) of a general subset E
of Rd. This is known as the problem of measure.

Remark: If one tries to formalize the physical notion of the measure of a body as
the sum of the measure of its component “atoms”, one runs into an immediate
problem: a typical solid body consists of an uncountably infinite number of points,
each of which has zero measure, and the product∞· 0 is indeterminate. Moreover,
two bodies with the same number of points need not have the same measure: in
one dimension, the intervals [0, 1] and [0, 2] have the same cardinality (using the
bijection x 7→ 2x) but different lengths. That is, one can disassemble [0, 1] into an
uncountably infinite number of points and reassemble them to form a set of twice
the length! Pathological problems of this nature can even occur when one restricts
the assembly to a finite number of components. In three or more dimensions, the
famous Banach–Tarski paradox illustrates that the unit ball B can be disassembled
into five pieces that can be translated, rotated, and then reassembled to form two
disjoint copies of B!
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Remark: The construction of the pathological pieces in the Banach–Tarski paradox
requires the controversial axiom of choice. While trivial for finite sets (using in-
duction), the axiom of choice for infinite (even countably infinite) sets does not
follow from the other axioms of set theory and must be explicitly added to our
fundamental list of axioms:

Axiom 1.1 (Axiom of choice): Let {Eα : α ∈ A} be a collection of nonempty sets
Eα, indexed by elements of A. Then one can construct a set {xα : α ∈ A} of
elements xα chosen from Eα.

• When A = N, the axiom of choice states that it is possible to select a sequence
x1, x2, . . . of elements from a sequence of nonempty sets E1, E2, . . ..

We will begin by introducing two important notions of measure that are widely
used in mathematics. The Jordan measure, which underlies the Riemann integral ,
suffices for many applications, for example, in defining the area under the graph of
a continuous function. However, the notion of Jordan measure turns out to be in-
adequate for certain sets that arise as limits of other sets. The notion of Lebesgue
measure and the associated Lebesgue integral were developed by the French mathe-
matician Henri Lebesgue in 1902 to fill this gap.

Definition: The indicator function 1S for a set S is

1S(x) =
{

1 if x ∈ S,
0 otherwise.

Remark: To see why we might need a new type of integral, let {q1, q2, . . .} be an
enumeration of Q ∩ [0, 1] and for n ∈ N define fn = 1{q1,q2,...,qn}. Notice that the
sequence of functions {fn} converges pointwise on [0, 1] to the Dirichlet function
1Q∩[0,1]. However, although the functions f1, f2, . . . are Riemann integrable on [0, 1],

with
∫ 1

0
fn = 0, their pointwise limit 1Q∩[0,1] is not, since every nondegenerate subin-

terval contains both rational and irrational numbers. Although the interchange of
limits and Riemann integration would be guaranteed by uniform convergence, the
convergence of fn is not uniform on [0, 1].

Remark: Similarly, given

f(x) =

∫ b

a

F (x, t) dt,

the statement

f ′(x) =

∫ b

a

∂F (x, t)

∂x
dt

does not hold in general (although it does if ∂F (x, t)/∂x is continuous in both x
and t).
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Q. Is it possible to find a new type of integral that generalizes the Riemann integral
(so that every Riemann integral is still integrable in the new sense, with the
same value) but for which limit processes (limits and integrals, derivatives and
integrals) can always be interchanged?

A. No, the following example shows that some restrictions will still be required:

fn(x) =


n2x if x ∈ [0, 1

n
],

n2
(

2
n
− x
)

if x ∈ ( 1
n
, 2
n
],

0 otherwise.

We see that lim
n→∞

fn(x) = 0 for x ∈ [0, 1] but∫ 1

0

lim
n→∞

fn = 0 6= 1 = lim
n→∞

∫ 1

0

fn.

Nevertheless, the class of functions for which such interchange of limit processes
is valid will be much larger with the Lebesgue integral we are about to develop.

Remark: The Riemann integral is computed by approximating the area under a
continuous function by an upper sum:∫ b

a

f ≈
n∑
k=1

f(ξk)m(Ik),

obtained by partitioning [a, b] into subintervals Ik = [xk−1, xk] for k = 1, . . . , n, and
finding points ξk ∈ Ik at which f achieves its maximum on Ik, as illustrated below:

a = x0 x1 x2 x3 x4 x5 = b

f(x)
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In contrast, to compute the Lebesgue integral one first partitions the y axis into
intervals [yk−1, yk] and computes the preimages

Jk = {x ∈ [a, b] : f(x) ∈ [yk−1, yk]}.

The Lebesgue integral is then approximated as∫ b

a

f ≈
n∑
k=1

ykm(Jk),

as shown in the following diagram:

y0
y1

y2

y3

ba

f(x)

J3 J2 J1 J2 J3

Q. In the above example, we notice that J2 and J3 are not intervals. What is the
“length” of a general subset of R that is not an interval?

• For example, what is the “length” of the rational numbers within the unit interval
[0, 1]? This is equivalent to determining the integral∫ 1

0

1Q,

which, as we have already discussed, is not Riemann integrable. However we will
soon see that the Lebesgue integral of 1Q does exist and evaluates to 0, as one might
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expect from Cantor’s diagonalization argument (there are vastly more irrationals
than rationals within the unit interval). In fact, the Lebesgue measure will be
constructed so that the measure of any countable set is zero, precisely so that
one can then integrate functions like 1Q that have only a countable number of
discontinuities (if the union of the subsets Jk containing the discontinuities has
measure zero, they cannot contribute to the integral).

Remark: To attempt to answer the above question, we need to make the notion of
“length”, or in general, measure, more precise.

Definition: Let S be a set. The power set P(S) is the set of all subsets of S:

P(S) = {s : s ⊂ S}.

• P(∅) = {∅}.

• P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Problem 1.1: If S is a finite set of n elements, use induction to show that P(S)
has 2n elements.

Definition: We introduce the non-negative extended real numbers [0,∞], with the
convention that ∞ · 0 = 0 · ∞ = 0.

Definition: Given a sequence {xk}∞k=1 of non-negative extended real numbers, we
define

∞∑
k=1

xk = sup
F⊂N

F finite

∑
n∈F

xn,

which may be finite or infinite.

Definition: Given a set S = {xa}a∈A of non-negative extended real numbers indexed
by an arbitrary set A, we define∑

α∈A

xα
.
= sup

F⊂A
F finite

∑
α∈F

xα.

(We use the symbol
.
= to emphasize a definition, although the notation := is more

common.)
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Remark: One can relabel the set S in an arbitrary manner without affecting the
sum. In particular, we have:

Theorem 1.1 (Tonelli’s theorem for series): Let {xn,k}n,k∈N be a doubly infinite se-
quence of extended non-negative real numbers. Then

∑
(n,k)∈N2

xn,k =
∞∑
n=1

∞∑
k=1

xn,k =
∞∑
k=1

∞∑
n=1

xn,k.

Remark: Note that this rearrangement does not hold when dealing with signed
summands (cf. Riemann rearrangement theorem).

If we wish to generalize our notion of measure from classical geometry to arbitrary
subsets of Rd, it seems reasonable to seek a function m(P(Rd)) 7→ [0,∞] that satisfies
the properties:

1. m(∅) = 0; nullity

2. m([a1, b1]× . . .×[ad, bd]) =
d∏

k=1

(bk − ak), ak ≤ bk ∈ R; measure of a box

3. m(S + x) = m(S) ∀x ∈ Rd, S ⊂ Rd; translational invariance

4. m

(
∞⋃
k=1

Sk

)
=
∞∑
k=1

m(Sk) for disjoint subsets Sk of Rd.

countable disjoint additivity

Remark: The above properties imply the monotonicity property

S ⊂ T ⇒ m(S) ≤ m(T ).

To see this set S1 = S, S2 = T \ S, and Sk = ∅ for k ≥ 3. Then

m(S) ≤ m(S) +m(T \ S) =
∞∑
k=1

m(Sk) = m

(
∞⋃
k=1

Sk

)
= m(T ).

Q. Would it make sense to consider a stronger version of property 4:

m

(⋃
α∈A

Sa

)
=
∑
α∈A

m(Sα)

for disjoint subsets Sα of Rd?
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A. No; this would imply that

m([0, 1]) = m

 ⋃
a∈[0,1]

{a}

 =
∑
a∈[0,1]

m({a}) =
∑
a∈[0,1]

0 = 0,

which would contradict property 2.

Remark: Unfortunately, the following counterexample shows that even in one di-
mension (d = 1), there exists no measure m that satisfies all four properties for
arbitrary subsets of R.

• Define an equivalence relation ∼ on [0, 1]:

x ∼ y ⇐⇒ x− y ∈ Q.

For x ∈ [0, 1], let [x]
.
= {a ∈ [0, 1] : a ∼ x}.

For example, [0] = Q ∩ [0, 1].

Claim: If [x] 6= [y], then [x] ∩ [y] = ∅.
Proof: Given a ∈ [x] and b ∈ [x]∩ [y], we see that a ∼ b and also b ∼ y, which implies
that a ∈ [y]. Thus [x] ⊂ [y]. Similarly, [y] ⊂ [x].

We can then construct a set S ⊂ [0, 1] consisting of a representative element cho-
sen from each distinct set [x] such that for each x ∈ [0, 1], S ∩ [x] consists of precisely
one element. This requires the axiom of choice.

Claim:
[0, 1] ⊂

⋃
q∈Q∩[−1,1]

q + S ⊂ [−1, 2].

Proof: The second inclusion is straightforward. To see the first, let x ∈ [0, 1] and a be
the common element of S and [x]. Then q

.
= x−a ∈ Q∩ [−1, 1]. Hence x ∈ q+S.

Let q1, q2, . . . be an enumeration of Q ∩ [−1, 1] such that qn 6= qm for n 6= m.

Claim: (qn + S) ∩ (qm + S) = ∅ for n 6= m.
Proof: Let x ∈ (qn+S)∩ (qm+S). Then ∃sn, sm ∈ S 3 x = qn+sn = qm+sm. Hence
[sn] = [x] = [sm], which, by the choice of S, implies that sn = sm. Thus qn = qm and
hence n = m.

Now if m(S) = 0, then

1 = m([0, 1]) ≤ m

(
∞⋃
k=1

qk + S

)
=
∞∑
k=1

m(qk + S) =
∞∑
k=1

m(S) = 0. #
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Alternatively, if m(S) > 0, then

∞ =
∞∑
k=1

m(S) =
∞∑
k=1

m(qk + S) = m

(
∞⋃
k=1

qk + S

)
≤ m([−1, 2]) = 3. #

We thus see that it is impossible to find a measure m for arbitrary subsets of R that
satisfies the given four properties. The nonmeasurable set S constructed here is called
a Vitali set .

Remark: Since pathological sets like those encountered in the above example and
in the Banach–Tarski paradox rarely occur in practical applications of mathemat-
ics, the standard approach to the problem of measure is to abandon the goal of
assigning a measure to every subset of Rd, focusing instead on a certain subclass
of “nonpathological” subsets of Rd known as measurable sets .

1.A Elementary measure

Before we introduce Lebesgue measure and the associated Lebesgue integral, we will
first review the more elementary concept of Jordan measure. To formally define
Jordan measure, it is convenient to introduce the concept of elementary measure,
which allows one to assign a notion of measure to elementary sets :

Definition: An interval I is a subset of R of the form [a, b] = {x ∈ R : a ≤ x ≤ b},
(a, b] = {x ∈ R : a < x ≤ b}, [a, b) = {x ∈ R : a ≤ x < b}, (a, b) = {x ∈ R : a <
x < b}, where a ≤ b are real numbers.

Definition: The length of an interval I is |I| .= b− a.

Definition: A box in Rd is a Cartesian product I1× . . .×Id of intervals I1, . . . , Id.

Definition: The measure of a box B is |B|= |I1|· . . . · |Id|.

Definition: An elementary set is a finite union of boxes.

Problem 1.2 (Boolean closure): . If E,F ⊂ Rd are elementary sets, show that the
union E ∪ F , the intersection E ∩ F , the set theoretic difference E \ F .

= {x ∈
E : x /∈ F}, and the symmetric difference E 4 F

.
= (E \ F ) ∪ (F \ E) are also

elementary. If x ∈ Rd, show that the translation E + x
.
= {y + x : y ∈ E} is also

an elementary set.

Lemma 1.1 (Measure of an elementary set): Let E ⊂ Rd be an elementary set. Then
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(i) E can be expressed as a finite union of disjoint boxes;

(ii) if E is partitioned as a finite union B1 ∪ . . . ∪ Bn of disjoint boxes, then the
quantity m(E)

.
= |B1|+ . . . + |Bn| is independent of the partition. In other

words, given any other partition B′1 ∪ . . .∪B′n′ of E, one has |B′1|+ . . .+ |B′n′|=
|B1|+ . . .+ |Bn|.

Proof:

(i) First consider the one-dimensional case d = 1. We can sort the 2n endpoints
of any finite set of intervals I1, . . . , In in ascending order, discarding repeti-
tions. Denote the open intervals between successive endpoints, together with
the endpoints themselves (treated as degenerate intervals), by J1, . . . , Jn′ . Each
interval Ii can be expressed as a union of a finite subset of the disjoint intervals
J1, . . . , Jn′ . The union ∪ni=1Ii can thus be expressed as a finite union of disjoint
intervals. For d > 1, express E = ∪ni=1Bi where Bi = Ii,1× . . .×Ii,d. For each
j = 1, . . . , d we can decompose I1,j, . . . , In,j as the union of disjoint intervals.
On taking the Cartesian product over j = 1, . . . , d we can then express E as a
finite union of disjoint boxes.

(ii) Let #A denote the cardinality of a finite set A and define 1
N
Z .

= { n
N

: n ∈ Z}.
The length |I| of any interval I can then be computed as

|I|= lim
N→∞

1

N
#

(
I ∩ 1

N
Z
)
.

On taking the Cartesian product, we find that the measure of a box B can be
expressed as

|B|= lim
N→∞

1

Nd
#

(
B ∩

(
1

N
Z
)d)

.

The measure of an elementary set E can thus be expressed as

m(E) = lim
N→∞

1

Nd
#

(
E ∩

(
1

N
Z
)d)

,

independent of its decomposition into disjoint boxes.

Definition: We refer to m(E) in Lemma 1.1 as the elementary measure of E.

• The elementary measure of [1, 2] ∪ (3, 5) is 3.
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Remark: The elementary measure m(E) of an elementary set E is non-negative and
satisfies the properties:

1. m(∅) = 0; nullity

2. m([a1, b1]× . . .×[ad, bd]) =
d∏

k=1

(bk − ak); measure of a box

3. m(E + x) = m(E) ∀x ∈ Rd; translational invariance

4. m

(
n⋃
k=1

Ek

)
=

n∑
k=1

m(Ek) for disjoint elementary sets Ek.

finite disjoint additivity

Remark: As previously shown, these properties imply the monotonicity property

E ⊂ F ⇒ m(E) ≤ m(F )

for nested elementary sets E and F .

Problem 1.3: Show that the above properties imply the finite subadditivity property

m(E ∪ F ) ≤ m(E) +m(F ),

for arbitrary (not necessarily disjoint) elementary sets E and F . By induction,
deduce that

m

(
n⋃
k=1

Ek

)
≤

n∑
k=1

m(Ek)

for arbitrary elementary sets Ek. Hint: E ∪ F = E ∪ (F/E).

Problem 1.4 (Uniqueness of elementary measure): Let d = 1. Let m′ : E(Rd) 7→
[0,∞) be a map from the collection E(Rd) of elementary subsets of Rd to [0,∞)
that satisfies non-negativity, finite disjoint additivity, and translational invariance.
Prove that there exists a constant c ∈ R such that m′(E) = cm(E) for all ele-
mentary sets E. Moreover, if we enforce the normalization m′([0, 1)d) = 1, show
that m′ = m. Hint: Set c

.
= m′([0, 1)d) and compute m′([0, 1/n)d) for any positive

integer n.

Problem 1.5: Let d1, d2 ≥ 1, and E1 ⊂ Rd1 , E2 ⊂ Rd2 be elementary sets. Show that
E1×E2 ⊂ Rd1+d2 is elementary, with measure md1+d2(E1×E2) = md1(E1)md2(E2),
where md(E) denotes elementary measure in dimension d.
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1.B Jordan measure

Definition: Let S ⊂ Rd be a bounded set. The Jordan inner measure m∗J(S) of S
is

m∗J(S)
.
= sup

E⊂S
E elementary

m(E).

The Jordan outer measure m∗J(S) of S is

m∗J(S)
.
= inf

E⊃S
E elementary

m(E).

Problem 1.6: If E is an elementary set, prove that m∗J(E) = m∗J(E) = m(E).

Definition: If m∗J(S) = m∗J(S), we say that S is Jordan measurable, and call
m(S)

.
= m∗J(S) = m∗J(S) the Jordan measure of S. To emphasize the dimension d,

we sometimes write m(S) as md(S).

Remark: The finite disjoint additivity and subadditivity properties of elementary
measure allow us to rewrite the Jordan outer measure m∗J(S) of S as

m∗J(S) = inf⋃n
k=1

Bk⊃S
Bk boxes

n∑
k=1

|Bk|.

Remark: Unbounded sets are not Jordan measurable (we say they have infinite
Jordan outer measure but leave the inner Jordan measure undefined).

Remark: The following lemma shows that Jordan measurable sets are those sets that
are “almost elementary” with respect to Jordan outer measure.

Lemma 1.2: Let S ⊂ Rd be bounded. The following are equivalent:

(i) S is Jordan measurable;

(ii) for every ε > 0, there exist elementary sets E and F such that E ⊂ S ⊂ F and
m(F \ E) < ε;

(iii) for every ε > 0, there exists an elementary set E such that m∗J(E 4 S) < ε.

Remark: Many common geometrical objects are Jordan measurable:
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• A compact convex polytope in Rd formed by intersecting finitely many closed half
spaces {x ∈ Rd : a·x ≥ b}, where a ∈ Rd and b ∈ R;

• The region under the graph of a continuous non-negative function;

• The open Euclidean ball Br(c)
.
= {x ∈ Rd : |x− c|< r};

• The closed Euclidean ball Br[c]
.
= Br(c);

• The linear transformation of a Jordan measurable set.

Remark: Jordan measure inherits many of the properties of elementary measure.

Lemma 1.3: Let S, T ⊂ Rd be Jordan measurable sets. Then

(i) S ∪ T , S ∩ T , S \ T , and S 4 T are Jordan measurable; Boolean closure

(ii) m(S) ≥ 0; non-negativity

(iii) If S and T are disjoint then m(S ∪T ) = m(S) +m(T ); finite disjoint additivity

(iv) If S ⊂ T , then m(S) ≤ m(T ); monotonicity

(v) m(S ∪ T ) ≤ m(S) +m(T ); finite subadditivity

(vi) For any x ∈ Rd, m(S + x) ∃ = m(S). translational invariance

Problem 1.7:

(a) Show that a set S and its topological closure S have the same Jordan outer
measure.

(b) A set bounded S and its interior S◦ have the same Jordan inner measure.

(c) Show that a bounded set S is Jordan measurable iff its topological boundary
∂S has Jordan outer measure zero. Use this result to prove that [0, 1] ∩ Q and
[0, 1] \Q are not Jordan measurable.

1.C Lebesgue measure
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Definition: Let S ⊂ Rd. The Lebesgue outer measure m∗(S) of S is

m∗(S)
.
= inf⋃∞

k=1
Bk⊃S

Bk boxes

∞∑
k=1

|Bk|.

Remark: The Lebesgue outer measure of a set is the infimal “cost” required to cover
it by a countable union of boxes.

Remark: Since we can always convert a finite union of boxes to an infinite union by
adding an infinite number of empty boxes, we see that m∗(S) ≤ m∗J(S).

Remark: Observe that the Lebesgue outer measure is defined for unbounded sets.

• Let S = {x0, x1, . . .} ⊂ Rd be a countable set. The Lebesgue outer measure of
S is easily seen to be zero: one simply covers S by the degenerate boxes {x0},
{x1}, . . ., each having measure zero. Alternatively given ε > 0, one can cover
each xk by a hypercube of sidelength ε/2k, leading to a total cost

∑∞
k=0( ε

2k
)d =

εd/(1− 2−d); on taking the infimum, the Lebesgue outer measure of S is then seen
to be zero. In contrast, the Jordan outer measure of a countable set can be large:
m∗J(Q ∩ [0, R]) = R and m∗J(Q) =∞.

Theorem 1.2 (Properties of Lebesgue outer measure):

(i) m∗(∅) = 0; nullity

(ii) S ⊂ T ⊂ Rd ⇒ m∗(S) ≤ m∗(T ); monotonicity

(iii) m∗

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

m∗(Sk), where Sk ⊂ Rd.

countable subadditivity

Proof:

(ii) Any countable union of boxes that covers T must also cover S. Then

m∗(S)
.
= inf⋃∞

k=1
Bk⊃S

Bk boxes

∞∑
k=1

|Bk|≤ inf⋃∞
k=1

Bk⊃T
Bk boxes

∞∑
k=1

|Bk|= m∗(T )

since the infimum on the left-hand side of the inequality is over a collection of
unions at least as large as the collection on the right-hand side.



1.C. LEBESGUE MEASURE 17

(iii) Given ε > 0, for each k ∈ N, there exists a countable union
⋃∞
n=1Bk,n of

boxes Bk,n containing Sk such that

∞∑
n=1

|Bk,n|< m∗(Sk) +
ε

2k
.

Since
∞⋃
k=1

Sk ⊂
∞⋃
k=1

∞⋃
n=1

Bk,n,

we see that

m∗

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

∞∑
n=1

|Bk,n|<
∞∑
k=1

(
m∗(Sk) +

ε

2k

)
=
∞∑
k=1

m∗(Sk)+
∞∑
k=1

ε

2k
=
∞∑
k=1

m∗(Sk)+ε.

Since this must hold for all ε > 0, the only possibility is that

m∗

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

m∗(Sk).

Definition: Let X and Y be two nonempty subsets of Rd. The distance between X
and Y is

dist(X, Y )
.
= inf{|x− y|: x ∈ X, y ∈ Y }.

Definition: The diameter of a nonempty set S is sup{|x− y|: x, y ∈ S}.

Definition: Two sets S, T ⊂ Rd are separated if dist(S, T ) > 0.

Problem 1.8: Prove that compact disjoint sets in Rd are separated.

Lemma 1.4 (Finite additivity for separated sets): Let S and T be separated sets.
Then m∗(S ∪ T ) = m∗(S) +m∗(T ).

Proof: From subadditivity, we know that m∗(S ∪ T ) ≤ m∗(S) + m∗(T ), so it
suffices to prove m∗(S) + m∗(T ) ≤ m∗(S ∪ T ). This is trivial if S ∪ T has infinite
Lebesgue outer measure. Otherwise S ∪T has finite Lebesgue outer measure and, by
monotonicity, so do S and T .

Given ε > 0, without loss of generality we can cover S∪T by a countable collection
of boxes B1, B2, . . . with diameter less than dist(S, T ) > 0 such that

∑∞
k=1|Bk|<

m∗(S ∪ T ) + ε. By construction, each box intersects at most one of S and T . We
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can therefore split this collection into two countable subcollections B′1, B
′
2, . . . and

B′′1 , B
′′
2 , . . . that cover S and T , respectively. Then

m∗(S) ≤
∞∑
k=1

|B′k|

and

m∗(T ) ≤
∞∑
k=1

|B′′k |.

On summing, we find that

m∗(S) +m∗(T ) ≤
∞∑
k=1

|B′k|+
∞∑
k=1

|B′′k |=
∞∑
k=1

|Bk|.

Thus
m∗(S) +m∗(T ) < m∗(S ∪ T ) + ε.

We have thus obtained the desired result

m∗(S) +m∗(T ) ≤ m∗(S ∪ T ).

Lemma 1.5 (Outer measure of elementary set): Let E be an elementary set. Then
the Lebesgue outer measure m∗(E) and the elementary measure m(E) are equal.

Proof: Since m∗(E) ≤ m∗J(E) = m(E), we only need to establish that m(E) ≤
m∗(E). We first show this when E is closed. Given ε > 0, there exists a countable
collection B1, B2, . . . of boxes that cover E such that

∞∑
k=1

|Bk|< m∗(E) + ε.

Each box Bk can be enclosed within an open box B′k such that |B′k|< |Bk|+ε/2k. We
have thus constructed an open cover ∪∞k=1B

′
k of the closed set E, with

∞∑
k=1

|B′k|<
∞∑
k=1

(
|Bk|+

ε

2k

)
=
∞∑
k=1

|Bk|+ε < m∗(E) + 2ε.

By the Heine–Borel theorem, E is compact and therefore has a finite subcover ∪nk=1B
′
k

for some n ∈ N. The finite subadditivity of elementary measure then yields

m(E) ≤
n∑
k=1

|B′k|≤
∞∑
k=1

|B′k|< m∗(E) + 2ε.

Then m(E) ≤ m∗(E) and hence m(E) = m∗(E) for any closed elementary set E.
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If E is not closed, express E as a finite union ∪nk=1Bk of disjoint boxes. Given ε > 0,
for every k ∈ 1, . . . , n there is a closed sub-box B′k of Bk such that |Bk|−ε/n ≤ |B′k|.
Then

m(E)− ε =
n∑
k=1

(
|Bk|−

ε

n

)
≤

n∑
k=1

|B′k|= m

(
n⋃
k=1

B′k

)
= m∗

(
n⋃
k=1

B′k

)
≤ m∗(E),

using our result for the closed elementary set ∪nk=1B
′
k ⊂ E and the monotonicity of

the Lebesgue outer measure. Thus m(E) ≤ m∗(E).

Remark: We have seen that the Lebesgue outer measure of a countable set is zero.
Since the elementary measure of [0, 1] is 1, the above lemma then establishes that
the Lebesgue outer measure of [0, 1] is also 1. This proves that the real numbers
are uncountable.

Remark: Since the Lebesgue outer measure m∗(E) of an elementary set E is m(E),
we observe from monotonicity that for any bounded S ⊂ Rd,

m∗J(S)
.
= sup

E⊂S
E elementary

m(E) = sup
E⊂S

E elementary

m∗(E) ≤ sup
E⊂S

E elementary

m∗(S) = m∗(S).

Thus
m∗J(S) ≤ m∗(S) ≤ m∗J(S).

Remark: Not every bounded open or compact set is Jordan measurable. For exam-
ple, enumerate the countable set Q ∩ [0, 1] as q1, q2, . . .. Given ε > 0, the Lebesgue
outer measure of the open union

Uε
.
=
∞⋃
k=1

(
qk −

ε

2k
, qk +

ε

2k

)
is

m∗(Uε) ≤
∞∑
k=1

2ε

2k
= 2ε.

In contrast, since [0, 1] ⊂ U ε (Uε is dense in [0, 1]), we see from Problem 1.7(a) that

1 = m∗J([0, 1]) ≤ m∗J(U ε) = m∗J(Uε).

For ε = 1/3 (say), we see that the Lebesgue and Jordan outer measures of the open
set U1/3 disagree. Moreover, from the previous remark, we see that m∗J(U1/3) ≤
m∗(U1/3) ≤ 2/3 < 1 ≤ m∗J(U1/3); that is, U1/3 is not Jordan measurable. Likewise,
the complement of U1/3 in [−1, 2] is compact but not Jordan measurable.
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Definition: Two boxes are almost disjoint if their interiors are disjoint.

• [0, 1] and [1, 2] are almost disjoint.

Remark: Since a box has the same elementary measure as its interior, the finite
additivity property

m

(
n⋃
k=1

Bk

)
=

n∑
k=1

|Bk|

also holds for almost disjoint boxes Bk.

Lemma 1.6 (Countable unions of almost disjoint boxes): Let S be a countable union
of almost disjoint boxes B1, B2, . . .. Then

m∗(S) =
∞∑
k=1

|Bk|.

Proof: Using countable subadditivity and Lemma 1.5, we find

m∗(S) ≤
∞∑
k=1

m∗(Bk) =
∞∑
k=1

|Bk|.

Moreover, for each n ∈ N, the elementary set
⋃n
k=1 Bk is contained in S. Using

Lemma 1.5 again and monotonicity, we find that

n∑
k=1

|Bk|= m

(
n⋃
k=1

Bk

)
= m∗

(
n⋃
k=1

Bk

)
≤ m∗(S).

On letting n→∞, we obtain

∞∑
k=1

|Bk|≤ m∗(S),

which establishes the desired result.

Remark: We thus see that Rd has an infinite Lebesgue outer measure.

Problem 1.9: Prove that the Lebesgue outer measure of a bounded union
⋃∞
k=1Bk

of almost disjoint boxes Bk is equal to its Jordan inner measure.

Definition: Let n ∈ Z. A closed dyadic cube in Rd with sidelength 2−n has the form[
i1
2n
,
i1 + 1

2n

]
× . . .×

[
id
2n
,
id + 1

2n

]
for integers i1, i2, . . . , id.
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Remark: The set of closed dyadic cubes of a fixed sidelength 2−n are almost disjoint
and cover all of Rd.

Remark: Each closed dyadic cube in Rd of sidelength 2−n has 2d children of sidelength
2−n−1.

Definition: Given a collectionQ of closed dyadic cubes, we say that a cube is maximal
if it is not contained in any other cubes in Q.

Lemma 1.7: Every open subset of Rd can be expressed as a countable union of almost
disjoint closed cubes.

Proof: Recall that around every point x of an open set S there is an open ball
entirely contained within S. Since each open ball contains a closed dyadic cube that
includes x, an open set is the (countable) union of a collection Q of dyadic cubes
contained within it. Let us restrict n ≥ 0 to enforce a maximum cube sidelength of 1.
Note that every cube in Q is contained in exactly one maximal cube and that any
two such maximal cubes are almost disjoint. We thus see that S can be expressed as
a countable union of (almost disjoint) maximal cubes.

Remark: From Prob 1.9, we thus see that the Lebesgue outer measure of a bounded
open set is equal to its Jordan inner measure and corresponds to the total measure
of any countable partitioning of the set into almost disjoint boxes.

Q. Can we express the Lebesgue outer measure of an arbitrary set in terms of the
Lebesgue outer measure of open sets?

Lemma 1.8 (Outer regularity): Let S ⊂ Rd be an arbitrary set. Then

m∗(S) = inf
U⊃S
Uopen

m∗(U).

Proof: It follows immediately from monotonicity that

m∗(S) ≤ inf
U⊃S
U open

m∗(U).

The other direction
inf
U⊃S
U open

m∗(U) ≤ m∗(S)

holds trivially if m∗(S) is infinite. If m∗(S) is finite, given ε > 0, there exists a
countable collection B1, B2, . . . of boxes that cover S, with

∞∑
k=1

|Bk|< m∗(S) + ε.
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Each box Bk can be enclosed within an open box B′k such that |B′k|< |Bk|+ε/2k, with
∞∑
k=1

|B′k|<
∞∑
k=1

(
|Bk|+

ε

2k

)
=
∞∑
k=1

|Bk|+ε < m∗(S) + 2ε.

From countable subadditivity, we see that

m∗

(
∞⋃
k=1

B′k

)
≤

∞∑
k=1

|B′k|< m∗(S) + 2ε,

from which we deduce that

inf
U⊃S
U open

m∗(U) < m∗(S) + 2ε.

The desired result then follows.

Remark: Outer regularity motivates the following definition.

Definition: A set S ⊂ Rd is said to be Lebesgue measurable if for every ε > 0, there
exists an open set U ⊂ Rd containing S such that m∗(U \ S) < ε.

Definition: If S is Lebesgue measurable, we refer to m(S)
.
= m∗(S) as the Lebesgue

measure of S. To emphasize the dimension d, we sometimes write m(S) as md(S).

Remark: A Lebesgue measurable set is one that can be efficiently contained within
an open set (with respect to Lebesgue outer measure).

Remark: Let S ⊂ U . We will eventually show that the Lebesgue outer measure is
not finitely additive for arbitrary disjoint subsets of Rd: it is possible for m∗(U) =
m∗((U \ S) ∪ S) to be less than m∗(U \ S)+m∗(S). It is therefore incorrect to
assume that m∗(U \ S) equals m∗(U)−m∗(S).

Problem 1.10: Show that a Jordan measurable subset of Rd is Lebesgue measurable.
Let S be Jordan measurable and ε > 0. By the definition of Jordan outer measure, there
exists a union

⋃n
k=1Bk ⊃ S of disjoint boxes Bk such that

n∑
k=1

|Bk|= m

(
n⋃
k=1

Bk

)
< m∗J(S) +

ε

2
.

Slightly enlarge each box Bk to an open box B′k ⊃ Bk such that |B′k|< |Bk|+ε/(2n). Let
Uε

.
=
⋃n
k=1B

′
k ⊃ S. By finite subadditivity,

m(Uε) ≤
n∑
k=1

|B′k|<
n∑
k=1

|Bk|+
ε

2
< m∗J(S) + ε.

By the definition of Jordan inner measure there exists an elementary set Vε such that

m∗(S)− ε < m(Vε) ≤ m∗J(S) = m∗(S) = m∗J(S) ≤ m(Uε) < m∗(S) + ε.

Since S is bounded, we know that m∗(S) is finite. Hence m∗(Uε \ S) ≤ m(Uε \ Vε) =

m(Uε)−m(Vε) < 2ε. That is, S is Lebesgue measurable.
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Lemma 1.9 (Lebesgue measurability of compact sets): Every compact subset of Rd

is Lebesgue measurable.

Proof: Let S be a compact set. Given ε > 0, Lemma 1.8 guarantees the existence
of an open set U containing S with m∗(U) < m∗(S) + ε. The set U \ S = U ∩ Sc is
open and so by Lemma 1.7 is the countable union

⋃∞
k=1 Qk of almost disjoint closed

cubes Qk. By Lemma 1.6, m∗(U \ S) =
∑∞

k=1|Qk|. For every n ∈ N, the finite union⋃n
k=1 Qk of closed cubes is itself closed and disjoint from the compact set S. Since

compact disjoint sets in Rd are separated, it follows from Lemma 1.4 and monotonicity
that

m∗(S) +m∗

(
n⋃
k=1

Qk

)
= m∗

(
S ∪

n⋃
k=1

Qk

)
≤ m∗(U) < m∗(S) + ε.

Thus
∑n

k=1|Qk|= m∗(
⋃n
k=1 Qk) < ε for each n ∈ N. Hence m∗(U \S) =

∑∞
k=1|Qk|≤ ε;

that is, S is Lebesgue measurable.

Definition: A null set is a set of Lebesgue outer measure zero.

Lemma 1.10 (Lebesgue measurable sets): The following sets are Lebesgue measur-
able:

(i) an open set;

(ii) a closed set;

(iii) a null set;

(iv) the empty set;

(v) the complement of a Lebesgue measurable subset of Rd;

(vi) a countable union of Lebesgue measurable sets;

(vii) a countable intersection of Lebesgue measurable sets.

Proof:
Claims (i) and (iv) follow directly from the definition of Lebesgue measurability.

(iii) If S is a null set, we know from outer regularity that inf
U⊃S
U open

m∗(U) = 0. Thus

given ε > 0, there exists an open set U ⊃ S such that m∗(U \ S) ≤ m∗(U) < ε,
which means that S is Lebesgue measurable.

(vi) Given ε > 0, let S1, S2, . . . be a sequence of Lebesgue measurable sets. For each
k ∈ N, Sk is contained in an open set Uk such that m∗(Uk \ Sk) < ε/2k. The
Lebesgue measurability of

⋃∞
k=1 Sk follows from the openness of

⋃∞
k=1 Uk and

countable subadditivity:

m∗

(
∞⋃
k=1

Uk \
∞⋃
k=1

Sk

)
≤ m∗

(
∞⋃
k=1

(Uk \ Sk)

)
≤

∞∑
k=1

m∗(Uk \ Sk) <
∞∑
k=1

ε

2k
= ε.
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(ii) Given a closed set S ⊂ Rd, we can express it as a countable union of compact
sets: S =

⋃∞
k=1(Bk(0) ∩ S). The result then follows from Lemma 1.9 and (vi).

(v) If S is Lebesgue measurable then for each n ∈ N there exists an open set Un
containing S such that m∗(Un \ S) < 1/n. Let F =

⋃∞
n=1 U

c
n ⊂ Sc. For each

n ∈ N, we note that Sc\F ⊂ Sc\U c
n and hence, using monotonicity, m∗(Sc\F ) ≤

m∗(Sc \ U c
n) < 1/n, noting that Sc \ U c

n = Un \ S. Thus m∗(Sc \ F ) = 0, so
that Sc = F ∪ (Sc \ F ) is a countable union of the closed sets U c

n and a set of
Lebesgue outer measure zero. By (ii), (iii), and (vi), Sc is Lebesgue measurable.

(vii) Apply DeMorgan’s laws to (vi), using (v) twice.

Remark: It follows that an elementary set E is Lebesgue measurable, with m(E)
equal to the elementary measure. This justifies the reuse of the symbol m(E) for
Lebesgue measure and shows that it generalizes the concept of elementary measure.

Definition: A Boolean algebra is an algebraic structure that characterizes both set
and logic operations: a subset Y of a set X is associated with a set of bits indexed
by x ∈ X as 1 or 0 according to whether or not x ∈ Y . A Boolean algebra is
thus analogous to the field of sets , which is any nonempty collection of subsets of a
given set closed under finite union, finite intersection, and complement operations.

Remark: Properties (iv), (v), and (vi) of Lemma 1.10 state that the set of Lebesgue
measurable sets is closed under countably many Boolean operations and thus forms
a σ-algebra, a generalization of a Boolean algebra that requires closure under count-
able unions.1

Lemma 1.11 (Characterization of measurability): Let S ⊂ Rd. The following are
equivalent:

(i) S is Lebesgue measurable;

(ii) given ε > 0, there exists an open set Uε containing S with m∗(Uε \ S) < ε;
(outer open approximation)

(iii) given ε > 0, there exists an open set Uε with m∗(Uε4 S) < ε; (almost open)

(iv) given ε > 0, there exists a closed set Fε contained in S with m∗(S \ Fε) < ε;
(inner closed approximation)

1The σ (the Greek letter corresponding to the initial s in the German word “Summe” originally
used to denote union) in σ-algebra denotes closure under countable union. Likewise, a δ-algebra
is closed under countable intersections (δ is the Greek letter corresponding to the initial d in the
German word “Durchschnitt” for intersection). DeMorgan’s laws establish that the terms σ-algebra
and δ-algebra are actually equivalent.
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(v) given ε > 0, there exists a closed set Fε with m∗(Fε4 S) < ε; (almost closed)

(vi) given ε > 0, there exists a Lebesgue measurable set Sε with m∗(Sε4 S) < ε.
(almost measurable)

Proof:

(i) ⇒ (ii) This is the definition of Lebesgue measurability.

(ii) ⇒ (iii) Uε ⊃ S ⇒ Uε4 S = Uε \ S.

(iii) ⇒ (vi) This follows from Lemma 1.10 (i).

(i) ⇒ (iv) By Lemma 1.10 (v), Sc is Lebesgue measurable: given ε > 0, there exists Uε
such that Sc ⊂ Uε, with m∗(Uε \ Sc) < ε. Hence S ⊃ U c

ε , where U c
ε is closed.

Since Uε \ Sc = Uε ∩ S = S \ U c
ε , we see that m∗(S \ U c

ε ) < ε.

(iv) ⇒ (v) S ⊃ Fε ⇒ Fε4 S = S \ Fε.

(v) ⇒ (vi) This follows from Lemma 1.10 (ii).

(vi) ⇒ (i) First, notice for any sets A, B, and S that (A ∪B)4 S ⊂ (A4 S) ∪B.

Given ε > 0, there exists a measurable set Sε with m∗(Sε4 S) < ε. Since Sε is
measurable, it can be contained in an open set Uε such that m∗(Uε \ Sε) < ε.
Then

Uε4 S ⊂ (Sε4 S) ∪ (Uε \ Sε);

monotonicity and subadditivity then lead to

m∗(Uε4 S) ≤ m∗(Sε4 S) +m∗(Uε \ Sε) < ε+ ε = 2ε.

By outer regularity, there exists an open set Vε containing S \ Uε with

m∗(Vε) ≤ m∗(S \ Uε) + ε ≤ m∗(S 4 Uε) + ε < 2ε+ ε = 3ε.

Finally, we note that the open set Uε ∪ Vε contains S and that by monotonicity
and subadditivity,

m∗((Uε ∪ Vε) \ S) = m∗((Uε ∪ Vε)4 S) ≤ m∗(Uε4 S) +m∗(Vε) < 2ε+ 3ε = 5ε,

as desired.

Remark: We thus see that every measurable set S can be expressed as the union of
a closed set F ⊂ S and a set S \ F of arbitrarily small measure. Likewise, there
exists a set of arbitrarily small measure whose union with S is open.
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Remark: While the Lebesgue outer measure exists for any subset of Rd, we have
remarked that it does not satisfy even finite additivity for disjoint subsets of Rd.
However, if we restrict our attention to Lebesgue measurable subsets of Rd, then
we actually obtain countable additivity, as we had originally hoped for on page 9:

Lemma 1.12 (Properties of Lebesgue measure):

(i) m(∅) = 0; nullity;

(ii) If S1, S2, . . . ⊂ Rd is a countable sequence of disjoint Lebesgue measurable sets,
then m(

⋃∞
k=1 Sk) =

∑∞
k=1m(Sk). countable additivity

Proof:

(i) We note that m∗(∅ \ ∅) = m∗(∅) = 0.

(ii) First suppose that all of the sets Sk are compact and let n ∈ N. Since compact
disjoint sets in Rd are separated, we see using Lemma 1.4 and monotonicity that

n∑
k=1

m(Sk) = m

(
n⋃
k=1

Sk

)
≤ m

(
∞⋃
k=1

Sk

)
,

on replacing m∗ with m, in view of Lemma 1.10. As n→∞, we see that

∞∑
k=1

m(Sk) ≤ m

(
∞⋃
k=1

Sk

)
.

Also, from countable subadditivity, we have

m

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

m(Sk).

The result then follows.

If the sets Sk are all bounded but not necessarily compact, we know from
Lemma 1.11 that they can each be expressed as the union of a compact set
Kk ⊂ Sk and a set of arbitrarily small measure:

m(Sk) = m(Kk ∪ (Sk \Kk)) ≤ m(Kk) +m(Sk \Kk) < m(Kk) +
ε

2k
,

using subadditivity; thus

∞∑
k=1

m(Sk) ≤
∞∑
k=1

m(Kk) + ε.
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But from the compact case and monotonicity, we know that

∞∑
k=1

m(Kk) = m

(
∞⋃
k=1

Kk

)
≤ m

(
∞⋃
k=1

Sk

)
,

from which we deduce

∞∑
k=1

m(Sk) ≤ m

(
∞⋃
k=1

Sk

)
+ ε

for every ε > 0. The result then follows from countable subadditivity:

m

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

m(Sk).

Finally, if some of the sets Sk are not bounded, we decompose each of them as a
countable union of disjoint Lebesgue measurable sets, using the bounded annuli
Am

.
= Bm(0) \Bm−1(0) for m ∈ N :

Sk =
∞⋃
m=1

(Sk ∩ Am).

The bounded case then yields

m(Sk) =
∞∑
m=1

m(Sk ∩ Am).

We can similarly decompose
⋃∞
k=1 Sk as a countable union of the disjoint bounded

measurable sets Sk ∩ Am over (k,m) ∈ N×N to obtain

m

(
∞⋃
k=1

Sk

)
= m

(
∞⋃
k=1

∞⋃
m=1

(Sk ∩ Am)

)
=
∞∑
k=1

∞∑
m=1

m(Sk ∩ Am) =
∞∑
k=1

m(Sk).

Problem 1.11 (Monotone convergence theorem for Lebesgue measurable sets):

(i) (Upward monotone convergence) Let S1 ⊂ S2 ⊂ . . . be a countable increasing
sequence of Lebesgue measurable subsets of Rd. Show that

m

(
∞⋃
k=1

Sk

)
= lim

n→∞
m(Sn).

Hint: Express
⋃∞
k=1 Sk in terms of the lacunae Ln = Sn \

⋃n−1
k=1 Sk.
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(ii) (Downward monotone convergence) Let S1 ⊃ S2 ⊃ . . . be a countable decreasing
sequence of Lebesgue measurable subsets of Rd. If at least one of the m(Sk) is
finite, show that

m

(
∞⋂
k=1

Sk

)
= lim

n→∞
m(Sn).

(iii) Show that one cannot drop the assumption in (ii) that at least one of the m(Sm)
is finite.

Definition: A sequence {Sn}∞n=1 of sets in Rd converges pointwise to another set S
in Rd if the indicator functions 1Sn converge pointwise to 1S.

Definition: Recall that

lim sup
n→∞

xn
.
= lim

n→∞
sup
k≥n

xk

lim inf
n→∞

xn
.
= lim

n→∞
inf
k≥n

xk.

In the extended d-dimensional reals [−∞,∞]d, a sequence {xn} converges iff lim sup
n→∞

xn =

lim inf
n→∞

xn.

Problem 1.12: Suppose Sn ⊂ Rd, n = 1, 2, . . . are Lebesgue measurable sets that
converge pointwise to a set S.

(i) Show that S is Lebesgue measurable. Hint: use the fact that 1S(x) = lim inf
n→∞

1Sn(x) =

lim sup
n→∞

1Sn(x) to write S in terms of countable unions and intersections of Sn.

(ii) (Dominated convergence theorem) Suppose that the Sn are all contained in an-
other Lebesgue measurable set F of finite measure. Show that m(Sn) converges
to m(S). Hint: use the upward and downward monotone convergence theorems.

(iii) Give a counterexample to show that the dominated convergence theorem fails if
the Sn are not contained in a set of finite measure, even if we assume that their
Lebesgue measures are uniformly bounded.

Problem 1.13: Let S ⊂ Rd. Show that S is contained in a Lebesgue measurable set
of measure m∗(S).
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Problem 1.14: Let S ⊂ Rd. Provide a counterexample that establishes that the
claim

m∗(S) = sup
U⊂S
U open

m∗(U)

is false.

Problem 1.15: (Inner regularity) Let S ⊂ Rd be Lebesgue measurable. Show that

m(S) = sup
K⊂S

K compact

m(K).

Problem 1.16: (Characterization of finite measurability)
Let S ⊂ Rd. Given ε > 0, show that the following are equivalent:

(i) S is Lebesgue measurable with finite measure;

(ii) there exists an open set Uε of finite measure containing S with
m∗(Uε \ S) < ε; (outer open approximation)

(iii) there exists a bounded open set Uε with m∗(Uε4 S) < ε;
(almost open bounded)

(iv) there exists a compact set Kε contained in S with m∗(S \Kε) < ε;
(inner compact approximation);

(v) there exists a compact set Kε with m∗(Kε4 S) < ε;
(almost compact)

(vi) there exists a bounded Lebesgue measurable set Sε with m∗(Sε4 S) < ε;
(almost bounded measurable)

(vii) there exists a Lebesgue measurable set Sε with finite measure such thatm∗(Sε4 S) < ε;
(almost finite measure)

(viii) there exists an elementary set Eε such that m∗(Eε4 S) < ε;
(almost elementary)

(ix) there exists a finite union Fε of closed dyadic cubes such that m∗(Fε4 S) < ε.
(almost dyadic)

(i) ⇒ (ii) Since S is Lebesgue measurable, there exists an open set Uε ⊃ S with m(Uε \ S) < ε.
Then by additivity we see that Uε has finite measure:

m(Uε) = m(S) +m(Uε \ S) < m(S) + ε.
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(ii) ⇒ (iii) Let ε > 0. Since S is measurable, it is contained in a countable union of boxes Bk,
k = 1, 2, . . . , such that (using monotonicity)

m(S) ≤
∞∑
k=1

|Bk|< m(S) + ε.

Each box Bk can be enclosed within an open box B′k such that |B′k|< |Bk|+ε/2k, so
that

m(S) ≤
∞∑
k=1

|B′k|< m(S) + 2ε.

Since m(S) is finite, the infinite sum converges and hence there exists n ∈ N such that

∞∑
k=n+1

|B′k|< ε.

Let Uε be the bounded open set
⋃n
k=1B

′
k. Since S \ Uε ⊂

⋃∞
k=n+1B

′
k we know by

monotonicity that m(S \ Uε) < ε. Also, since Uε \ S ⊂
⋃∞
k=1B

′
k \ S, we have

m(Uε \ S) +m(S) ≤ m

( ∞⋃
k=1

B′k \ S

)
+m(S) = m

( ∞⋃
k=1

B′k

)
< m(S) + 2ε.

Since m(S) is finite, we obtain m(Uε 4 S) = m(Uε \ S) +m(S \ Uε) < 3ε.

(iii) ⇒ (vi) This follows from Lemma 1.10.

(i) ⇒ (iv) By inner regularity, there exists for each ε > 0 a compact set Kε ⊂ S such that

m(Kε) > m(S)− ε.

Since S = Kε∪(S\Kε) and each of these sets have finite Lebesgue measure, we deduce
by additivity that

m(S \Kε) = m(S)−m(Kε) < ε.

(iv) ⇒ (v) S ⊃ Kε ⇒ Kε 4 S = S \Kε.

(v) ⇒ (vi) This follows from Lemma 1.10.

(vi) ⇒ (vii) By monotonicity, a bounded Lebesgue measurable set has finite measure.

(vii) ⇒ (viii) Let ε > 0. We know from Lemma 1.11 that S is measurable. Since Sε is measur-
able, it is contained in a countable union of boxes Bk, k = 1, 2, . . . , such that (using
monotonicity)

m(Sε) ≤
∞∑
k=1

|Bk|< m(Sε) + ε.

Since m(Sε) is finite, the infinite sum converges and hence there exists n ∈ N such
that

∞∑
k=n+1

|Bk|< ε.
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Then Eε =
⋃n
k=1Bk is an elementary set such that Sε \ Eε ⊂

⋃∞
k=n+1Bk and hence

by monotonicity, m(Sε \Eε) < ε. Since S \Eε ⊂ (S \Sε)∪ (Sε \Eε), we conclude that

m(S \ Eε) ≤ m(S \ Sε) +m(Sε \ Eε) < 2ε.

Also, since Eε \ S ⊂
⋃∞
k=1Bk \ S,

m(Eε \ S) ≤ m

( ∞⋃
k=1

Bk \ S

)
≤ m

( ∞⋃
k=1

Bk \ Sε

)
+m(Sε \ S) < 2ε,

noting that
⋃∞
k=1Bk \ S ⊂ (

⋃∞
k=1Bk \ Sε) ∪ (Sε \ S). Hence

m(Eε 4 S) = m(Eε \ S) +m(S \ Eε) < 4ε.

(viii) ⇒ (ix) The elementary set Eε can be expressed as the union of a set of disjoint boxes. Each
box is a Cartesian product of intervals. Given ε′ > 0, each of these intervals can
be slightly enlarged so that its endpoints are rational numbers of the form i/2n for
integers i and n, where 2−n < ε′. We thus see that Eε can be contained within a finite
union Qε of closed dyadic cubes such that m(Qε \ Eε) < ε. Finally, since

Qε 4 S = (Eε ∪ (Qε \ Eε))4 S ⊂ (Eε 4 S) ∪ (Qε \ Eε),

we see that

m∗(Qε 4 S) ≤ m∗(Eε 4 S) +m(Qε \ Eε) < 2ε.

(ix) ⇒ (i) Since a finite union of closed dyadic cubes is closed, Lemma 1.11 guarantees that S
is Lebesgue measurable. Moreover, since m(S) ≤ m(Fε 4 S) + m(Fε) ≤ ε + m(Fε)
and Fε is bounded, we see that S has finite measure.

Problem 1.17: Let S ⊂ Rd. Prove that S is Lebesgue measurable ⇐⇒

m∗(E ∩ S) +m∗(E ∩ Sc) = m(E)

for every elementary set E.

Problem 1.18: (Carathéodory criterion) Generalize Prob. 1.17 to the stronger result
that S ⊂ Rd is Lebesgue measurable ⇐⇒

m∗(A ∩ S) +m∗(A ∩ Sc) = m∗(A)

for every arbitrary subset A of Rd.
Hints: Begin with the definition of m∗(A). Use subadditivity and monotonicity.
Consider the cases where m∗(A) <∞ and m∗(A) =∞.
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Remark: In many texts, the Carathéodory criterion is adopted as the definition of
Lebesgue measurability since it readily generalizes to abstract measure spaces.

Definition: Let S ⊂ Rd be a bounded set contained within an elementary set E.
The Lebesgue inner measure of S is

m∗(S)
.
= m(E)−m∗(E \ S).

Problem 1.19:

(i) Show that the definition of Lebesgue inner measure is well defined in that it
does not depend on the choice of elementary set E.

(ii) Show that m∗(S) ≤ m∗(S) and that equality holds iff S is Lebesgue measurable.

Definition: A Gδ set is a countable intersection of open sets.

Definition: An Fσ set is a countable union of closed sets.

Remark: Note that a Gδ set need not be open and a Fσ set need not be closed.

Problem 1.20: Show that the following are equivalent:

(i) S is Lebesgue measurable;

(ii) S is the difference of a Gδ set and a null set;

(iii) S is the union of an Fσ set and a null set.

Problem 1.21: (translational invariance)
If S ⊂ Rd is Lebesgue measurable, show that S+x is Lebesgue measurable for any
x ∈ Rd, with m(S + x) = m(S).

Problem 1.22: (Linear change of variables)
If S ⊂ Rd is Lebesgue measurable and T : Rd → Rd is a linear transformation,
show that T (S) is Lebesgue measurable, with m(T (S)) = |detT |m(S).
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Problem 1.23: Let A ⊂ Rd and B ⊂ Rd′ .

(a) Show that
m(d+d′)∗(A×B) ≤ md∗(A)md′∗(B).

Let {Ai} be a sequence of disjoint boxes such thatA ⊂
⋃∞
i=1Ai, with

∑∞
i=1|Ai|< md∗(A) + ε.

Let {Bj} be a sequence of disjoint boxes such thatB ⊂
⋃∞
j=1Bj , with

∑∞
j=1|Bj |< md′∗(B) + ε.

Then A×B ⊂
⋃
i,j Ai×Bj . Each box Ai×Bj ⊂ Rd+d′ has measure |Ai×Bj |= |Aj ||Bj |. By

monotonicity,

m(d+d′)∗(A×B) ≤
∑
i,j

|Ai||Bj |< (md∗(A) + ε)(md′∗(B) + ε).

Since this holds for all ε > 0, the desired result follows.

(b) If A and B are both Lebesgue measurable (but not necessarily of finite mea-
sure), show that A×B is Lebesgue measurable, with

md+d′(A×B) = md(A)md′(B).

We first assume that both A and B have finite Lebesgue measure. Given ε > 0, let U, V
be open sets such that m(U \ A) < ε and m(V \ B) < ε. From additivity, we know that
m(U) = m(U \A) +m(A) < m(A) + ε and m(V ) = m(V \B) +m(B) < m(B) + ε. Since

(U×V ) \ (A×B) = ((U \A)×V ) ∪ (U×(V \B)),

we see from subadditivity and part(a) that

m∗((U×V ) \ (A×B)) ≤ m∗((U \A)×V ) +m∗(U×(V \B))

≤ m(U \A)m(V ) +m(U)m(V \B)

< ε[m(V ) +m(U)]

< ε[m(A) +m(B) + 2ε].

As ε is arbitrary, we see that A×B is Lebesgue measurable. Moreover, we know that the
open sets U =

⋃∞
i=1 Ui and V =

⋃∞
i=1 Vi can be expressed as countable unions of almost

disjoint boxes Ui and Vi, respectively. Thus

m(U×V ) =
∑

(i,j)∈N2

|Ui||Vj |=
∞∑
i=1

|Ui|
∞∑
j=1

|Vj |= m(U)m(V ).

We then find from additivity, subadditivity, and part (a) that

m(A)m(B)−m(A×B) = [m(U)−m(U \A)][m(V )−m(V \B)]

−m(U×V ) +m((U×V ) \ (A×B))

≤ −m(U \A)m(V )−m(U)m(V \B) +m((U \A)×V )

+m(U×(V \B)) +m(U \A)m(V \B)

< ε2.

Since ε is arbitrary, we see that

m(A)m(B)−m(A×B) ≤ 0.

On combining this inequality with part (a), we obtain the desired result.

Finally, if A or B has infinite Lebesgue measure, apply upward monotone convergence

to the result for A ∩Bn(0) and B ∩Bn(0), n ∈ N.



Chapter 2

The Lebesgue Integral

Definition: Let {ck}∞k=1 be a sequence of elements of the set of complex numbers C.
We say that {ck}∞k=1 converges absolutely or is absolutely summable if

∞∑
k=1

|ck|<∞.

Remark: Recall that the partial sums
∑n

k=1 ck of an absolutely convergent sequence
converge to a finite number. Furthermore, one can rearrange the terms of an
absolutely convergent sequence without affecting its sum, defined in terms of its
real and imaginary parts as

∞∑
k=1

ck =
∞∑
k=1

Re ck + i
∞∑
k=1

Im ck,

for complex ck, where for real ck,

∞∑
k=1

ck =
∞∑
k=1

c+
k −

∞∑
k=1

c−k ,

with c+
k

.
= max(ck, 0) and c−k

.
= max(−ck, 0).

Definition: A (complex-valued) simple function f : Rd → C is a finite linear combi-
nation

f =
n∑
k=1

ck1Sk .

of indicator functions 1Sk of Lebesgue measurable sets Sk ⊂ Rd for ck ∈ C, where
n ∈ N and k = 1, . . . , n. If f : Rd → [0,∞] and ck ∈ [0,∞], we say that f is an
unsigned simple function.

34
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Definition: Denote the complex vector space of simple functions over Rd as Simp(Rd).

Definition: Denote the space of unsigned simple functions over Rd as Simp+(Rd).

Remark: In addition to the usual closure properties of a vector space, Simp(Rd)
is also closed under the pointwise product f, g 7→ fg and complex conjugation
f → f , making Simp(Rd) a commutative ∗-algebra (or involutive algebra). The
space Simp+(Rd) is a [0,∞]-module: it is closed under addition and under multi-
plication by elements of [0,∞].

Remark: Although we don’t require the Lebesgue measurable sets S1, . . . , Sn to be
disjoint, we can achieve this by noting that they partition Rd into 2n measurable
sets, each of which is an intersection of S1, . . . , Sn and their complements in Rd.

Definition: Denote ∫
Rd

1S
.
= m(S).

Definition: If f =
∑n

k=1 ck1Sk is an unsigned simple function, define the simple
integral

Simp

∫
Rd
f
.
=

n∑
k=1

ckm(Sk).

Lemma 2.1 (Well-definedness of the simple integral): Let n, n′ ∈ N, c1, . . . , cn, c
′
1, . . . , c

′
n′ ∈

[0,∞] and S1, . . . , Sn, S
′
1, . . . , S

′
n′ ⊂ Rd be Lebesgue measurable sets such that

n∑
k=1

ck1Sk =
n′∑
k=1

c′k1S′k .

Then
n∑
k=1

ckm(Sk) =
n′∑
k=1

c′km(S ′k).

Proof: The n + n′ sets Sk and S ′k′ partition Rd into 2n+n′ disjoint sets. The
result then follows from the finite additivity of Lebesgue measure (for details see Tao,
page 52).

Definition: A property P (x) of points x ∈ Rd is said to hold almost everywhere (or
a.e.) in Rd if the set of x ∈ Rd on which P (x) fails has Lebesgue measure zero
(i.e. P is true outside of a null set).
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Definition: Two functions f and g on Rd are said to agree almost everywhere if
f(x) = g(x) almost everywhere in Rd.

Definition: The support of a function f : Rd → C or f : Rd → [0,∞] is the set
{x ∈ Rd : f(x) 6= 0}.

Problem 2.1: (Properties of the simple unsigned integral)
Let f, g : Rd → [0,∞] be simple unsigned functions. Then

(i)

Simp

∫
Rd

(f + g) = Simp

∫
Rd
f + Simp

∫
Rd
g

and

Simp

∫
Rd
cf = c Simp

∫
Rd
f

for every c ∈ [0,∞]; (unsigned linearity)

(ii) Simp
∫
Rd f < ∞ iff f is finite almost everywhere and its support has finite

measure; (finiteness)

(iii) Simp
∫
Rd f = 0 iff f = 0 almost everywhere; (vanishing)

(iv) if f and g agree almost everywhere, Simp
∫
Rd f = Simp

∫
Rd g; (equivalence)

(v) if f(x) ≤ g(x) for almost every x ∈ Rd, Simp
∫
Rd f ≤ Simp

∫
Rd g; (monotonicity)

(vi) for any Lebesgue measurable set S, Simp
∫
Rd 1S = m(S). (compatibility)

Definition: A complex-valued simple function f : Rd → C is said to be absolutely
integrable if Simp

∫
Rd|f |<∞.

Definition: If the real-valued simple function f is absolutely integrable, let

Simp

∫
Rd
f
.
= Simp

∫
Rd
f+ − Simp

∫
Rd
f−

in terms of the unsigned simple functions f+
.
= max(f, 0) and f−

.
= max(−f, 0)

(which are both dominated by |f |).

Definition: If a complex-valued simple function f : Rd → C is absolutely integrable,

Simp

∫
Rd
f
.
= Simp

∫
Rd

Re f + i Simp

∫
Rd

Im f
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Remark: We note that a complex-valued simple function f is absolutely integrable
iff its support has finite measure.

Remark: We now show that the space Simpabs(Rd) of absolutely integrable simple
functions, being closed under addition and scalar multiplication by complex num-
bers, is a complex vector space.

Problem 2.2: (Properties of the simple integral)
Let f, g : Rd → C be absolutely integrable simple complex-valued functions. Then

(i)

Simp

∫
Rd

(f + g) = Simp

∫
Rd
f + Simp

∫
Rd
g

and

Simp

∫
Rd
cf = c Simp

∫
Rd
f

for every c ∈ C, along with

Simp

∫
Rd
f = Simp

∫
Rd
f ;

(*-linearity)

(ii) If f and g agree almost everywhere, Simp
∫
Rd f = Simp

∫
Rd g; (equivalence)

(iii) For any Lebesgue measurable set S, Simp
∫
Rd 1S = m(S). (compatibility)

Hint: Use the decomposition

f + g = (f + g)+ − (f + g)− = (f+ − f−) + (g+ − g−).

Definition: An unsigned function f : Rd → [0,∞] is unsigned Lebesgue measurable
(or measurable) if it is the pointwise limit of a sequence of unsigned simple functions.

Definition: Let X ⊂ Rd. A set U ⊂ X is relatively open (relatively closed) in X if
there is an open (closed) set V in Rd such that U = V ∩X.
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Lemma 2.2 (Characterization of measurable unsigned functions):

Let f : Rd → [0,∞] be an unsigned function. The following are equivalent:

(i) f is unsigned Lebesgue measurable;

(ii) f is the pointwise limit of a sequence of unsigned simple functions;

(iii) f is the pointwise almost everywhere limit of unsigned simple functions;

(iv) f = supn fn for an increasing sequence fn of bounded unsigned simple functions
that have finite-measure support;

(v) for every λ ∈ [0,∞], the set {x ∈ Rd : f(x) > λ} is Lebesgue measurable;

(vi) for every λ ∈ [0,∞], the set {x ∈ Rd : f(x) ≥ λ} is Lebesgue measurable;

(vii) for every λ ∈ [0,∞], the set {x ∈ Rd : f(x) < λ} is Lebesgue measurable;

(viii) for every λ ∈ [0,∞], the set {x ∈ Rd : f(x) ≤ λ} is Lebesgue measurable;

(ix) for every interval I ⊂ [0,∞), the set f−1(I)
.
= {x ∈ Rd : f(x) ∈ I} is Lebesgue

measurable;

(x) for every relatively open set U ⊂ [0,∞), the set f−1(U)
.
= {x ∈ Rd : f(x) ∈ U}

is Lebesgue measurable;

(xi) for every relatively closed set F ⊂ [0,∞), the set f−1(F )
.
= {x ∈ Rd : f(x) ∈ F}

is Lebesgue measurable.

Proof:

(i) ⇐⇒ (ii) This is the definition of Lebesgue measurability of an unsigned function.

(ii) ⇒ (iii) Everywhere implies almost everywhere.

(iv) ⇒ (ii) Every monotone sequence in [0,∞] converges.

(iii) ⇒ (v) We are given that for almost all x ∈ Rd,

f(x) = lim
n→∞

fn(x) = lim sup
n→∞

fn(x) = lim
n→∞

sup
k≥n

fk(x) = inf
n∈N

sup
k≥n

fk(x).

Then to within a set of measure zero, the set {x ∈ Rd : f(x) > λ} equals

⋃
M∈N

⋂
n∈N

{
x ∈ Rd : sup

k≥n
fk(x) > λ+

1

M

}
,
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or equivalently, ⋃
M∈N

⋂
n∈N

⋃
k≥n

{
x ∈ Rd : fk(x) > λ+

1

M

}
.

But each set {x ∈ Rd : fk(x) > λ + 1/M} is Lebesgue measurable since each
fk is an unsigned simple function. Since countable unions and intersections of
Lebesgue measurable sets are Lebesgue measurable, we arrive at (v).

(v) ⇐⇒ (vi)

(vii) ⇐⇒ (viii) To establish these two equivalences, let Q+ .
= Q ∩ [0,∞). Then for λ ∈ (0,∞],

{x ∈ Rd : f(x) ≥ λ} =
⋂

q∈Q+:q<λ

{x ∈ Rd : f(x) > q}.

Likewise for λ ∈ [0,∞),

{x ∈ Rd : f(x) > λ} =
⋃

q∈Q+:q>λ

{x ∈ Rd : f(x) ≥ q}.

Since Q+ is countable, we then see that (v) and (vi) are equivalent and so are
(vii) and (viii).

(v) ⇐⇒ (viii)

(vi) ⇐⇒ (vii)

(x) ⇐⇒ (xi) These three equivalences follow immediately upon taking complements.

(v)–(viii) ⇒ (ix) Every interval I ⊂ [0,∞] can be expressed as the intersection of two semi-infinite
intervals (half lines).

(x) ⇒ (vii) Let U = [0, λ).

(ix) ⇒ (x) Every open set in [0,∞) is the union of countably many open intervals.

(ix) ⇒ (iv) For every n ∈ N, let fn(x) be the largest integer multiple of 2−n bounded by
min(f(x), n) for x ∈ Bn[0] and zero elsewhere. At each x, we see that f(x)
is the supremum of the increasing sequence of functions fn(x). Note that fn
achieves each of its finite number of nonzero values c on a Lebesgue measurable
set f−1

n (c) = f−1(Ic)∩Bn[0], where Ic ⊂ [0,∞) is an interval or half line. Thus
each function fn is a bounded unsigned simple function with finite-measure
support.
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Remark: Having established these characterizations of measurable functions, we now
observe that many of the unsigned functions that arise in practical applications are
measurable:

• every continuous unsigned function f : Rd → [0,∞];

• every unsigned simple function;

• the supremum, infimum, limit superior, and limit inferior of a sequence of unsigned
measurable functions;

• an unsigned function that is almost everywhere equal to an unsigned measurable
function;

• the composition φ ◦ f of a continuous function φ : [0,∞]→ [0,∞] and an unsigned
measurable function f ;

• the sum and product of unsigned measurable functions.

Remark: If an unsigned measurable function f is bounded by M , the functions
fn constructed in Lemma 2.2 (ix) ⇒ (iv) are each bounded by M . Thus, f is
a bounded unsigned measurable function with finite-measure support iff it is the
uniform limit of a bounded sequence of simple functions.

Problem 2.3: Show that an unsigned function f : Rd → [0,∞] is a simple function
iff it is measurable and takes on finitely many values.

If f is a simple function, it is a linear combination of n indicator functions, and therefore
measurable. These indicator functions divide Rd into at most 2n regions. Therefore, f can
achieve at most 2n values.

Conversely, if f is measurable and takes on only n different values c1,. . . ,cn, consider

the Lebesgue measurable sets Sk = f−1({ck}) for k = 1, . . . , n. We can then express

f =
∑n

k=1 ck1Sk .

Remark: If f is measurable, Lemma 2.2 shows that f−1(S) is Lebesgue measurable
for many, but not all, measurable sets S (for a counterexample, see Tao, Remark
1.3.10).
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Definition: An almost everywhere-defined complex-valued function f : Rd → C is
Lebesgue measurable (or measurable) if it is the pointwise almost-everywhere limit
of a sequence of complex-valued simple functions.

Lemma 2.3 (Characterization of measurable complex-valued functions): Let f :
Rd → C be an almost-everywhere defined complex-valued function. The following
are equivalent:

(i) f is measurable;

(ii) f is the pointwise almost-everywhere limit of a sequence of complex-valued simple
functions;

(iii) the positive and negative parts of Re f and Im f are unsigned measurable func-
tions;

(iv) for every open set U ⊂ C, the set f−1(U) is measurable;

(v) for every closed set F ⊂ C, the set f−1(F ) is measurable.

Remark: For defining a measurable function, it is enough just to test the open
subsets of [0,∞]; the preimage of relatively open subsets will then automatically
be measurable since relatively open subsets of [0,∞] belong to the Borel σ-algebra
B[R] on R (the smallest σ-algebra that contains all open subsets of R).

Problem 2.4: Let f : Rd → C. Show that

(i) if f is continuous, it is measurable;

(ii) if f is almost everywhere equal to a measurable function, it is itself measurable.

(iii) if a sequence fn of complex-valued measurable functions converges pointwise
almost everywhere to f , then f is measurable.

(iv) if f is measurable, the composition φ ◦ f of a continuous function φ : C → C
and f is measurable.

Problem 2.5: Show that the sum and product of measurable functions are measur-
able.
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Definition: Let f : Rd → [0,∞] be an unsigned (but not necessarily measurable)
function. The lower unsigned Lebesgue integral is∫

Rd
f
.
= sup

h simple
0≤h≤f

Simp

∫
Rd
h.

Likewise, the upper unsigned Lebesgue integral is∫
Rd
f
.
= inf

h simple
h≥f

Simp

∫
Rd
h.

Remark: For any unsigned function f : Rd → [0,∞] observe that∫
Rd
f ≤

∫
Rd
f

Theorem 2.1 (Properties of the lower and upper Lebesgue integrals): Let f, g : Rd →
[0,∞] be unsigned (not necessarily measurable) functions. Then

(i) if f is simple,
∫
Rdf =

∫
Rdf = Simp

∫
Rd f ; compatibility

(ii) if f ≤ g pointwise almost everywhere,
∫
Rdf ≤

∫
Rdg and

∫
Rdf ≤

∫
Rdg; monotonicity

(iii)
∫
Rdcf = c

∫
Rdf for every c ∈ [0,∞); scaling

(iv) if f and g agree almost everywhere,
∫
Rdf =

∫
Rdg and

∫
Rdf =

∫
Rdg; equivalence

(v)
∫
Rd(f + g) ≥

∫
Rdf +

∫
Rdg; lower superadditivity

(vi)
∫
Rd(f + g) ≤

∫
Rdf +

∫
Rdg; upper subadditivity

(vii) for any measurable set S ⊂ Rd,∫
Rd
f =

∫
Rd
f1S +

∫
Rd
f1Sc ;

complementarity

(viii)

lim
n→∞

∫
Rd

min(f(x), n) dx =

∫
Rd
f ;

vertical truncation



43

(ix)

lim
n→∞

∫
Rd
f(x) 1Bn[0] dx =

∫
Rd
f ;

(use the monotone convergence theorem) horizontal truncation

(x) if f + g is a bounded simple function with finite measure support,

Simp

∫
Rd

(f + g) =

∫
Rd
f +

∫
Rd
g.

reflection

Definition: If f : Rd → [0,∞] is measurable, we define the unsigned Lebesgue integral∫
Rd f to be the lower unsigned Lebesgue integral

∫
Rdf .

Problem 2.6: Let f : Rd → [0,∞) be measurable, bounded, and have finite-measure
support. Show that the lower and upper Lebesgue integrals agree. Hint: use the
fact that a bounded unsigned measurable function is the uniform limit of a bounded
sequence of simple functions.

Corollary 2.1.1 (Finite additivity of the Lebesgue integral): Let f, g : Rd → [0,∞]
be measurable. Then

∫
Rd(f + g) =

∫
Rd f +

∫
Rd g.

Proof: We first prove this in the case where f and g are bounded and have bounded
support. By Problem 2.6, the lower and upper integrals of f , g, and f + g agree. The
result then follows from lower superadditivity and upper subadditivity. The general
case can then be reduced to this case by applying horizontal and vertical truncation
and taking the corresponding limits.

Problem 2.7: Show for an arbitrary set S ⊂ Rd that

∫
Rd

1S = m∗(S).

From outer regularity, we know that

m∗(S) = inf
U⊃S
U open

m(U) = inf
U⊃S
U open

∫
Rd

1U ≥
∫

Rd
1S

since 1U ≥ 1S . Furthermore, given ε > 0, there exists a simple function hε ≥ 1S such that
hε ≥ 1 on a measurable set Tε ⊃ S and∫

Rd
1S + ε >

∫
Rd
hε ≥

∫
Rd

1Tε = m(Tε) ≥ m∗(S).

Since ε is arbitrary, we conclude that

∫
Rd

1S = m∗(S).
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Remark: In view of the fact that Lebesgue outer measure is not necessarily additive,
a consequence of Problem 2.7 is that the upper and lower Lebesgue integrals need
not be additive.

Problem 2.8: If f : Rd → [0,∞] is Lebesgue measurable, show that the Lebesgue
measure of {(x, y) ∈ Rd×R : 0 ≤ y ≤ f(x)} exists and equals

∫
Rd f .

Remark: The statement in Problem 2.8 can be used as an alternate definition of the
Lebesgue integral of a measurable function.

Remark: The Lebesgue integral is the unique map from measurable unsigned func-
tions over Rd that is compatible with the simple integral and obeys finite additivity,
along with the horizontal and vertical truncation properties.

Remark: We can extend a given function f : [a, b]→ [0,∞) to R by assigning it the
value 0 on R\[a, b]. If f is Riemann integrable on [a, b], then it is the pointwise limit
of a sequence of piecewise constant functions and is therefore measurable. Since a
lower sum for f is the integral of a simple function bounded above by f , it must
be less than or equal to

∫
Rf . Likewise, an upper sum for f must be greater than

or equal to
∫
Rf . Let L be the lower Riemann integral (the supremum of all lower

sums) and U be the upper Riemann integral (the infimum of all upper sums). Then

L ≤
∫
Rf ≤

∫
Rf ≤ U . Since L = U =

∫ b
a
f , we conclude that

∫
Rf =

∫
Rf =

∫ b
a
f .

That is, the Lebesgue integral of a Riemann integrable function on [a, b] exists and

equals
∫ b
a
f .

Theorem 2.2 (Markov’s inequality): Let f : Rd → [0,∞] be measurable. Then for
every λ ∈ (0,∞),

m({x ∈ Rd : f(x) ≥ λ}) ≤ 1

λ

∫
Rd
f.

Proof: In view of the pointwise inequality

λ1{x∈Rd:f(x)≥λ} ≤ f(x),

we see from the definition of the lower Lebesgue integral that

λm({x ∈ Rd : f(x) ≥ λ}) ≤
∫
Rd
f.
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Corollary 2.2.1: Let f : Rd → [0,∞] be measurable.

(i) If
∫
Rd f <∞, then f is finite almost everywhere.

(ii)
∫
Rd f = 0 iff f is zero almost everywhere.

Proof:

(i) Consider the limit λ→∞.

(ii) Consider the limit λ→ 0.

Remark: The converse to Corollary 2.2.1 (i) is false: consider
∫
Rd 1 = m(Rd) =∞.

Definition: A measurable complex-valued function f : Rd → C is said to be absolutely
integrable if the L1 semi-norm

|f |L1(Rd)
.
=

∫
Rd
|f |<∞.

Definition: The space of all absolutely integrable functions is denoted L1(Rd).

Definition: If f is real-valued and absolutely integrable, we define∫
Rd
f
.
=

∫
Rd
f+ −

∫
Rd
f−,

where f+
.
= max(f, 0) and f−

.
= max(−f, 0).

Definition: If f is complex-valued and absolutely integrable, we define∫
Rd
f
.
=

∫
Rd

Re f + i

∫
Rd

Im f

Remark: From the pointwise triangle inequality |f(x) + g(x)|≤ |f(x)|+|g(x)|, we
obtain the L1 triangle inequality |f +g|L1(Rd)≤ |f |L1(Rd)+|g|L1(Rd) for every measur-
able function f, g : Rd → C. Note also for c ∈ C that |cf |L1(Rd)= |c||f |L1(Rd) and
that |f |L1(Rd)= 0 iff f vanishes almost everywhere. Together these properties make
L1(Rd) a complex vector space, with semi-norm L1 (it is a semi-norm because of
the almost everywhere qualifier).
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Remark: The use of the integral
∫
Rd|f | to control the distribution of f is the first

moment method . In probability theory, one also uses higher moments such as∫
Rd |f |

p and Fourier moments
∫
Rd e

itf to control the distribution of f .

Remark: The Lebesgue integral is a ∗-linear operator from L1(Rd) to C.

Problem 2.9: (translational invariance)
If f ∈ L1(Rd), show for every y ∈ Rd that

∫
Rd f(x+ y) dx =

∫
Rd f(x) dx.

Problem 2.10: (Linear change of variables)
If f ∈ L1(Rd) and T is an invertible linear transformation, show that∫

Rd
f(T−1x) dx = |detT |

∫
Rd
f.

Problem 2.11: If S and T are disjoint measurable subsets of Rd and f : S ∪ T → C
is absolutely integrable, show that∫

S∪T
(f1S) =

∫
S

f

and ∫
S

f +

∫
T

f =

∫
S∪T

f.

Lemma 2.4 (Triangle inequality): Let f ∈ L1(Rd). Then∣∣∣∣∫
Rd
f

∣∣∣∣ ≤ ∫
Rd
|f |.

Proof: If f = f+− f− is real-valued then |f |= f+ + f− and the claim follows from
the triangle inequality on R. If f is complex-valued we can express∣∣∣∣∫

Rd
f

∣∣∣∣ = eiθ
∫
Rd
f =

∫
Rd
eiθf

for some real phase θ. On taking real parts, we find∣∣∣∣∫
Rd
f

∣∣∣∣ =

∫
Rd

Re
(
eiθf

)
≤
∫
Rd
|eiθf |=

∫
Rd
|f |.

Definition: A step function is a finite linear combination of indicator functions 1B
over boxes B.
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Theorem 2.3 (Approximation of L1 functions): Let f ∈ L1(Rd) and ε > 0. There
exists

(i) an absolutely integrable simple function g such that |f − g|L1(Rd)< ε.

(ii) a step function g such that |f − g|L1(Rd)< ε.

(iii) a continuous, compactly supported function g ∈ L1(Rd) such that |f−g|L1(Rd)< ε.

Proof:

(i) In the case where f is unsigned, by the definition of the lower Lebesgue integral
there exists an unsigned simple function g ≤ f such that

∫
Rd g >

∫
Rd f−ε, which

implies that |f − g|L1(Rd)< ε. This result can then immediately be generalized
to the real-valued and complex-valued cases.

(ii) The case where f is a simple function can be reduced, using linearity and the
triangle inequality, to the case where f is the indicator function of a set with
finite measure. The claim then follows from the fact that such sets can be
approximated by an elementary set. The general case then follows on applying
(i) and the triangle inequality.

(iii) It suffices to focus on the case where f is the indicator function of a box B.
Let B′ be a slightly enlarged box that contains B within its interior, such that
|B′|< |B|+ε. Let g(x) = max(1−C dist(x,B), 0) where C is chosen sufficiently
large such that g(x) = 0 outside of B′. Then g is continuous and compactly
supported, with |f − g|L1(Rd)< ε.

Definition: A sequence of functions fn : Rd → C converges locally uniformly to
a function f : Rd → C if fn converges uniformly to f on every bounded subset
S ⊂ Rd.

• The sequence of functions x 7→ x/n on R for n = 1, 2, . . . converges locally uniformly
(and hence pointwise) to 0 on R, but not uniformly.

• The partial sums
∑n

k=0 x
k/k! of the Taylor series of ex converge to ex locally uni-

formly on R, but not uniformly.

• The functions

fn(x) =


1

nx
if x > 0

0 otherwise

converge pointwise everywhere to zero as n → ∞, but not locally uniformly (due
to the behaviour of fn near x = 0).
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Remark: Although pointwise convergence is evidently a weaker mode of convergence
than locally uniform convergence, the following theorem establishes that one can
recover locally uniform convergence if one is willing to delete as set of arbitrarily
small measure.

Theorem 2.4 (Egorov’s theorem): Let fn : Rd → C be a sequence of measurable
functions that converge pointwise almost everywhere to f : Rd → C. Given ε > 0,
there exists a Lebesgue measurable set S of measure at most ε such that fn converges
locally uniformly to f outside of S.

Proof: By modifying fn and f as needed on a null set (which can be absorbed
into S), we may assume that fn converges pointwise to f on Rd. That is, for each
k ∈ N, the Lebesgue measurable set

SN,k
.
= {x ∈ Rd : |fn(x)− f(x)|≥ 1/k for some n > N}

obeys
∞⋂
N=1

SN,k = ∅.

For fixed k ∈ N , downward monotone convergence of the decreasing sequence of sets
SN,k ∩Bk(0) yields

lim
N→∞

m(SN,k ∩Bk(0)) = 0.

In particular, given ε > 0, we can find Nk ∈ N such that

N > Nk ⇒ m(SN,k ∩Bk(0)) <
ε

2k
.

Then by countable subadditivity, the Lebesgue measurable set

S
.
=
∞⋃
k=1

(SN,k ∩Bk(0))

has measure less than ε. We thus see that for every k ≥ 1 and n > Nk that |fn(x)−
f(x)|< 1/k (that is, fn converges uniformly to f) on x ∈ Bk(0) \ S. Since every
bounded set is contained within a ball Bk(0) for some k, the desired result follows.

Remark: We have now witnessed the three heuristic principles of measure theory
first articulated by Littlewood:

1. Every finite-measurable set is nearly a finite union of boxes;

2. Every absolutely integrable function is nearly continuous;

3. Every pointwise convergent sequence of functions is nearly locally uniformly
convergent.



Chapter 3

Abstract Measure Spaces

Definition: Let X be a set. A Boolean algebra on X is a collection B of subsets of X
such that:

(i) ∅ ∈ B; (empty set)

(ii) If S ∈ B, then the complement Sc
.
= X \ S is also an element of B;

(closure under complement)

(iii) If S, T ∈ B, then S ∪ T ∈ B. (closure under finite union)

Definition: Given two Boolean algebras B, B′ on X, we say that B is finer than
(coarser than) B′ if B ⊃ B′ (B ⊂ B′).

• The coarsest Boolean algebra on a set X is the trivial algebra {∅, X}.

• The finest Boolean algebra on a set X is the discrete algebra P(X) = {S : S ⊂ X}.

Remark: All other Boolean algebras are intermediate between these two extremes:
finer than the trivial algebra, but coarser than the discrete one.

• The elementary Boolean algebra on Rd is the collection of subsets of Rd that are
either elementary or have an elementary complement.

• The Jordan algebra on Rd is the collection of subsets of Rd that are either Jordan-
measurable or have a Jordan-measurable complement.

• The Lebesgue algebra L[Rd] on Rd is the collection of Lebesgue-measurable subsets
of Rd.

49
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Remark: The Lebesgue algebra is finer than the Jordan algebra, which is itself finer
than the elementary Boolean algebra.

• The null algebra is the collection of sets in Rd that are either Lebesgue null sets or
have null complements.

Remark: The null algebra is coarser than the Lebesgue algebra.

Remark: Let F be a collection of subsets of a set X. The intersection 〈F〉bool of
all Boolean algebras that contain F is itself a Boolean algebra. It is the coarsest
Boolean algebra that contains F ; we say that 〈F〉bool is generated by F .

Definition: A Boolean algebra is finite if it contains only finitely many sets.

Definition: Suppose we express a set X as a union
⋃
α∈I Aα of disjoint sets Aα,

called atoms , where I is an index set. This partitioning of X generates a Boolean
algebra, the atomic algebra A({Aa : α ∈ I}), defined as the collection of all unions⋃
α∈J Aα such that J ⊂ I.

Remark: The trivial algebra corresponds to the trivial partition of X into a single
atom, namely X itself.

Remark: The discrete algebra corresponds to the discrete partition of X =
⋃
x∈X{x}

into singleton atoms.

• If we decompose the set X = {1, 2, 3, 4, 5} into atoms A1 = {1, 2}, A2 = {3}, and
A3 = {4, 5}, over the index set I = {1, 2, 3}, we obtain the atomic boolean algebra
A({A1, A2, A3}) = {∅, {1, 2}, {3}, {4, 5}, {1, 2, 3}, {1, 2, 4, 5}, {3, 4, 5}, X}.

Remark: Every finite Boolean algebra is an atomic algebra.

• Let n be an integer. The dyadic algebra Dn(Rd) at scale 2−n is the atomic algebra
generated by taking unions and complements of half-open dyadic cubes[

i1
2n
,
i1 + 1

2n

)
× . . .×

[
id
2n
,
id + 1

2n

)
for integers i1, i2, . . . , id. Note that Dn+1 ⊃ Dn.
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Remark: The elementary, Jordan, Lebesgue, and null algebras cannot be expressed
as nontrivial atomic algebras: they are not composed of indivisible atoms.

Definition: Let X be a set. A σ-algebra on X is a collection B of subsets of X such
that

(i) ∅ ∈ B; (empty set)

(ii) If S ∈ B, then the complement Sc
.
= X \ S is also an element of B;

(closure under complement)

(iii) If S1, S2, . . . ∈ B, then
⋃∞
k=1 Sk ∈ B. (closure under countable union)

• All atomic algebras are σ-algebras.

• The Lebesgue and null algebras are σ-algebras, but the elementary and Jordan
algebras are not.

• Every σ-algebra is a Boolean algebra.

Remark: An intersection ∩α∈IBα of σ-algebras Bα is itself a σ-algebra and is the
finest σ-algebra that is coarser than each of the Bα.

Remark: Let F be a collection of subsets of X. The intersection 〈F〉 of all σ-algebras
that contain F is itself a σ-algebra. It is the coarsest σ-algebra that contains F ;
we say that 〈F〉 is generated by F .

Remark: Observe that 〈F〉bool ⊂ 〈F〉, with equality holding iff 〈F〉bool is a σ-algebra.

• Let F be the collection of all boxes in Rd. Then 〈F〉bool is the elementary algebra,
which is not a σ-algebra.

Definition: Let X be a set and B be a σ-algebra. We refer to the pair (X,B) as a
measurable space.

Remark: In abstract measure theory, the σ-algebra B identifies the subsets of X
that one is allowed to measure.
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Definition: Let X be a metric space. The Borel σ-algebra B[X] on X is the σ-algebra
generated by the collection of open subsets of X. The elements of B[X] are Borel
measurable.

• The Borel σ-algebra contains all open sets, all closed sets, all Gδ sets, and all Fσ
sets, along with countable unions and intersections thereof.

Remark: Since every open set in Rd is Lebesgue measurable, the Borel σ-algebra is
coarser than the Lebesgue σ-algebra.

Remark: Let F be a collection, of cardinality κ, of subsets of X. Using transfinite
induction, one can show that 〈F〉 has cardinality at most κℵ0 , where ℵ0 denotes
the cardinality of N.

Remark: Since every open set in Rd can be expressed as a countable union of open
balls (centered on a rational d-tuple, with rational radius), the cardinality of the
generator of open sets is the same as the cardinality ℵ0 of the rationals. Then
B[Rd] has cardinality at most ℵℵ00 , which is the same as the cardinality c

.
= 2ℵ0 of

the reals.

Problem 3.1: Let S be a set. Show that there is no surjective mapping f : S → P(S).
Hint: if there was, examine the element that maps to T

.
= {s ∈ S : s /∈ f(s)}.

Remark: The Cantor set has Lebesgue measure zero, but cardinality c. Since any
subset of a Lebesgue null set is also a null set, we see that the power set of the
Cantor set has cardinality 2c > c. Thus, there exist Lebesgue-measurable sets that
are not Borel measurable! We will construct one such set in Problem 6.2.

Remark: The Lebesgue σ-algebra on Rd is generated by the union of the Borel
σ-algebra and the null σ-algebra.

Definition: Let B be a Boolean algebra on a set X. A finitely additive measure µ
on B is a map µ : B → [0,∞] such that

(i) µ(∅) = 0; nullity

(ii) If S and T are disjoint elements of B, µ(S ∪ T ) = µ(S) + µ(T ); finite additivity

• The Lebesgue measure m is a finitely additive measure on the Lebesgue σ-algebra
(and hence on the null, Jordan, and elementary sub-algebras).
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• Lebesgue outer measure is not finitely additive on the discrete algebra.

• Jordan outer measure is not finitely additive on the Lebesgue algebra.

• Let x be an element of a set X and B be a Boolean algebra on X. The Dirac
measure δx at x defined by δx(S)

.
= 1S(x) for each S ∈ B is finitely additive.

• The zero measure 0 : S → 0 is a finitely additive measure on any Boolean algebra.

Remark: A linear combination of finitely additive measures is also a finitely additive
measure.

Remark: Let X be a set and B be a Boolean algebra on X. The counting measure
# : B → [0,∞], defined as the cardinality of a finite set and infinity for an infinite
set, is a finitely additive measure.

Problem 3.2: (Properties of finitely additive measures)
Let µ be a finitely additive measure on a Boolean algebra B. Let S and T be
B-measurable sets. Show that

(i) If S ⊂ T , then µ(S) ≤ µ(T ); monotonicity

(ii) µ(S ∪ T ) ≤ µ(S) + µ(T ); finite subadditivity

(iii) If S and T are disjoint, µ(S ∪ T ) = µ(S) + µ(T ); finite additivity

(iv) µ(S ∪ T ) + µ(S ∩ T ) = µ(S) + µ(T ); inclusion–exclusion

(iv)
µ(S ∩ T ) + µ(S ∪ T ) = µ(S ∩ T ) + µ(S \ T ) + µ(T ) = µ(S) + µ(T ).

Problem 3.3: Let B be a finite Boolean algebra generated by a finite collection
A1, A2, . . . , An of nonempty atoms. For every finitely additive measure µ on B,
show that there exists unique values c1, . . . , cn ∈ [0,∞] such that

µ(S) =
∑

1≤k≤n
Ak⊂S

ck ∀S ∈ B.

Equivalently, if xk ∈ Ak for k ∈ {1, . . . , n},

µ =
n∑
k=1

ckδxk .

Since B is a finite atomic Boolean algebra, we can express each S ∈ B as S =
⋃

1≤k≤n
Ak⊂S

Ak.

Then µ(S) =
∑

1≤k≤n
Ak⊂S

ck, where ck = µ(Ak).
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Definition: Let B be a σ-algebra on a set X. A countably additive measure or
measure µ on B is a map µ : B → [0,∞] such that

(i) µ(∅) = 0; nullity

(ii) if S1, S2, . . . are disjoint elements of B, then µ(
⋃∞
k=1 Sk) =

∑∞
k=1 µ(Sk).

countable additivity

Definition: Let X be a general space, B be a σ-algebra, and µ(S) ∈ [0,∞] be a
measure assigned to each S ∈ B. We refer to the triple (X,B, µ) as a measure
space.

• The Lebesgue measure m is a countably additive measure on the Lebesgue σ-algebra
(and hence on every sub-algebra, including the Borel σ-algebra).

• The Dirac measure is countably additive.

• The counting measure is countably additive.

• The restriction of a countably additive measure to a measurable subspace is again
countably additive.

Problem 3.4: (Countable combinations of measures)
Let (X,B) be a measurable space.

(i) If µ is a countably additive measure on B and c ∈ [0,∞], then cµ is also
countably additive on B.

(ii) If µ1, µ2, . . . are a sequence of countably additive measures on B, then their sum∑∞
k=1 µn is also countably additive on B.

Remark: Since countably additive measures are also finitely additive, they inherit the
monotonicity, finite subadditivity, and inclusion-exclusion properties. In addition,
one has further properties.
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Problem 3.5: Let (X,B, µ) be a measure space. Establish the following properties.

(i) If S1, S2, . . . are B-measurable, then

µ

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

µ(Sk).

countable subadditivity

(ii) If S1 ⊂ S2 ⊂ . . . is an increasing sequence of B-measurable sets, then

µ

(
∞⋃
k=1

Sk

)
= lim

n→∞
µ(Sn) = sup

n
µ(Sn).

upward monotone convergence

(iii) If S1 ⊃ S2 ⊃ . . . is a decreasing sequence of B-measurable sets and at least one
of the µ(Sk) is finite, then

µ

(
∞⋂
k=1

Sk

)
= lim

n→∞
µ(Sn) = inf

n
µ(Sn).

downward monotone convergence

Problem 3.6: (Dominated convergence) Let (X,B, µ) be a measure space. Suppose
Sn, n = 1, 2, . . . are B-measurable sets that converge to a set S.

(i) Show that S is B-measurable.

(ii) Suppose that the Sn are all contained in another B-measurable set F of finite
measure. Show that µ(Sn) converges to µ(S).
Hint: apply downward monotone convergence to the sets

⋂∞
n=k Sn.

(iii) Give a counterexample to show that the dominated convergence theorem fails
if the Sn are not contained in a set of finite measure.

Problem 3.7: Let X be an at most countable set and B be the discrete σ-algebra.
Show that every measure µ on (X,B) can be uniquely represented as

µ(S) =
∑
x∈S

cx ∀S ⊂ X.

where each cx ∈ [0,∞]. Equivalently

µ =
∑
x∈X

cxδx.
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Definition: A null set of a measure space (X,B, µ) is a B-measurable set of measure
zero.

Definition: A subnull set is any subset of a null set.

Definition: A measure space is complete if every subnull set is a null set.

• The Lebesgue measure space (Rd,L[Rd],m) is complete.

• The Borel measure space (Rd,B[Rd],m) is not complete.

Definition: The completion of a measure space (X,B, µ) is its (unique) coarsest
refinement (X,B, µ) that is complete, consisting of sets that differ from a B-
measurable set by a B-subnull set.

• The completion of the Borel measure space (Rd,B[Rd],m) is the Lebesgue measure
space (Rd,L[Rd],m).

Remark: Recall that a function is continuous if the preimage of every open set is
open. In a similar spirit, in view of Lemma 2.2, we can now generalize the notion
of a Lebesgue measurable function.

Definition: Let (X,B) be a measurable space and let f : X → [0,∞] (or f : X → C)
be an unsigned or complex-valued function. We say that f is measurable if f−1(U)
is B-measurable for every open subset U of [0,∞] (or C).

Problem 3.8: (Characterization of measurable functions)
Let (X,B) be a measurable space. Show that

(i) a function f : X → [0,∞] is measurable iff the level sets {x ∈ X : f(x) > λ}
are measurable for every λ ∈ [0,∞);

(ii) an indicator function 1S of a set S ⊂ X is measurable iff S is measurable;

(iii) a function f : X → [0,∞] (or f : X → C) is measurable iff f−1(S) is measurable
for every Borel-measurable subset S of [0,∞] (or C);

(iv) a function f : X → C is measurable iff its real and imaginary parts are measur-
able;
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(v) a function f : X → R is measurable iff its positive and negative parts are
measurable;

(vi) the pointwise limit f of a sequence of measurable functions fn : X → [0,∞] (or
C) is also measurable;

(vii) if f : X → [0,∞] (or C) is measurable and φ : [0,∞] → [0,∞] (or C → C) is
continuous, then φ ◦ f is measurable;

(viii) the sum or product of two measurable functions in [0,∞] (or C) is measurable.

Remark: The following is an abstract version of Egorov’s theorem:

Theorem 3.1 (Egorov’s theorem): Let (X,B, µ) be a finite measure space (µ(X) <
∞) and let fn : X → C be a sequence of measurable functions that converge point-
wise almost everywhere to f : X → C. Given ε > 0, there exists a B-measurable
set S of measure at most ε such that fn converges uniformly to f outside of S.

Remark: Recall that the atomic algebra A({Aa : α ∈ I}) is the collection of all
subsets of X that can be represented as the union of one more disjoint atoms Aα.

Problem 3.9: Let (X,B) be an atomic measurable space: B = A({Aa : α ∈ I}) for
some partition

⋃
α∈I Aα of X into disjoint nonempty atoms. Show that a function

f : X → [0,∞] or f : X → C is measurable iff it is constant on each atom:

f =
∑
α∈I

cα1Aα

for some constants cα in [0,∞] or in C, as appropriate. Furthermore, cα are uniquely
determined by f .

“⇐” A linear combination of indicator functions of measurable sets is measurable.

“⇒” Since f−1((0, λ)) and f−1((λ,∞)) are measurable sets for each constant λ ∈ [0,∞],

so is f−1(λ) = f−1([λ,∞] ∩ [0, λ]). Let A be any nonempty atom of X and choose x ∈ A.

Then since f−1(f(x)) is a measurable set containing x, and the smallest such measurable

set is A, we see that A ⊂ f−1(f(x)). That is, f is constant on each atom.

Definition: Let (X,B, µ) be a measure space, with B finite (and hence atomic). Let
B = A({Aa : α ∈ I}) for some partition

⋃
α∈I Aα of X into disjoint nonempty

atoms. If f : X → [0,∞] is measurable, it has a unique representation of the form

f =
n∑
k=1

ck1Ak

for some constants ck in [0,∞]. We then define the simple integral

Simp

∫
X

f dµ
.
=

n∑
k=1

ckµ(Ak).
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Remark: The measurable function f in the above definition only takes on a finite
number of values.

Remark: The precise decomposition of B into atoms does not affect the value of the
simple integral.

Remark: Having defined the simple integral of unsigned measurable functions when
only a finite number of subsets of X are measurable, we can also construct the
simple integral of real-valued and complex-valued functions, as we did for Lebesgue
measurable functions.

Remark: We immediately obtain the monotonicity property f ≤ g implies Simp
∫
f dµ ≤

Simp
∫
g dµ, as well as linearity:

Simp

∫
X

(f + g) dµ = Simp

∫
X

f dµ+ Simp

∫
X

g dµ

and

Simp

∫
X

cf dµ = c Simp

∫
X

f dµ

for measurable functions f and g, with c ∈ [0,∞].

Remark: Let (X,B, µ) be a measure space and (X,B′, µ′) be a coarsening of (X,B, µ),
in the sense that B contains B′ and µ′ agrees with µ on B′. If B′ is finite, and
f : X → [0,∞] is B′-measurable, then

Simp

∫
X

f dµ = Simp

∫
X

f dµ′

This observation provides a means of extending the simple integral to general mea-
sure spaces (X,B).

Definition: An unsigned simple function f : X → [0,∞] on a measurable space
(X,B) is a measurable function that takes on finitely many values a1, . . . , ak.

Remark: Simple functions are automatically measurable with respect to at least
one finite sub-algebra B′ of B, namely the Boolean algebra B′ generated by the
preimages f−1({a1}), . . . , f−1({ak}).
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Definition: If f : X → [0,∞] is an unsigned simple function on a measure space
(X,B, µ) that takes on values a1, . . . , ak, we define

Simp

∫
X

f dµ = Simp

∫
X

f dµ|B′ ,

where µ|B′ is the restriction of µ to the finite Boolean algebra B′ generated by the
preimages f−1({a1}), . . . , f−1({ak}).

Theorem 3.2 (Properties of the simple integral): Let (X,B, µ) be a measure space
and let f, g : X → [0,∞] be simple functions. Then

(i) if f ≤ g pointwise, Simp
∫
X
f dµ ≤ Simp

∫
X
g dµ; monotonicity

(ii) Simp
∫
X

1S dµ = µ(S) for every B-measurable set S; compatibility

(iii) Simp
∫
X
cf dµ = c Simp

∫
X
f dµ for every c ∈ [0,∞]; homogeneity

(iv) Simp
∫
X

(f + g) dµ = Simp
∫
X
f dµ+ Simp

∫
X
g dµ; finite additivity

(v) if (X,B, µ) is a refinement of (X,B, µ), Simp
∫
X
f dµ = Simp

∫
X
f dµ; refinement

(vi) if f(x) = g(x) for µ-almost every x ∈ X, Simp
∫
X
f dµ = Simp

∫
X
g dµ; equivalence

(vii) Simp
∫
X
f dµ <∞ iff f is finite µ-almost everywhere and is supported on a set

of finite µ-measure; finiteness

(viii) Simp
∫
X
f dµ = 0 iff f is zero µ-almost everywhere. vanishing

Definition: Let (X,B, µ) be a measure space and let f : X → [0,∞] be measurable.
The unsigned integral is ∫

X

f dµ
.
= sup

h simple
0≤h≤f

Simp

∫
X

h dµ.

Remark: If X = Rd and f is Lebesgue measurable, this definition reduces to the
unsigned Lebesgue integral:

∫
X
f dm =

∫
Rd f .

Theorem 3.3 (Properties of the unsigned integral): Let (X,B, µ) be a measure space
and let f, g : X → [0,∞] be measurable. Then

(i) If f = g µ-almost everywhere, then
∫
X
f dµ =

∫
X
g dµ; equivalence

(ii) if f ≤ g µ-almost everywhere, then
∫
X
f dµ ≤

∫
X
g dµ; monotonicity
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(iii) for every c ∈ [0,∞], ∫
X

cf dµ = c

∫
X

f dµ;

homogeneity

(iv)
∫
X

(f + g) ≥
∫
X
f +

∫
X
g; superadditivity

(v) if f is simple, then
∫
X
f dµ = Simp

∫
X
f dµ compatibility

(vi) for every λ ∈ (0,∞), Markov’s inequality

µ({x ∈ X : f(x) ≥ λ}) ≤ 1

λ

∫
X

f dµ;

(vii) if
∫
X
f dµ <∞, then f is finite for µ-almost every x; finiteness

(viii) if
∫
X
f dµ = 0, then f is zero for µ-almost every x; vanishing

(ix)

lim
n→∞

∫
X

min(f, n) dµ =

∫
X

f dµ;

vertical truncation

(x) if S1 ⊂ S2 ⊂ . . . is an increasing sequence of B-measurable sets,

lim
n→∞

∫
X

f 1Sn dµ =

∫
X

f 1⋃∞
n=1 Sn

dµ;

horizontal truncation

(xi) If Y is a measurable subset of X, then
∫
X
f 1Y dµ =

∫
Y
f |Y dµ|Y , where f |Y and

µ|Y denote the restriction of f and µ to Y . restriction

Theorem 3.4 (Finite additivity of the unsigned integral): Let (X,B, µ) be a measure
space and let f, g : X → [0,∞] be measurable. Then∫

X

(f + g) dµ =

∫
X

f dµ+

∫
X

g dµ.

Proof: From superadditivity, we only need to establish∫
X

(f + g) dµ ≤
∫
X

f dµ+

∫
X

g dµ.

If µ(X) < ∞ and f and g are bounded, given ε > 0, let fε and f ε be the simple
functions obtained by rounding f down and up, respectively, to the nearest integer
multiple of ε. Then for all x ∈ X,

fε(x) ≤ f(x) ≤ f ε(x)
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and
f ε(x)− fε(x) ≤ ε.

We similarly define gε and gε, so that

f + g ≤ f ε + gε ≤ fε + gε + 2ε.

Hence∫
X

(f + g) dµ ≤ Simp

∫
X

(fε + gε + 2ε) dµ = Simp

∫
X

fε dµ+ Simp

∫
X

gε dµ+ 2εµ(X)

≤
∫
X

f dµ+

∫
X

g dµ+ 2εµ(X).

The desired result follows on letting ε→ 0.
If µ(X) < ∞ but f and g are not necessarily bounded, one can use vertical

truncations to reduce the problem to the above case and then take the limit.
If µ(X) = ∞ but

∫
X
f dµ and

∫
X
g dµ are both finite, we can conclude from

Markov’s inequality that Sn
.
= {x ∈ X : f(x) > 1/n} ∪ {x ∈ X : g(x) > 1/n} has

finite measure for each n ∈ N. The above finite-measure case establishes that∫
X

(f + g) 1Sn dµ =

∫
Sn

(f + g) dµ ≤
∫
Sn

f dµ+

∫
Sn

g dµ =

∫
X

f 1Sn dµ+

∫
X

g 1Sn dµ.

Since Sn are an increasing sequence of measurable sets, we can then apply hori-
zontal truncation:

lim
n→∞

∫
X

(f + g) 1Sn dµ =

∫
X

(f + g) 1⋃∞
n=1 Sn

dµ =

∫
X

(f + g) dµ,

noting that
⋃∞
n=1 Sn is the support of f + g. The desired inequality then follows from

another application of horizontal truncation.
Otherwise, if µ(X) = ∞ and one of

∫
X
f dµ or

∫
X
g dµ is infinite, then by super-

additivity so is
∫
X

(f + g) dµ, from which the desired result follows.

Problem 3.10: (Linearity in µ) Let (X,B, µ) be a measure space and let f : X →
[0,∞] be measurable. Show that

(i)
∫
X
f d(cµ) = c

∫
X
f dµ for every c ∈ [0,∞].

(ii) if µ1, µ2, . . . is a sequence of measures on B,∫
X

f d

(
∞∑
k=1

µk

)
=
∞∑
k=1

∫
X

f dµk
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Problem 3.11 (Sums as integrals): Let X be an arbitrary set, with the discrete
σ-algebra, and # be the counting measure. Show that every unsigned function
f : X → [0,∞] is measurable, with∫

X

f d# =
∑
x∈X

f(x).

Definition: Let (X,B, µ) be a measure space. A measurable function f : X → C is
said to be absolutely integrable if |f |L1(X,B,µ)

.
=
∫
X
|f | dµ <∞.

Definition: The space of absolutely integrable functions on (X,B, µ) is denoted by
L1(X,B, µ) or simply L1(µ).

Definition: If f is real-valued and absolutely integrable, we define∫
X

f dµ
.
=

∫
X

f+ dµ−
∫
X

f− dµ,

where f+
.
= max(f, 0) and f−

.
= max(−f, 0).

Definition: If f is complex-valued and absolutely integrable, we define∫
X

f dµ
.
=

∫
X

Re f dµ+ i

∫
X

Im f dµ.

Theorem 3.5: Let (X,B, µ) be a measure space and f, g ∈ L1(X,B, µ). Then

(i) L1(X,B, µ) is a complex vector space;

(ii) the map f 7→
∫
X
f dµ is a complex-linear map from L1(X,B, µ) to C;

(iii) |f + g|L1(µ)≤ |f |L1(µ)+|g|L1(µ)

(iv) |cf |L1(µ)= |c||f |L1(µ) for every c ∈ C;

(v) if f = g µ-almost everywhere in X, we have
∫
X
f dµ =

∫
X
g dµ;

(vi) if (X,B, µ) is a refinement of (X,B, µ) then f ∈ L1(X,B, µ) and
∫
X
f dµ =∫

X
f dµ;

(vii) |f |L1(µ)= 0 iff f is zero µ-almost everywhere;

(viii) if Y ⊂ X is B-measurable, then fY ∈ L1(Y,B|Y , µ|Y ) and
∫
X
f 1Y dµ =

∫
Y
f |Y dµ|Y .
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Q. Under what conditions can we interchange integrals and limits? That is, given a
sequence of measurable functions fn that converges pointwise µ-almost every-
where to a function f , under what conditions does

lim
n→∞

∫
X

fn dµ =

∫
X

lim
n→∞

fn dµ?

A. There are a number of possible conditions, which we will discuss one at a time.

Theorem 3.6 (Uniform convergence on finite spaces): Suppose that (X,B, µ) is a
finite measure space (µ(X) < ∞) and fn : X → [0,∞] (or C) is a sequence
of measurable (or absolutely integrable) functions that converges uniformly to a
limit f . Then

∫
X
fn dµ converges to

∫
X
f dµ.

Remark: If we relax the finite measure or uniformity conditions, it is easy to con-
struct examples in which the interchange of limit processes is invalid:

• In (R,L[R],m), consider that fn
.
= 1[n,n+1] converges pointwise to 0 but

∫
R fn = 1

does not converge to
∫
R f = 0. We say that the “mass” of the functions fn “escapes

to horizontal infinity.”

• In (R,L[R],m), consider that fn
.
= 1

n
1[0,n] converges uniformly to 0 but

∫
R fn = 1

does not converge to
∫
R f = 0. We say that the mass of the functions fn “escapes

to width infinity.”

• In (R,L[R],m), consider that fn
.
= n1[ 1

n
, 2
n

] converges pointwise to 0 but
∫
R fn = 1

does not converge to
∫
R f = 0. We say that the mass of the functions fn “escapes

to vertical infinity.”

Remark: One way to prevent these three avenues of escape to infinity is to enforce
monotonicity; this prevents each function fn from “abandoning” the location where
the mass of its predecessors was concentrated.

Theorem 3.7 (Monotone convergence theorem): Let (X,B, µ) be a measure space
and f1 ≤ f2 ≤ . . . be an increasing sequence of unsigned measurable functions
on X. Then ∫

X

lim
n→∞

fn dµ = lim
n→∞

∫
X

fn dµ.
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Proof: Let f
.
= lim

n→∞
fn, which by Problem 3.8 (vi) is measurable. Let g ≤ f be

any simple unsigned function. By applying vertical truncation, we can assume that g
is finite everywhere, so that g =

∑m
k=1 ck1Ak for some numbers c1, . . . , cm ∈ [0,∞)

and disjoint B-measurable sets A1, . . . , Am. Thus∫
X

g dµ =
m∑
k=1

ckµ(Ak).

For each x ∈ Ak we know

sup
n
fn(x) = f(x) ≥ g(x) = ck.

Let ε ∈ (0, 1). Since the sets

Ak,n
.
= {x ∈ Ak : fn(x) > (1− ε)ck}

increase in n to Ak and are measurable, we know from upwards monotonicity that

lim
n→∞

µ(Ak,n) = µ(Ak).

Moreover, on integrating the inequality

fn > (1− ε)
m∑
k=1

ck1Ak,n ,

we find ∫
X

fn dµ ≥ (1− ε)
m∑
k=1

ckµ(Ak,n),

On taking the limit as n→∞, we find

lim
n→∞

∫
X

fn dµ ≥ (1− ε)
m∑
k=1

ckµ(Ak) = (1− ε)
∫
X

g dµ,

Since ε ∈ (0, 1) is arbitrary, it follows that

lim
n→∞

∫
X

fn dµ ≥
∫
X

g dµ.

On taking the supremum over all simple functions g ≤ f , we find

lim
n→∞

∫
X

fn dµ ≥
∫
X

f dµ.

Since the reverse inequality holds by monotonicity:

lim
n→∞

∫
X

fn dµ ≤
∫
X

f dµ,

we arrive at the desired result.
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Corollary 3.7.1 (Tonelli’s theorem for sums and integrals): Let (X,B, µ) be a mea-
sure space and f1, f2, . . . be a sequence of unsigned measurable functions on X.
Then ∫

X

∞∑
k=1

fk dµ =
∞∑
k=1

∫
X

fk dµ.

Proof: Apply Theorem 3.7 to the partial sums
∑n

k=1 fk.

Corollary 3.7.2 (Borel–Cantelli lemma): Let (X,B, µ) be a measure space and
S1, S2, . . . be a sequence of B-measurable sets such that

∑∞
k=1 µ(Sk) < ∞. Then

for µ-almost every x ∈ X the set {k ∈ N : x ∈ Sk} is finite.

Proof: Apply Tonelli’s theorem to 1Sk .

Remark: When one does not have monotonicity, Fatou’s lemma at least provides an
inequality:

Corollary 3.7.3 (Fatou’s lemma): Let (X,B, µ) be a measure space and f1, f2, . . .
be a sequence of unsigned measurable functions on X. Then∫

X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ.

Proof: By definition,
lim inf
n→∞

fn = lim
n→∞

Fn,

where Fn = inf
k≥n

fk. Monotonicity implies that
∫
X
Fn dµ ≤

∫
X
fk dµ for all k ≥ n;

hence, ∫
X

Fn dµ ≤ inf
k≥n

∫
X

fk dµ.

Since {Fn}∞n=1 is an increasing sequence of measurable functions, we know by Theo-
rem 3.7 that∫

X

lim
n→∞

Fn dµ = lim
n→∞

∫
X

Fn dµ ≤ lim
n→∞

inf
k≥n

∫
X

fk dµ = lim inf
n→∞

∫
X

fn dµ.

Remark: Fatou’s lemma tells us that while the “mass”
∫
X
fn dµ can be destroyed

in taking pointwise limits, as we saw in the three escapes to infinity, it cannot be
created.

Definition: Let (X,B, µ) be a measure space and (Y, C) be a measurable space. A
measurable morphism is a function φ : X → Y such that φ−1(S) is B-measurable
for every C-measurable set S.
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Remark: Let (X,B, µ) be a measure space, (Y, C) be a measurable space, and φ be
a measurable morphism from X to Y . The pushforward φ∗µ(S)

.
= µ(φ−1(S)) is a

measure on C, so that (Y, C, φ∗µ) is a measure space.

• If T : Rd → Rd is an invertible linear transformation, then T∗m = 1
|detT |m.

Corollary 3.7.4 (Change of variables): Let (X,B, µ) be a measure space, and φ be
a measurable morphism from X to Y . If f : Y → [0,∞] is measurable, then∫

Y

f dφ∗µ =

∫
X

f ◦ φ dµ.

Remark: Another important way to avoid loss of mass in taking pointwise limits is
to dominate all of the functions by an absolutely integrable one.

Theorem 3.8 (Dominated convergence theorem): Let (X,B, µ) be a measure space
and f1, f2, . . . be a sequence of complex-valued measurable functions on X that con-
verge pointwise µ-almost everywhere on X. Suppose that there exists an unsigned
absolutely integrable function G : X → [0,∞] such that for each n ∈ N, |fn|≤ G
µ-almost everwhere. Then∫

X

lim
n→∞

fn dµ = lim
n→∞

∫
X

fn dµ.

Proof: Without loss of generality, by considering real and imaginary parts, we may
assume that the functions fn are real and modify them on null sets so that µ-almost
“everywhere” becomes “everywhere”. Then −G ≤ fn ≤ G. Let f

.
= lim

n→∞
fn.

On applying Fatou’s lemma to fn +G and G− fn, we find∫
X

(f +G) dµ ≤ lim inf
n→∞

∫
X

(fn +G) dµ

and ∫
X

(G− f) dµ ≤ lim inf
n→∞

∫
X

(G− fn) dµ.

Since G is absolutely integrable, we may subtract the finite quantity
∫
X
Gdµ from

both sides of these equations to obtain

lim sup
n→∞

∫
X

fn dµ ≤
∫
X

f dµ ≤ lim inf
n→∞

∫
X

fn dµ.

The desired result then follows from the fact that lim inf
n→∞

∫
X

fn dµ ≤ lim sup
n→∞

∫
X

fn dµ.
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Modes of Convergence

Definition: A sequence of functions fn : X → C converges pointwise almost ev-
erywhere to f : X → C if for every ε > 0 and almost every x ∈ X there exists
N = N(ε, x) such that |fn(x)− f(x)|< ε whenever n ≥ N .

Definition: A sequence of functions fn : X → C converges uniformly almost every-
where (or in L∞ norm) to f : X → C if for every ε > 0 there exists N = N(ε) such
that |fn(x)− f(x)|< ε for almost every x ∈ X whenever n ≥ N .

Definition: A sequence of functions fn : X → C converges almost uniformly to
f : X → C if for every ε > 0 there exists an exceptional set Eε of measure less
than ε such that fn converges uniformly to f on X \ Eε.

Definition: A sequence of functions fn : X → C converges in the L1 norm if |fn−f |L1

converges to 0 as n→∞.

Definition: A sequence of functions fn : X → C converges in measure µ if for every
ε > 0, the measures µ({x ∈ X : |fn(x)− f(x)|≥ ε}) converge to 0 as n→∞.

• In (Rd,L[Rd],m), we see that fn
.
= 1[n,n+1] converges pointwise to 0 but not uni-

formly, in the L∞ or L1 norms, almost uniformly, or in measure.

• In (Rd,L[Rd],m), we see that fn
.
= 1

n
1[0,n] converges uniformly to 0 (and hence

pointwise, in the L∞ norm, almost uniformly, and in measure) but not in the L1

norm.

• In (Rd,L[Rd],m), we see that fn
.
= n1[ 1

n
, 2
n

] converges to 0 pointwise and almost

uniformly (and hence in measure), but not uniformly or in the L∞ or L1 norms.

67



68 CHAPTER 4. MODES OF CONVERGENCE

• In (Rd,L[Rd],m), the typewriter sequence

fn = 1
[n−2k

2k
,n−2k+1

2k
]

for k ≥ 0 and n ∈ [2k, 2k+1 − 1]

converges to zero in measure and in the L1 norm, but not pointwise almost every-
where, almost uniformly, or in the L∞ norm.

Remark: The L∞ norm |f |L∞ of a measurable function is the infimum of all M ∈
[0,∞] such that |f |≤M for almost all x.

Remark: The five modes of convergence are all compatible in the sense that, outside
of a set of measure zero, they never disagree about which function a sequence of
functions converges to.

Remark: If a sequence of absolutely integrable functions fn converges to f in the L1

norm, the triangle inequality implies that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Definition: We say that a sequence fn : X → C is dominated if there exists an
absolutely integrable function g : X → [0,∞] such that |fn(x)|≤ g(x) for all n and
almost every x ∈ X.

Problem 4.1: If a dominated sequence of measurable functions fn : X → C converges
pointwise almost everywhere, use the dominated convergence theorem to show that
it converges in the L1 norm.

Definition: A sequence fn : X → C of absolutely integrable functions is said to be
uniformly integrable if the following three statements all hold:

(i) Uniform bound on L1 norm: sup
n
|fn|L1<∞.

(ii) No escape to vertical infinity: sup
n

∫
|fn|≥M

|fn| dµ→ 0 as M →∞.

(iii) No escape to width infinity: sup
n

∫
|fn|≤δ

|fn| dµ→ 0 as δ → 0.

Remark: Given an absolutely integrable function f , we can apply the monotone
convergence theorem to |f |1B1/n[0] and |f |1Bn[0] for n = 1, 2, . . . to conclude that
the constant sequence of functions f is uniformly integrable.

Theorem 4.1 (Uniformly integrable convergence in measure): Let fn : X → C be a
uniformly integrable sequence of functions, and let f : X → C be another function.
Then fn converges in L1 norm iff fn converges to f in measure.

Proof: See Tao, Theorem 1.5.13.
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Differentiation Theorems

Definition: Let [a, b] be a compact interval of positive length. A function F : [a, b]→
R is almost-everywhere differentiable if the limit

F ′(x)
.
= lim

y→x
y∈[a,b]\{x}

F (y)− F (x)

y − x

exists for almost all x ∈ [a, b].

Problem 5.1: Provide an example that illustrates that an almost-everywhere differ-
entiable function need not be continuous everywhere.

Problem 5.2: If F : [a, b] → R is almost-everywhere differentiable, show that F is
continuous almost everywhere.

Problem 5.3: If F : [a, b] → R is almost-everywhere differentiable, show that (the
almost-everywhere defined derivative) F ′ is measurable.
Hint: F ′(x) = lim

n→∞
n(F (x+ 1/n)− F (x)).

Definition: If F is differentiable and its derivative F ′ is continuous, we say that F
is continuously differentiable.

Problem 5.4: Let f : R → C be an absolutely integrable function. Show that the
indefinite integral F (x)

.
=
∫

[−∞,x]
f(t) dt is a continuous function on R.

Remark: In order to extend the fundamental theorem of calculus to the Lebesgue
integral, we first need to establish some preliminary results.

Lemma 5.1 (Rising sun lemma): Let F be a real-valued continuous function on [a, b]
and S = {x ∈ [a, b] : F (x) < F (y) for some y ∈ (x, b]}. Define U = S ∩ (a, b).
Then U is open and may be written as a countable union of disjoint intervals

U =
⋃
k

(ak, bk) such that F (ak) = F (bk), unless ak = a ∈ S for some k, in which

case F (a) < F (bk) for that one k. Furthermore, if x ∈ (ak, bk), then F (x) < F (bk).
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Remark: Imagine the graph of the function F as a hilly landscape, with the sun
shining horizontally from the right (rising from the east). The set U consist of
those points that are in shadow.

Proof:
Claim: If [c, d) ⊂ S, with d /∈ S, then F (c) < F (d). Otherwise, suppose F (c) ≥

F (d). Then F achieves its maximum on [c, d] at some point x < d. Since x ∈ S, we
know that F (x) < F (y) for some y ∈ (x, b]. But F (x) < F (y) implies that y /∈ [c, d].
Hence y ∈ (d, b] and F (d) ≤ F (x) < F (y), contradicting d /∈ S. The claim thus holds.

Since F is continuous, U is open and can be expressed as a countable union of
disjoint intervals (ak, bk).

Since each bk /∈ S, the claim establishes that x ∈ (ak, bk)⇒ F (x) < F (bk). Since
F is continuous, F (ak) ≤ F (bk).

If some ak = a ∈ S, the claim tells us that F (a) < F (bk).
Otherwise if a /∈ S, then ak /∈ S and hence F (ak) ≥ F (bk) for all k ∈ N. Thus,

F (ak) = F (bk).

Lemma 5.2 (One-sided Hardy-Littlewood maximal inequality): Let f : R → C be
an absolutely integrable function and let λ > 0. Then

m

({
x ∈ R : sup

h>0

1

h

∫
[x,x+h]

|f(t)| dt ≥ λ

})
≤ 1

λ

∫
R
|f(t)| dt.

Proof: Let [a, b] be any compact interval and define

Sλ
.
=

x ∈ [a, b] : sup
h>0

[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt > λ

 .

We first establish for any ε ∈ (0, λ) that

m(Sλ−ε) ≤
1

λ− ε

∫
R
|f(t)| dt.

For x ∈ [a, b], consider the continuous function

F (x) =

∫
[a,x]

|f(t)| dt− x(λ− ε)

and note that the inequality 1
h

∫
[x,x+h]

|f(t)| dt > λ− ε reduces to F (x+ h) > F (x).

On applying the rising sun lemma to F , we see that there exists a countable
sequence of disjoint intervals {(ak, bk)}∞k=1 such that

Sλ−ε ⊂
∞⋃
k=1

(ak, bk) ∪ {a} ∪ {b}.
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By countable additivity and monotonicity, we then find that

m(Sλ−ε) ≤
∞∑
k=1

(bk − ak).

The rising sun lemma also tells us that

0 ≤ F (bk)− F (ak) =

∫
[ak,bk]

|f(t)| dt− (bk − ak)(λ− ε),

so

m(Sλ−ε) ≤
∞∑
k=1

(bk − ak) ≤
1

λ− ε

∞∑
k=1

∫
[ak,bk]

|f(t)| dt ≤ 1

λ− ε

∫
[a,b]

|f(t)| dt,

where we have exploited additivity and monotonicity.
Finally, sincex ∈ [a, b] : sup

h>0
[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt ≥ λ

 ⊂ Sλ−ε,

the desired result follows on letting ε→ 0 and then applying upward monotonicity.

Theorem 5.1 (Lebesgue differentiation theorem on R): Let f : R → C be an abso-
lutely integrable function. Then

lim
h→0+

1

h

∫
[x,x+h]

f(t) dt = f(x)

and

lim
h→0+

1

h

∫
[x−h,x]

f(t) dt = f(x)

for almost every x ∈ R.

Proof: Let ε > 0. By Littlewood’s second principle, there exists a continuous,
compactly supported function g : R→ C such that∫

R
|f(t)− g(t)| dt ≤ ε.

Since g is continuous, we know from the fundamental theorem of calculus that

lim
h→0+

1

h

∫
[x,x+h]

g(t) dt = g(x).
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Let n ∈ N. For sufficiently small h > 0,∣∣∣∣1h
∫

[x,x+h]

g(t) dt− g(x)

∣∣∣∣ < 1

n
.

From the Hardy-Littlewood maximal inequality we know that

m

({
x ∈ R : sup

h>0

1

h

∫
[x,x+h]

|f(t)− g(t)| dt ≥ 1

n

})
≤ nε.

Likewise, Markov’s inequality implies that

m

({
x ∈ R : |f(x)− g(x)|≥ 1

n

})
≤ nε.

By subadditivity, the measure of the union of the sets on the left-hand sides of the
above two inequalities is at most 2nε. For x outside of this union and all h > 0,

1

h

∫
[x,x+h]

|f(t)− g(t)| dt < 1

n
and |f(x)− g(x)|< 1

n
.

For such x, we then deduce from the triangle inequality that

lim sup
h→0+

∣∣∣∣1h
∫

[x,x+h]

f(t) dt− f(x)

∣∣∣∣ < 3

n
.

On taking the limits as ε→ 0 and then n→∞, we see for almost all real x that

lim sup
h→0+

∣∣∣∣1h
∫

[x,x+h]

f(t) dt− f(x)

∣∣∣∣ = 0.

Since the corresponding limit inferior is non-negative, the first statement in the the-
orem then follows. The second statement follows on applying the first statement to
the reflected function x 7→ f(−x).

Corollary 5.1.1: Let f : R → C be an absolutely integrable function, and let
F : R → C be the indefinite integral F (x)

.
=
∫

[−∞,x]
f(t) dt. Then F is continuous

and almost everywhere differentiable, with F ′(x) = f(x) for almost every x ∈ R.

Remark: The Lebesgue differentiation theorem has an analogue in higher dimen-
sions.
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Definition: Let f : Rd → C be an absolutely integrable function. A point x where

lim
r→0

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)| dy = 0

is known as a Lebesgue point .

Theorem 5.2 (Lebesgue differentiation theorem on Rd): Let f : Rd → C be an
absolutely integrable function. Then almost every x ∈ Rd is a Lebesgue point for f .

Proof: See Tao, Theorem 1.6.19.

Corollary 5.2.1: Let f : Rd → C be an absolutely integrable function. Then

lim
r→0

1

m(Br(x))

∫
Br(x)

f(y) dy = f(x)

for almost every x ∈ Rd.

Proof: Apply the triangle inequality to Theorem 5.2.

Theorem 5.3 (Monotone differentiation theorem): Every monotone function f :
R→ R is differentiable almost everywhere.

Proof: See Tao, Theorem 1.6.25.

Problem 5.5 (Cantor function): Define the functions F0, F1, F2, . . . : [0, 1] → R
recursively: let F0(x)

.
= x for x ∈ [0, 1] and for n ∈ N define

Fn(x)
.
=


1
2
Fn−1(3x) if x ∈

[
0, 1

3

]
;

1
2

if x ∈
(

1
3
, 2

3

)
;

1
2

+ 1
2
Fn−1(3x− 2) if x ∈

[
2
3
, 1
]
.

(i) Graph F0, F1, F2, and F3 on a single graph.

(ii) Using induction, show for each n = 0, 1, . . . that Fn is a continuous monotone
increasing function with Fn(0) = 0 and Fn(1) = 1.

(iii) Show for each n = 0, 1, . . . and x ∈ [0, 1] that |Fn+1(x)−Fn(x)|≤ 2−n. Conclude
that {Fn}∞n=1 converges uniformly to a limit F : [0; 1] → R. The limit F (x),
known as the Cantor function, expresses the fraction of the “mass” of the Cantor
set in [0, x].

(iv) Show that the Cantor function F is continuous and monotone increasing, with
F (0) = 0 and F (1) = 1.
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(v) Show that if x ∈ [0, 1] lies outside the Cantor set C, then F is constant in a
neighbourhood of x, so that F ′(x) = 0. Conclude that

∫
[0,1]

F ′(x) dx = 0 6= 1 =

F (1)− F (0) and hence the fundamental theorem of calculus fails.

(vi) Show that F
(∑∞

k=1 ak3
−k) =

∑∞
k=1

ak
2

2−k for any digits a1, a2, . . . ∈ {0, 2}.

(vii) Let In = [
∑n

k=1 ak3
−k, 3−n +

∑n
k=1 ak3

−k] for n ≥ 0 and a1, . . . , an ∈ {0, 2}.
Show that In is an interval of length 3−n, but F (In) is an interval of length 2−n.

(viii) Show that F is not differentiable at any element of the Cantor set C.

Definition: The total variation of a function F : R → R on an (finite or infinite)
interval I is

|F |TV(I)
.
= sup

x0<...<xn
x0,...,xn∈I

n∑
i=1

|F (xi)− F (xi−1)|.

If |F |TV(I) is finite, we say that F has bounded variation on I. If F has bounded
variation on R, we say that F has bounded variation.

Problem 5.6: If F : R→ R is a monotone function, show that |F |TV([a,b])= |F (b)−
F (a)| for any interval [a, b]. Conclude that F has bounded variation on R iff it is
bounded.

Problem 5.7: For any functions F,G : R→ R and c ∈ R, show that |F +G|TV(R)≤
|F |TV(R)+|G|TV(R) and |cF |TV(R)= |c||F |TV(R).

Problem 5.8: If F : R → R is a function, show that |F |TV([a,b])+|F |TV([b,c])=
|F |TV([a,c]) whenever a ≤ b ≤ c.

Theorem 5.4: A function F : R → R has bounded variation iff it is the difference
of two bounded monotone functions.

Proof: “⇐” This follows from Prob 5.6 and 5.7.
“⇒” Define the positive variation of F to be the bounded increasing function

F+(x)
.
= sup

x0<...<xn≤x

n∑
i=1

max(F (xi)− F (xi−1), 0).

We claim that F+ − F is monotone increasing: for b ≥ a,

F+(b) ≥ F+(a) + F (b)− F (a)
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If F (b) − F (a) < 0, this follows from the monotonicity of F+. Otherwise, if F (b) −
F (a) ≥ 0, one can include a and b in any sequence x0 < . . . < xn ≤ a, which will
increase

sup
x0<...<xn

n∑
i=1

max(F (xi)− F (xi−1), 0)

by at least F (b)−F (a), thereby establishing the claim. The result then follows from
the observation that F = F+ − (F+ − F ).

Corollary 5.4.1 (BV differentiation theorem): A function of bounded variation is
differentiable almost everywhere.

Problem 5.9:

(i) Show that every function F : R→ R of bounded variation is bounded and that
lim
x→∞

F (x) and lim
x→−∞

F (x) exist.

(ii) Provide a counterexample of a bounded, continuous function F with bounded
support that does not have bounded variation.

Definition: A function f : R → R is locally of bounded variation if it has bounded
variation on every compact interval of R.

Remark: A function that is locally of bounded variation is differentiable almost
everywhere.

Definition: A function f : R→ R is said to be Lipschitz continuous if there exists a
positive constant C such that |f(x)−f(y)|≤ C|x−y| for all x, y ∈ R. The smallest
C with this property is known as the Lipschitz constant of f .

Theorem 5.5 (1D Lipschitz differentiation theorem): Every Lipschitz continuous
function is locally of bounded variation, and hence differentiable almost everywhere.
Furthermore, its derivative, when it exists, is bounded by its Lipschitz constant.

Problem 5.10: Show that every convex function f : R→ R is continuous and almost
everywhere differentiable, with derivative almost everywhere equal to an increasing
function.

Recall that the convexity condition can be re-expressed in terms of the slope of a secant:

f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
≤ f(b)− f(x)

b− x
∀x ∈ (a, b), ∀a 6= b ∈ R.
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Applying this criterion repeatedly, we see for all real numbers A < a < x < y < b < B that

f(a)− f(A)

a−A
≤ f(y)− f(x)

y − x
≤ f(B)− f(b)

B − b
.

On letting

C = max

(∣∣∣∣f(a)− f(A)

a−A

∣∣∣∣ , ∣∣∣∣f(B)− f(b)

B − b

∣∣∣∣),
we thus see that f is locally Lipschitz, and therefore continuous, on every compact interval
[a, b] ⊂ R:

|f(x)− f(y)|≤ C|x− y| ∀x, y ∈ [a, b].

Moreover, f is locally of bounded variation and hence differentiable almost everywhere.
Let

m(x) =
f(x)− f(a)

x− a
(x 6= a), M(x) =

f(b)− f(x)

b− x
(x 6= b).

From convexity, we know that

m(x) ≤ m(b) = M(a) ≤M(x)

whenever a < x < b. At points a and b where f is differentiable we then see that

f ′(a) = lim
x→a

m(x) ≤ m(b) = M(a) ≤ lim
x→b

M(x) = f ′(b).

Theorem 5.6 (Upper bound for fundamental theorem): Let F : [a, b] → R be in-
creasing, so that the unsigned function F ′ : [a, b]→ [0,∞] exists almost everywhere
and is measurable. Then ∫

[a,b]

F ′ ≤ F (b)− F (a).

Proof: Extend F to R by defining F (x) = F (a) for x < a and F (x) = F (b) for
x > b, so that F is a bounded monotone function on R such that F ′ vanishes outside
of [a, b]. As F is almost everywhere differentiable, the sequence of functions

fn(x)
.
=
F (x+ 1/n)− F (x)

1/n

converges pointwise almost everywhere to F ′. Apply Fatou’s lemma to conclude that∫
[a,b]

F ′(x) dx ≤ lim inf
n→∞

∫
[a,b]

fn dx = lim inf
n→∞

n

∫
[a,b]

[
F

(
x+

1

n

)
− F (x)

]
dx

= lim inf
n→∞

n

[∫
[a+1/n,b+1/n]

F (x) dx−
∫

[a,b]

F (x) dx

]
= lim inf

n→∞
n

[∫
[b,b+1/n]

F (x) dx−
∫

[a,a+1/n]

F (x) dx

]
≤ lim inf

n→∞
n

[
F (b)

∫
[b,b+1/n]

dx− F (a)

∫
[a,a+1/n]

dx

]
= F (b)− F (a).
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Remark: In Theorem 5.6 we note that F ′ is absolutely integrable. This implies that
every function of bounded variation has an almost-everywhere defined derivative
that is absolutely integrable.

Problem 5.11: Prove that the product of two Lipschitz continuous functions is itself
Lipschitz continuous.

Problem 5.12 (Integration by parts): Let F,G : [a, b]→ R be Lipschitz continuous
functions. Show that∫

[a,b]

F ′G = F (b)G(b)− F (a)G(a)−
∫

[a,b]

FG′

Definition: A function F : R → R is said to be absolutely continuous if for every
ε > 0 there exists a δ > 0 such that

∑n
k=1|F (bk) − F (ak)|< ε for every finite

collection of disjoint intervals (a1, b1) . . . (an, bn) of total length
∑n

k=1(bk − ak) < δ.

• The function x →
√
x is absolutely continuous, but not Lipschitz continuous, on

the interval [0, 1].

• The Cantor function is continuous, monotone, and uniformly continuous, but not
absolutely continuous, on [0, 1].

Problem 5.13: Show that

(i) every absolutely continuous function is uniformly continuous (and therefore con-
tinuous);

(ii) every absolutely continuous function is of bounded variation (and hence differ-
entiable almost everywhere) on every compact interval [a, b] (hint: first show
this is true for every sufficiently small interval);

(iii) every Lipschitz continuous function is absolutely continuous;

(iv) if f : R→ R is absolutely integrable, the indefinite integral F (x)
.
=
∫

[−∞,x]
f(y) dy

is absolutely continuous and differentiable almost everywhere, with F ′(x) = f(x)
for almost every x;

(v) the sum and product of two absolutely continuous functions on an interval [a, b]
are absolutely continuous (what happens if we replace [a, b] by R)?
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Problem 5.14: (1D Besicovitch covering lemma)
Let I1, . . . , In be a finite collection of open intervals in R (not necessarily disjoint).
Show that there exist a subcollection I ′1, . . . , I

′
m of intervals such that

⋃n
i=1 Ii =⋃m

j=1 I
′
j and every point of R is contained in at most two of the intervals I ′j. Hint:

First refine the collection of intervals so that no interval Ii is contained in the union
of the other intervals. Then show that it is no longer possible for a point to be
contained in three of the intervals.

Problem 5.15: (Cousin’s theorem)
Given any (so-called gauge) function δ : [a, b]→ (0,∞) on a compact interval [a, b]
of positive length, show that there exists a partition a = t0 < . . . < tn = b of
[a, b], where n ∈ N, and real numbers t∗k ∈ [tk−1, tk] for each k = 1, . . . , n such that
tk − tk−1 ≤ δ(t∗k). Hint: use the Heine–Borel theorem and the Besicovitch covering
lemma.

Theorem 5.7 (Fundamental theorem for absolutely continuous functions): Let F :
[a, b]→ R be absolutely continuous. Then∫

[a,b]

F ′ = F (b)− F (a).

Proof: Let ε > 0. Since F is absolutely continuous, there exists N1 ∈ N such that∑n
k=1|F (bk)−F (ak)|< ε for every finite collection of disjoint intervals (a1, b1) . . . (an, bn)

of total length
∑n

k=1(bk − ak) < 1/N1.
We know that the absolutely continuous function F is of bounded variation and

therefore has an almost-everywhere defined derivative F ′ that is absolutely integrable.
Let E ⊂ [a, b] be the null set consisting of points that are not Lebesgue points of F ′,

together with the endpoints a and b and those points where F is not differentiable.
By outer regularity, for each n ∈ N, there exists an open set Un containing E with
measure m(Un) < 1/n. Consider the decreasing sequence of open sets Vn = ∩nk=1Uk
and note that monotonicity implies m(Vn) < 1/n.

Since ∫
[a,b]\Vn

|F ′|+
∫
Vn

|F ′|=
∫

[a,b]

|F ′|<∞,

the monotone convergence theorem implies

lim
n→∞

∫
Vn

|F ′|= 0.

In particular, there exists N2 ∈ N such that
∫
Vn
|F ′|< ε whenever n ≥ N2.

Let N = max(N1, N2) and define a gauge function δ : [a, b]→ (0,∞):

• if x ∈ E, we choose δ(x) small enough so that (x− δ(x), x + δ(x)) is contained in
the open set VN ;
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• if x /∈ E, then F is diffentiable at x and x is a Lebesgue point of F ′, so we can
choose δ(x) small enough such that |y − x|< δ(x) implies

|F (y)− F (x)− (y − x)F ′(x)|≤ ε|y − x|

and ∣∣∣∣ 1

|I|

∫
I

F ′(y) dy − F ′(x)

∣∣∣∣ < ε

whenever I is an interval of length at most δ(x) containing x.

Using this gauge, according to Cousin’s theorem, we can find a partition a =
t0 < . . . < tn = b of [a, b], where n ∈ N, and real numbers t∗k ∈ [tk−1, tk] for each
k = 1, . . . , n such that tk − tk−1 ≤ δ(t∗k). For those k such that t∗k ∈ E, we note from
the choice of δ(x) that the disjoint intervals (tk−1, tk) are each contained in VN , with∑

k:t∗k∈E

(tk − tk−1) ≤ m(VN) <
1

N
≤ 1

N1

.

Then ∑
k:t∗k∈E

|F (tk)− F (tk−1)| < ε.

We can express this statement with the O notation:∑
k:t∗k∈E

[F (tk)− F (tk−1)] = O(ε).

For those k such that t∗k /∈ E, we have

F (tk)− F (t∗k) = (tk − t∗k)F ′(t∗k) +O(ε(tk − t∗k))

and
F (t∗k)− F (tk−1) = (t∗k − tk−1)F ′(t∗k) +O(ε(t∗k − tk−1)),

so that
F (tk)− F (tk−1) = (tk − tk−1)F ′(t∗k) +O(ε(tk − tk−1)).

We also know that∫
[tk−1,tk]

F ′ = (tk − tk−1)F ′(t∗k) +O(ε(tk − tk−1)).

On combining these two results, we find

F (tk)− F (tk−1) =

∫
[tk−1,tk]

F ′ +O(ε(tk − tk−1)).
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Let S ⊂ [a, b] be the union of all [tk−1, tk] such that t∗k /∈ E. Then∑
k:t∗k /∈E

[F (tk)− F (tk−1)] =

∫
S

F ′ +O(ε|b− a|).

Since S contains [a, b] \ VN and
∫
Vn
|F ′|< ε, we see that∫

S

F ′ =

∫
[a,b]

F ′ +O(ε).

Together, these observations give us an expression for the telescoping sum

F (b)− F (a) =
n∑
k=1

[F (tk)− F (tk−1)] =

∫
[a,b]

F ′ +O(ε) +O(ε|b− a|),

from which the desired result follows.



Chapter 6

Outer Measures, Premeasures, and
Product Measures

Definition: Given a set X, an outer measure is a map µ∗ : P(X) 7→ [0,∞] such that

(i) µ∗(∅) = 0; nullity

(ii) S ⊂ T ⊂ X ⇒ µ∗(S) ≤ µ∗(T ); monotonicity

(iii) µ∗

(
∞⋃
k=1

Sk

)
≤

∞∑
k=1

µ∗(Sk), where Sk ⊂ X.

countable subadditivity

• The Lebesgue outer measure is an outer measure.

• The Jordan outer measure is not actually an outer measure and should more prop-
erly be called Jordan outer content .

Remark: Although outer measures, requiring only countable subadditivity (rather
than countable additivity), are weaker than measures, they provide a measure for
all subsets of X (rather than for just a σ-algebra of measurable sets).

Remark: The concept of an open set, which was used to define the Lebesgue measure,
is not available in an arbitrary space X. For this reason, we restate Lebesgue
measurability in a form that can be generalized to abstract measure spaces:

Definition: Let µ∗ be an outer measure on a set X. A set S ⊂ X is said to be
Carathéodory measurable if the Carathéodory criterion

µ∗(A) = µ∗(A ∩ S) + µ∗(A ∩ Sc)

holds for every set A ⊂ X.

81
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Remark: In Problem 1.18, we showed that a set S ⊂ Rd is Carathéodory measurable
with respect to Lebesgue outer measure if and only if it is Lebesgue measurable.

Definition: A set S is a null set for an outer measure µ∗ if µ∗(S) = 0.

Problem 6.1: Suppose S is a null set for an outer measure µ∗. Show that S is
Carathéodory measurable with respect to µ∗.

Since A ⊂ (A \ S) ∪ S, we see that µ∗(A) ≤ µ∗(A \ S) + µ∗(S) = µ∗(A \ S) ≤ µ∗(A),
noting that A \ S ⊂ A. Also, A ∩ S ⊂ S ⇒ 0 ≤ µ∗(A ∩ S) ≤ µ∗(S) = 0. Hence
µ∗(A ∩ S) + µ∗(A ∩ Sc) = µ∗(A \ S) = µ∗(A).

Remark: If the Lebesgue outer measure m∗ were finitely additive, then

m∗(A ∩ S) +m∗(A ∩ Sc) = m∗((A ∩ S) ∪ (A ∩ Sc)) = m∗(A)

for every set A ⊂ Rd, so that every subset S of Rd would be Lebesgue measurable!
But we have already documented the existence of nonmeasurable sets like the Vitali
set constructed on page 10. So the Lebesgue outer measure is not finitely additive
for arbitrary disjoint sets. In a similar manner, one can construct a nonmeasurable
subset of any set with positive Lebesgue measure.

Problem 6.2: Consider the Cantor function F .

(i) Show that F (Cc) is countable, where Cc denotes the complement of the Cantor
set in [0, 1].

(ii) Show that m(F (C)) = 1.

(iii) Show that G : x 7→ F (x) + x is strictly monotonic and continous on [0, 1], so
that it has a continuous inverse G

−1
.

(iv) Show that m(G(C)) = 1.

(v) Let S be a non-Lebesgue measurable subset of G(C). Is G−1(S) Lebesgue mea-
surable?

(vi) Is G−1(S) in part (v) Borel measurable?

Problem 6.3: Let B be a Boolean algebra on a set X. Show that B is a σ-algebra
iff it is closed under countable disjoint unions.

This follows from the fact that for any countable sequence of sets {Sk}∞k=1 in B, the

disjoint lacunae Sn \
⋃n−1
k=1 Sk are also in B and their union equals

⋃∞
k=1 Sk.
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Theorem 6.1 (Carathéodory lemma): Let µ∗ : P(X)→ [0,∞] be an outer measure
on a set X, let B be the collection of all subsets of X that are Carathéodory mea-
surable with respect to µ∗ and let µ : B → [0,∞] be the restriction of µ∗ to B. Then
B is a σ-algebra and µ is a measure.

Proof: The empty set lies in B and so does the complement of every set in B. Let
S, T ∈ B and A ⊂ X. Decompose A into four disjoint sets:

A00 = A \ (S ∪ T ),

A10 = S ∩ (A \ T ),

A01 = T ∩ (A \ S),

A11 = A ∩ S ∩ T.

The Carathéodory measurability of S establishes that

µ∗(A) = µ∗(A00 ∪ A10 ∪ A11 ∪ A01) = µ∗(A10 ∪ A11) + µ∗(A00 ∪ A01)

and
µ∗(A ∩ (S ∪ T )) = µ∗(A ∩ (S ∪ T ) ∩ S) + µ∗(A ∩ (S ∪ T ) ∩ Sc)

= µ∗(A10 ∪ A11) + µ∗(A01).

The Carathéodory measurability of T guarantees that

µ∗(A \ S) = µ∗(A00 ∪ A01) = µ∗(A01) + µ∗(A00).

It then follows that S ∪ T ∈ B:

µ∗(A) = µ∗(A10 ∪ A11) + µ∗(A01) + µ∗(A00) = µ∗(A ∩ (S ∪ T )) + µ∗(A \ (S ∪ T )).

This establishes that B is a Boolean algebra. To show that B is a σ-algebra, in view
of Problem 6.3, we only need to establish that it is closed under countable disjoint
unions. Let S1, S2, . . . be a sequence of disjoint sets in B and let A ⊂ X. Let

Un
.
=

n⋃
k=1

Sk for n ∈ N ∪ {∞}. For each n ∈ N, we have already shown that Un ∈ B

and hence
µ∗(A) = µ∗(A ∩ Un) + µ∗(A \ Un)

and
µ∗(A ∩ Un+1) = µ∗(A ∩ Un) + µ∗(A ∩ Sn+1),

noting that Un+1 = Un ∪ Sn+1 and using disjointness. By induction and countable
subadditivity, we then see that

lim
n→∞

µ∗(A ∩ Un) =
∞∑
k=1

µ∗(A ∩ Sk) ≥ µ∗(A ∩ U∞). (6.1)
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Moreover, we know from monotonicity that

µ∗(A \ Un) ≥ µ∗(A \ U∞)

for each n ∈ N and hence

lim
n→∞

µ∗(A \ Un) ≥ µ∗(A \ U∞).

On combining these results, we obtain

µ∗(A) ≥ µ∗(A ∩ U∞) + µ∗(A \ U∞).

It follows from subadditivity that U∞ ∈ B.

Finally, on setting A = X in Eq. (6.1), we obtain

lim
n→∞

µ∗(Un) =
∞∑
k=1

µ∗(Sk).

But from monotonicity and subadditivity, we know for each n ∈ N that

µ∗(Un) ≤ µ∗(U∞) ≤
∞∑
k=1

µ∗(Sk).

On taking the limit as n→∞, we see that

µ∗(U∞) =
∞∑
k=1

µ∗(Sk).

That is, the restriction µ of µ∗ to B is in fact a measure.

Q. We have seen that the finitely additive elementary measure can be extended to
the countably additive Lebesgue measure. Given a finitely additive measure µ0

on a Boolean algebra B0, is it always possible to find a σ-algebra B refining B0

and a countably additive measure µ that is the extension of µ0 to B?

A. An obvious necessary condition is that µ0 is countably additive on any countable
sequence of sets whose union happens to belong to B0. We will now see that
this condition is also sufficient.
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Definition: A premeasure on a Boolean algebra B0 is a finitely additive measure
µ0 : B0 → [0,∞] such that µ0(

⋃∞
k=1Ek) =

∑∞
k=1 µ0(Ek) whenever E1, E2, . . . are

disjoint subsets of B0 such that
⋃∞
k=1 Ek ∈ B0.

Theorem 6.2 (Hahn–Kolmogorov): Every premeasure µ0 : B0 → [0,∞] on a Boolean
algebra B0 in X can be extended to a countably additive measure µ : B → [0,∞].

Proof: In analogy with the how elementary measure (specifically the volume of
boxes) was used to construct the Lebesgue outer measure, for any subset A of X we
define

µ∗(A) = inf⋃∞
k=1

Ek⊃A
Ek∈B0

∞∑
k=1

µ0(Ek),

which, following the proof of Theorem 1.2, is seen to be an outer measure.
Let B be the collection of all subsets of X that are Carathéodory measurable with

respect to µ∗. By Theorem 6.1, we know that B is a σ-algebra and the restriction µ of
µ∗ to B is a countably additive measure, so we only need to show that B contains B0

and µ extends µ0.
Let ε > 0. Given A ⊂ X, we can find sets E1, E2, . . . ∈ B0 that cover A such that

∞∑
k=1

µ0(Ek) < µ∗(A) + ε.

Given E ∈ B0, we know from that finite additivity of µ0 on B0 that

µ0(En ∩ E) + µ0(En \ E) = µ0(En)

for each n ∈ N. Since the sets En ∩ E lie in B0 and cover A ∩ E,

µ∗(A ∩ E) ≤
∞∑
n=1

µ0(En ∩ E).

Likewise,

µ∗(A \ E) ≤
∞∑
n=1

µ0(En \ E).

Hence

µ∗(A ∩ E) + µ∗(A \ E) ≤
∞∑
n=1

µ0(En) ≤ µ∗(A) + ε.

Since ε is arbitrary, we deduce

µ∗(A ∩ E) + µ∗(A \ E) ≤ µ∗(A).

The reverse inequality follows from subadditivity. Thus

µ∗(A ∩ E) + µ∗(A \ E) = µ∗(A).
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That is, E ∈ B and hence B ⊃ B0.
Since each element E of B0 covers itself, µ∗(E) ≤ µ0(E). From each covering

E1, E2, . . . ∈ B0 of E, construct the disjoint subsets E ∩ En \
n−1⋃
k=1

Ek, whose union is

exactly equal to E. Since µ0 is a premeasure, we know from monotonicity that

µ0(E) =
∞∑
n=1

µ0

(
E ∩ En \

n−1⋃
k=1

Ek

)
≤

∞∑
n=1

µ0(En).

This provides us with a lower bound for µ∗(E):

µ∗(E) ≥ µ0(E),

so that µ∗(E) = µ0(E). We thus see that the restriction µ of µ∗ to B extends µ0 from
the Boolean algebra B0 to the σ-algebra B.

Definition: A measure space (X,B, µ) is σ-finite if X can be expressed as the count-
able union of sets of finite measure.

• Rd with the Lebesgue measure is σ-finite.

• Rd with the counting measure is not σ-finite.

Problem 6.4: Let µ0 : B0 → [0,∞] be a σ-finite premeasure on a Boolean algebra B0

in a space X. Suppose that µ, µ′ : B → [0,∞] are Hahn–Kolmogorov extensions of
µ0 to σ-algebras B and B′ containing B0. Show that µ = µ′ on B ∩ B′.

Definition: A Borel measure is any measure defined on B[Rd].

Remark: We now introduce a powerful tool for constructing Borel measures.

Theorem 6.3 (Lebesgue-Stieltjes measure): Let F : R→ R be a monotone increasing
function and define

F−(x)
.
= sup

y<x
F (y), F+(x)

.
= inf

y>x
F (y),

so that F−(x) ≤ F (x) ≤ F+(x) for all x ∈ R. Then there exists a unique Borel
measure µF : B[R] → [0,∞], known as the Lebesgue-Stieltjes measure of F , such
that

µF ([a, b]) = F+(b)− F−(a),

µF ([a, b)) = F−(b)− F−(a),

µF ((a, b]) = F+(b)− F+(a),

µF ((a, b)) = F−(b)− F+(a),

µF ([a, a]) = F+(a)− F−(a), (6.2)

whenever −∞ < a < b <∞.

Proof: See Tao, Theorem 1.7.9.
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• When F (x) = x, µF is just the Lebesgue measure m.

• If F : R→ R is increasing and absolutely continuous (so that, by Problem 5.13 (ii),
F ′ exists almost everywhere and is absolutely integrable on every closed interval
[a, b]) and S is a Borel-measurable set,

µF (S) =

∫
S

F ′(x) dx

is a Borel measure. For any unsigned Borel-measurable function f : R → [0,∞],
the integral ∫

R
f dµF =

∫
R
f(x)F ′(x) dx

is known as the Lebesgue–Stieltjes integral of f with respect to F and is often
abbreviated as

∫
R f dF . In particular, when f = 1, we can exploit the absolute

continuity of F to recover the fundamental theorem of calculus on [a, b]:∫
[a,b]

dF = µF ([a, b]) = F (b)− F (a).

Problem 6.5: Evaluate the Lebesgue–Stieltjes integral∫ 2

0

x2d
(
ex

2
)
.

∫ 2

0
x2d
(
ex

2
)

=

∫ 2

0
x2ex

2
2x dx =

∫ 4

0
ueu du = [ueu]r0 −

∫ 4

0
eu du = 4e4 − e4 + 1 = 3e4 + 1.

Remark: The Lebesgue–Stieltjes integral can be generalized to handle the case
where F is of bounded variation, by writing F as a difference of monotone in-
creasing functions.

Definition: A Radon measure on R is a Borel measure µ obeying:

1. (Local finiteness) µ(K) <∞ for every compact K;

2. (Outer regularity) µ(S) = inf
U⊃S
Uopen

µ(U) for every Borel set S;

3. (Inner regularity) µ(S) = sup
K⊂S

Kcompact

µ(K) for every Borel set S.
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Problem 6.6: Show that the Lebesgue–Stieltjes measure µF for every monotone
function F : R→ R is a Radon measure on R. Conversely, if µ is a Radon measure
on R, show that there exists a monotone function F : R→ R such that µ = µF .

Definition: Let (X,BX) and (Y,BY ) be measurable spaces. The σ-algebra

BX×BY
.
= 〈{A×B : A ∈ BX , B ∈ BY }〉 ,

in X×Y is a product σ-algebra.

Remark: The σ-algebra BX×BY is the coarsest σ-algebra on X×Y for which every
product of a BX-measurable set and a BY -measurable set is BX×BY measurable.

Remark: If f : X×Y → [0,∞] is measurable with respect to BX×BY , the function
fx : y 7→ f(x, y) is BY measurable for every x ∈ X and f y : x 7→ f(x, y) is BX
measurable for every y ∈ Y .

Definition: Let (X,BX , µX) and (Y,BY , µY ) be σ-finite measure spaces. A product
measure µX×µY on BX×BY satisfies (µX×µY )(E×F ) = µX(E)µY (F ) whenever
E ∈ BX and F ∈ BY .

Theorem 6.4 (Existence and uniqueness of product measure): Let (X,BX , µX) and
(Y,BY , µY ) be σ-finite measure spaces. Then there exists a unique product measure
µX×µY on BX×BY .

Proof: Consider the Boolean algebra B0 consisting of all finite unions

S
.
= (E1×F1) ∪ . . . ∪ (Em×Fm)

of Cartesian products of Bx-measurable sets E1, . . . , Em and BY -measurable sets
F1, . . . , Fm. In analogy with the decomposition of elementary sets in Rd into finite
unions of disjoint boxes, we can without loss of generality assume thatE1×F1, . . . , Em×Fm
are disjoint. We then introduce the finitely additive measure µ0 : B0 → [0,∞]:

µ0(S)
.
=

m∑
j=1

µX(Ej)µY (Fj),

whenever S is a disjoint union of Cartesian products E1×F1, . . . , Em×Fm of Bx-
and BY -measurable sets, independent of exactly how S is decomposed.

To establish that µ0 is a premeasure on B0, we need to show for every countable
union S ∈ B0 of disjoint sets S1, S2, . . . ∈ B0 that µ0(S) =

∑∞
k=1 µ0(Sk). Using

the finite additivity of µ0, we can reduce the problem to the case m = 1; that
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is, S = E×F and Sk = Ek×Fk for k = 1, 2, . . .. We begin by re-expressing the
decomposition S =

⋃∞
k=1 Sk into disjoint sets as the pointwise identity

1E(x)1F (y) =
∞∑
k=1

1Ek(x)1Fk(y)

for all x ∈ X and y ∈ Y . For fixed x ∈ X, we can integrate both sides in y:∫
Y

1E(x)1F (y) dµY (y) =

∫
Y

∞∑
k=1

1Ek(x)1Fk(y) dµY (y).

Using the monotone convergence theorem to interchange the integration and summa-
tion on the right-hand side, this identity evaluates to

1E(x)µY (F ) =
∞∑
k=1

1Ek(x)µY (Fk).

Similarly, we may now integrate in x and use monotone convergence to obtain

µX(E)µY (F ) =
∞∑
k=1

µX(Ek)µY (Fk);

thereby demonstrating that µ0 is a premeasure.

Using the Hahn–Kolmogorov theorem, we can then extend µ0 to a countably
additive measure µX×µY on a σ-algebra containing B0. Since BX×BY is the coarsest
such σ-algebra, we see that µX×µY is a countably additive measure on BX×BY , with
(µX×µY )(E×F ) = µX(E)µY (F ) whenever E ∈ BX and F ∈ BY . The uniqueness of
µX×µY follows from Prob 6.4.

Definition: A monotone class in a space X is a collection B of subsets of X such
that

1. The union
∞⋃
k=1

Sk of every countable increasing sequence of sets S1 ⊂ S2 ⊂ . . .

in B is itself in B.

2. The intersection
∞⋂
k=1

Sk of every countable decreasing sequence of sets S1 ⊃ S2 ⊃

. . . in B is itself in B.
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Remark: Every σ-algebra is a monotone class, but a monotone class need not be a
σ-algebra.

Lemma 6.1 (Monotone class lemma): Let B be a Boolean algebra on X. Then 〈B〉
is the smallest monotone class containing B.

Proof: Let I be the intersection of all monotone classes containing B. Since 〈B〉
is one such class, we see that I ⊂ 〈B〉.

Consider the set J ⊂ I composed of those elements of I whose complements
are also in I. Since (

⋃∞
k=1 Sk)

c
=
⋂∞
k=1 S

c
k, we see that J is also a monotone class

containing B, so that I ⊂ J . Hence J = I is closed under complements.
Likewise, consider the set K ⊂ I composed of those elements of I for which

S \ T , T \ S, S ∩ T , and X \ (S ∪ T ) also belong to I for every T ∈ I. Since
(
⋃∞
k=1 Sk)\T =

⋃∞
k=1(Sk\T ), etc., we see that K is also a monotone class containing B,

so that I ⊂ K. Thus I = K.
We now know that I is closed under finite unions as well as finite intersections.

Since I ⊃ B and ∅ ∈ B, we see that I is a Boolean algebra. Given any countable
sequence of elements Sk of I, k = 1, 2, . . ., consider the increasing sequence Tn =⋃n
k=1 Sk for n = 1, 2, . . .. Since I is a monotone class, we know that

⋃∞
k=1 Sk =⋃∞

n=1 Tn ∈ I, so I is a σ-algebra. Since I contains B, we deduce that I ⊃ 〈B〉. Thus
I = 〈B〉.

Theorem 6.5 (Tonelli’s theorem): Let (X,BX , µX) and (Y,BY , µY ) be σ-finite mea-
sure spaces and let f : X×Y → [0,∞] be measurable with respect to BX×BY .
Then:

(i) the functions x→
∫
Y
f(x, y) dµY (y) and y →

∫
X
f(x, y) dµX(x) are measurable

with respect to BX and BY , respectively;

(ii) ∫
X×Y

f(x, y) dµX×µY (x, y) =

∫
X

∫
Y

f(x, y) dµY (y) dµX(x) =

∫
Y

∫
X

f(x, y) dµX(x) dµY (y).

Proof: Since the σ-finite spaces X and Y can be decomposed as increasing unions
of finite-measure sets, the monotone convergence theorem can be used to reduce the
problem to the case where X and Y , and by Theorem 6.4, X×Y , have finite measure.

Since every unsigned measurable function is the limit of an increasing sequence of
unsigned simple functions, by the monotone convergence theorem and linearity, we
can further reduce the problem to the case where f = 1S for some S ∈ BX×BY .

Let C be the collection of all elements of BX×BY for which statements (i) and
(ii) hold. Repeated application of the monotone convergence theorem and downward
monotone convergence (which applies in this finite-measure setting) establishes that C
is a monotone class.
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Theorem 6.4 guarantees that every product E×F with E ∈ BX and F ∈ BY is in
C. By finite additivity, every finite union

(E1×F1) ∪ . . . ∪ (Em×Fm)

of such products, which can always be re-expressed as a union of disjoint products,
is an element of C. Since C is a monotone class, Lemma 6.1 then establishes that C
contains the entire σ-algebra BX×BY .

Corollary 6.5.1: Let (X,BX , µX) and (Y,BY , µY ) be σ-finite measure spaces and
let E ∈ BX×BY be a null set with respect to µX×µY . Then for µX-almost every
x ∈ X the set Ex

.
= {y ∈ Y : (x, y) ∈ E} is a µY -null set. Similarly, for µY -almost

every y ∈ Y the set Ey .
= {x ∈ X : (x, y) ∈ E} is a µX-null set.

Proof: On applying Tonelli’s theorem to the indicator function 1E, we find

0 =

∫
X

∫
Y

1E(x, y) dµY (y) dµX(x) =

∫
Y

∫
X

1E(x, y) dµX(x) dµY (y).

Thus

0 =

∫
X

µY (Ex) dµX(x) =

∫
Y

µX(Ey) dµY (y),

from which the result immediately follows.

Remark: One limitation of the product σ-algebra BX×BY is that it may not be
complete.

• Consider the two-dimensional Cartesian product of the one-dimensional Lebesgue
measure space (R,L[R],m) with itself. This yields a measure m2 on R2 that is in-
complete. For example, let V be a nonmeasurable set like the Vitali set constructed
on p. 10 and consider that V×{0} is not measurable in R2 even though V×{0} is
a subset of the m2-null set R×{0}. We can fix this deficiency by replacing m2 by
its completion m2.

Remark: It is easy to extend Tonelli’s theorem to complete product measures.

Corollary 6.5.2 (Tonelli’s theorem for complete product measures): Let (X,BX , µX)
and (Y,BY , µY ) be complete σ-finite measure spaces and let f : X×Y → [0,∞] be
measurable with respect to BX×BY . Then:

(i) the µX-almost everywhere defined function x →
∫
Y
f(x, y) dµY (y) and µY -

almost everywhere defined function y →
∫
X
f(x, y) dµX(x) are measurable with

respect to BX and BY , respectively;
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(ii) ∫
X×Y

f(x, y) dµX×µY (x, y) =

∫
X

∫
Y

f(x, y) dµY (y) dµX(x) =

∫
Y

∫
X

f(x, y) dµX(x) dµY (y).

Proof: Every measurable set in BX×BY is equal to a measurable set in BX×BY
outside of a µX×µY -subnull set. The result then follows from Theorem 6.5 and
Corollary 6.5.1.

Corollary 6.5.3 (Fubini’s theorem): Let (X,BX , µX) and (Y,BY , µY ) be complete
σ-finite measure spaces and let f : X×Y → C be absolutely integrable with respect
to BX×BY . Then:

(i) the µX-almost everywhere defined function x →
∫
Y
f(x, y) dµY (y) and µY -

almost everywhere defined function y →
∫
X
f(x, y) dµX(x) are absolutely in-

tegrable with respect to µX and µY , respectively;

(ii) ∫
X×Y

f(x, y) dµX×µY (x, y) =

∫
X

∫
Y

f(x, y) dµY (y) dµX(x) =

∫
Y

∫
X

f(x, y) dµX(x) dµY (y).

Proof: The result follows on applying Corollary 6.5.2 to the positive and negative
parts of the real and imaginary parts of f , noting from the absolute integrability of f
that

∫
Y
f(x, y) dµY (y) is finite for µX-almost all x ∈ X and that

∫
X
f(x, y) dµX(x) is

finite for µY -almost all y ∈ Y .

Remark: If
∫
X

∫
Y
|f(x, y)| dµY (y) dµX(x) < ∞, Tonelli’s theorem can be used to

establish the absolute integrability requirement of Fubini’s theorem.

Remark: The Tonelli and Fubini theorems provide us with practical tools for com-
puting integrals.

Problem 6.7: (Area interpretation of integral)
Let (X,B, µ) be a σ-finite measure space and let R be equipped with the Lebesgue
measure m and the Borel σ-algebra B[R]. Show that f : X → [0,∞] is measurable
iff S

.
= {(x, t) ∈ X×R : 0 ≤ t < f(x)} is measurable in B×B[R], with

(µ×m)(S) =

∫
X

f(x) dµ(x).

For each q ∈ Q, construct

Sq
.
= {(x, t) ∈ X×R : 0 ≤ t ≤ q < f(x)} = {x ∈ X : q < f(x)}×[0, q],
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which is a rectangle with measurable sides and thus belongs to B×B(R). Since S =
⋃
q∈Q Sq,

this implies that S ∈ B×B(R). This establishes that 1S is a measurable function, so that
we can apply Tonelli’s theorem:

(µ×m)(S) =

∫
X×R

1S d(µ×m) =

∫
X

∫
R

1[0,f(x)] dt dµ(x) =

∫
X
f(x) dµ(x).

Problem 6.8: (Distribution formula)
Let (X,B, µ) be a σ-finite measure space and let f : X → [0,∞] be measurable.
Show that ∫

X

f(x) dµ =

∫
[0,∞]

µ({x ∈ X : f(x) ≥ t}) dt.

For each t, let St
.
= {x ∈ X : f(x) ≥ t}. First note that µ(St) is a monotonic function

in t and monotonic functions are Lebesgue measurable since {t : µ(St) > λ} is a (possibly
infinite) interval for each λ ∈ [0,∞). Following Prob 6.7, we then see that∫

[0,∞]
µ(St) dt =

∫
[0,∞]

∫
X

1St dµ(x) dt =

∫
X

∫
[0,∞]

1[0,f(x)] dt dµ(x) =

∫
X
f(x) dµ(x).
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Borel measure, 86
bounded variation, 74

bounded variation on I, 74
box, 11

Cantor function, 73
Carathéodory criterion, 31, 81
Carathéodory measurable, 81
Characterization of finite measurability, 29
Characterization of measurable functions,

56
closed dyadic cube, 20
closed Euclidean ball, 15
closed half spaces, 15
coarsening, 58
coarser than, 49
compatibility, 42, 59, 60
complementarity, 42
complete, 56
completion, 56
continuously differentiable, 69
converges absolutely, 34
converges pointwise, 28
convex polytope, 15
countable additivity, 26, 54
Countable combinations of measures, 54
countable disjoint additivity, 9
countable subadditivity, 16, 55, 81
countably additive measure, 54
counting measure, 53
Cousin’s theorem, 78

derivative, 69
diameter, 17
Dirac measure, 53
Dirichlet, 5
discrete algebra, 49
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distance, 17
Distribution formula, 93
dominated, 68
Dominated convergence, 55
Downward monotone convergence, 28
downward monotone convergence, 55
dyadic algebra, 50

Egorov’s theorem, 48, 57
elementary Boolean algebra, 49
elementary measure, 11, 12
elementary set, 11
elementary sets, 11
equivalence, 42, 59

Fatou’s lemma, 65
field of sets, 24
finer than, 49
finite, 50
finite additivity, 52, 53, 59
finite disjoint additivity, 13, 15
finite subadditivity, 13, 15, 53
finitely additive measure, 52
finiteness, 59, 60
first moment method, 46

gauge, 78
generated, 50, 51

Hahn–Kolmogorov, 85
homogeneity, 59, 60
horizontal truncation, 43, 60

in measure, 67
in the L1 norm, 67
inclusion–exclusion, 53
indicator function, 5
infinite Jordan outer measure, 14
Inner regularity, 29
interval, 11
involutive algebra, 35

Jordan algebra, 49
Jordan inner measure, 14

Jordan measure, 5, 14
Jordan outer content, 81
Jordan outer measure, 14

lacunae, 27, 82
Lebesgue algebra, 49
Lebesgue inner measure, 32
Lebesgue integral, 5
Lebesgue measurable, 22, 41
Lebesgue measure, 5, 22
Lebesgue outer measure, 16
Lebesgue point, 73
Lebesgue–Stieltjes integral, 87
Lebesgue-Stieltjes measure, 86
length, 11
Linear change of variables, 32, 46
Linearity in µ, 61
Lipschitz constant, 75
Lipschitz continuous, 75
locally of bounded variation, 75
locally uniformly, 47
lower superadditivity, 42
lower unsigned Lebesgue integral, 42

Markov’s inequality, 60
maximal, 21
measurable, 37, 41, 56
measurable morphism, 65
measurable sets, 11
measurable space, 51
measure, 4, 8, 11, 54
measure of a box, 9, 13
measure space, 54
mode of convergence, 48
monotone class, 89
monotone convergence theorem, 63
monotonicity, 9, 13, 15, 16, 42, 53, 59, 81

non-negative extended real numbers, 8
non-negativity, 15
null algebra, 50
null set, 23, 56, 82
nullity, 9, 13, 16, 26, 52, 54, 81
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open Euclidean ball, 15
outer measure, 81

pointwise almost everywhere, 67
positive variation, 74
power set, 8
premeasure, 85
problem of measure, 4
product σ-algebra, 88
product measure, 88
Properties of finitely additive measures,

53
Properties of the simple integral, 37
Properties of the simple unsigned integral,

36
pushforward, 66

Radon measure, 87
refinement, 59
reflection, 43
relatively closed, 37
relatively open, 37
restriction, 59, 60
Riemann integral, 5
Riemann rearrangement theorem, 9

scaling, 42
semi-norm, 45
separated, 17
simple function, 34
simple integral, 35, 57
step function, 46
subnull, 56
superadditivity, 60
support, 36

total variation, 74
transfinite induction, 52
translational invariance, 9, 13, 15, 32, 46
trivial algebra, 49
typewriter, 68

uniformly almost everywhere, 67
uniformly integrable, 68

unsigned integral, 59
unsigned Lebesgue integral, 43
unsigned Lebesgue measurable, 37
unsigned simple function, 34, 58
upper subadditivity, 42
upper unsigned Lebesgue integral, 42
Upward monotone convergence, 27
upward monotone convergence, 55

vanishing, 59, 60
vertical truncation, 42, 60
Vitali set, 11

zero measure, 53


	Measure Theory
	Elementary measure
	Jordan measure
	Lebesgue measure

	The Lebesgue Integral
	Abstract Measure Spaces
	Modes of Convergence
	Differentiation Theorems
	Outer Measures, Premeasures, and Product Measures
	Bibliography
	Index

