
Math 411: Honours Complex Variables

List of Theorems

Theorem 1.1 (C is a Field). The complex numbers are a field. Specifically,
we have:

• (0, 0) is the identity element of addition;

• −(x, y) = (−x,−y) for x, y ∈ R;

• (1, 0) is the identity element of multiplication;

• (x, y)−1 =
(

x
x2+y2

, −y

x2+y2

)

for x, y ∈ R with (x, y) 6= (0, 0).

Theorem 2.1 (Cauchy–Riemann Equations). Let D ⊂ C be open, and let
z0 ∈ D. Let f : D → C and denote u := Re f , v := Im f . Then the following
are equivalent:

(i) f is complex differentiable at z0;

(ii) f is totally differentiable at z0 (in the sense of multivariable calculus),
and the Cauchy–Riemann differential equations

∂u

∂x
(z0) =

∂v

∂y
(z0) and

∂u

∂y
(z0) = −

∂v

∂x
(z0)

hold.

Corollary 2.1.1. Let D ⊂ C be open and connected, and let f : D → C be
complex differentiable. Then f is constant on D if and only if f ′ ≡ 0.

Theorem 3.1 (Radius of Convergence). Let
∑∞

n=0 an(z − z0)
n be a com-

plex power series. Then there exists a unique R ∈ [0,∞] with the following
properties:

•
∑∞

n=0 an(z − z0)
n converges absolutely for each z ∈ BR(z0);

• for each r ∈ [0, R), the series
∑∞

n=0 an(z− z0)
n converges uniformly on

Br[z0] := {z ∈ C : |z − z0|≤ r};

•
∑∞

n=0 an(z − z0)
n diverges for each z /∈ BR[z0].
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Moreover, R can be computed via the Cauchy–Hadamard formula:

R =
1

lim sup
n→∞

n

√

|an|
.

It is called the radius of convergence for
∑∞

n=0 an(z − z0)
n.

Theorem 3.2 (Term-by-Term Differentiation). Let
∑∞

n=0 an(z − z0)
n be a

complex power series with radius of convergence R. Then

f : BR(z0) → C, z 7→

∞
∑

n=0

an(z − z0)
n

is complex differentiable at each point z ∈ BR(z0) with

f ′(z) =
∞
∑

n=1

nan(z − z0)
n−1.

Corollary 3.2.1 (Higher Derivatives of Power Series). Let
∑∞

n=0 an(z−z0)
n

be a complex power series with radius of convergence R. Then

f : BR(z0) → C, z 7→
∞
∑

n=0

an(z − z0)
n

is infinitely often complex differentiable on BR(z0) with

f (k)(z) =
∞
∑

n=k

n(n− 1) · · · (n− k + 1)an(z − z0)
n−k.

for z ∈ BR(z0) and k ∈ N. In particular, when z = z0 we see that

an =
1

n!
f (n)(z0)

holds for each n ∈ N0.

Corollary 3.2.2 (Integration of Power Series). Let
∑∞

n=0 an(z − z0)
n be a

complex power series with radius of convergence R. Then

F : BR(z0) → C, z 7→
∞
∑

n=0

an
n+ 1

(z − z0)
n+1
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is complex differentiable on BR(z0) with

F ′(z) =

∞
∑

n=0

an(z − z0)
n

for z ∈ BR(z0).

Theorem 4.1 (Antiderivative Theorem). Let D ⊂ C be open and connected
and let f : D → C be continuous. Then the following are equivalent:

(i) f has an antiderivative;

(ii)
∫

γ
f(ζ) dζ = 0 for any closed, piecewise smooth curve γ in D;

(iii) for any piecewise smooth curve γ in D, the value of
∫

γ
f depends only

on the inital point and the endpoint of γ.

Theorem 5.1 (Goursat’s Lemma). Let D ⊂ C be open, let f : D → C be
holomorphic, and let ∆ ⊂ D be a triangle. Then we have

∫

∂∆

f(ζ) dζ = 0.

Theorem 5.2. Let D ⊂ C be open and star shaped with center z0, and let
f : D → C be continuous such that

∫

∂∆

f(ζ) dζ = 0

for each triangle ∆ ⊂ D with z0 as a vertex. Then f has an antiderivative.

Corollary 5.2.1. Let D ⊂ C be open and star shaped, and let f : D → C

be holomorphic. Then f has an antiderivative.

Corollary 5.2.2. Let D ⊂ C be open, and let f : D → C be holomorphic.
Then, for each z0 ∈ D, there exists an open neighbourhood U ⊂ D of z0 such
that f |U has an antiderivative.

Corollary 5.2.3 (Cauchy’s Integral Theorem for Star-Shaped Domains).
Let D ⊂ C be open and star shaped, and let f : D → C be holomorphic.
Then

∫

γ
f(ζ) dζ = 0 holds for each closed curve γ in D.
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Theorem 5.3 (Cauchy’s Integral Formula for Circles). Let D ⊂ C be open,
let f : D → C be holomorphic, and let z0 ∈ D and r > 0 be such that
Br[z0] ⊂ D. Then we have

f(z) =
1

2πi

∫

∂Br(z0)

f(ζ)

ζ − z
dζ

for all z ∈ Br(z0).

Corollary 5.3.1 (Mean Value Equation). Let D ⊂ C be open, let f : D → C

be holomorphic, and let z0 ∈ D and r > 0 be such that Br[z0] ⊂ D. Then
we have

f(z0) =
1

2π

∫ 2π

0

f(z0 + reit) dt.

Theorem 5.4 (Higher Derivatives of Holomorphic Functions). Let D ⊂ C

be open, let z0 ∈ D and r > 0 be such that Br[z0] ⊂ D, and let f : D → C be
continuous such that

f(z) =
1

2πi

∫

∂Br(z0)

f(ζ)

ζ − z
dζ

holds for all z ∈ Br(z0). Then f is infinitely often complex differentiable on
Br(z0) and satisfies

f (n)(z) =
n!

2πi

∫

∂Br(z0)

f(ζ)

(ζ − z)n+1
dζ (∗)

holds for all z ∈ Br(z0) and n ∈ N0.

Corollary 5.4.1 (Generalized Cauchy Integral Formula). Let D ⊂ C be
open, and let f : D → C be holomorphic. Then f is infinitely often complex
differentiable on D. Moreover, for any z0 ∈ D and r > 0 such that Br[z0] ⊂
D, the generalized Cauchy integral formula holds, i.e.

f (n)(z) =
n!

2πi

∫

∂Br(z0)

f(ζ)

(ζ − z)n+1
dζ

for all z ∈ Br(z0) and n ∈ N0.

Theorem 5.5 (Characterizations of Holomorphic Functions). Let D ⊂ C be
open, and let f : D → C be continuous. Then the following are equivalent:
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(i) f is holomorphic;

(ii) the Morera condition holds, i.e.
∫

∂∆
f(ζ) dζ = 0 for each triangle ∆ ⊂

D;

(iii) for each z0 ∈ D and r > 0 with Br[z0] ⊂ D, we have

f(z) =
1

2πi

∫

∂Br(z0)

f(ζ)

ζ − z
dζ

for z ∈ Br(z0);

(iv) for each z0 ∈ D, there exists r > 0 with Br[z0] ⊂ D and

f(z) =
1

2πi

∫

∂Br(z0)

f(ζ)

ζ − z
dζ

for z ∈ Br(z0);

(v) f is infinitely often complex differentiable on D;

(vi) for each z0 ∈ D, there exists an open neighbourhood U ⊂ D of z0 such
that f has an antiderivative on U .

Theorem 5.6 (Liouville’s Theorem). Let f : C → C be a bounded entire
function. Then f is constant.

Corollary 5.6.1 (Fundamental Theorem of Algebra). Let p be a non-constant
polynomial with complex coefficients. Then p has a zero.

Theorem 6.1 (Uniform Convergence Preserves Continuity). Let D ⊂ C be
open, and let (fn)

∞
n=1 be a sequence of continuous, C-valued functions on D

converging uniformly on D to f : D → C. Then f is continuous.

Theorem 6.2 (Weierstraß Theorem). Let D ⊂ C be open, let f1, f2, . . . :
D → C be holomorphic such that (fn)

∞
n=1 converges to f : D → C compactly.

Then f is holomorphic, and (f
(k)
n )∞n=1 converges compactly to f (k) for each

k ∈ N.

Theorem 6.3 (Power Series for Holomorphic Functions). Let D ⊂ C be
open. Then the following are equivalent for f : D → C:
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(i) f is holomorphic;

(ii) for each z0 ∈ D, there exists r > 0 with Br(z0) ⊂ D and a0, a1, a2, . . . ∈
C such that f(z) =

∑∞
n=0 an(z − z0)

n for all z ∈ Br(z0);

(iii) for each z0 ∈ D and r > 0 with Br(z0) ⊂ D, we have

f(z) =
∞
∑

n=0

f (n)(z0)

n!
(z − z0)

n

for all z ∈ Br(z0).

Theorem 7.1 (Identity Theorem). Let D ⊂ C be open and connected, and
let f, g : D → C be holomorphic. Then the following are equivalent:

(i) f = g;

(ii) the set {z ∈ D : f(z) = g(z)} has a cluster point in D;

(iii) there exists z0 ∈ D such that f (n)(z0) = g(n)(z0) for all n ∈ N0.

Theorem 7.2 (Open Mapping Theorem). Let D ⊂ C be open and connected,
and let f : D → C be holomorphic and not constant. Then f(D) ⊂ C is open
and connected.

Theorem 7.3 (Maximum Modulus Principle). Let D ⊂ C be open and
connected, and let f : D → C be holomorphic such that the function

|f |: D → C, z 7→ |f(z)|

attains a local maximum on D. Then f is constant.

Corollary 7.3.1. Let D ⊂ C be open and connected, and let f : D → C be
holomorphic such that |f | attains a local minimum on D. Then f is constant
or f has a zero.

Corollary 7.3.2 (Maximum Modulus Principle for Bounded Domains). Let
D ⊂ C be open, connected, and bounded, and let f : D → C be continuous
such that f |D is holomorphic. Then |f | attains its maximum over D on ∂D.
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Theorem 7.4 (Schwarz’s Lemma). Let f : D → D be holomorphic such that
f(0) = 0. Then one has

|f(z)|≤ |z| for z ∈ D and |f ′(0)|≤ 1.

Moreover, if there exists z0 ∈ D \ {0} such that |f(z0)|= |z0| or if |f
′(0)|= 1,

then there exists c ∈ C with |c|= 1 such that f(z) = cz for z ∈ D.

Corollary 7.4.1. Let f : D → D be biholomorphic such that f(0) = 0. Then
there exists c ∈ C with |c|= 1 such that f(z) = cz for z ∈ D.

Theorem 7.5 (Biholomorphisms of D). Let f : D → D be biholomorphic.
Then there exist w ∈ D and c ∈ ∂D with f(z) = cφw(z) for z ∈ D.

Theorem 7.6 (Riemann’s Removability Condition). Let D ⊂ C be open,
let f : D → C be holomorphic, and let z0 ∈ C \D be an isolated singularity
for f . Then the following are equivalent:

(i) z0 is removable;

(ii) there is a continuous function g : D ∪ {z0} → C such that g|D= f ;

(iii) there exists ǫ > 0 with Bǫ(z0) \ {z0} ⊂ D such that f is bounded on
Bǫ(z0) \ {z0}.

Theorem 8.1 (Poles). Let D ⊂ C be open, let f : D → C be holomorphic,
and let z0 ∈ C\D be an isolated singularity of f . Then z0 is a pole of f ⇐⇒
there exist a unique k ∈ N and a holomorphic function g : D∪{z0} → C such
that g(z0) 6= 0 and

f(z) =
g(z)

(z − z0)k

for z ∈ D.

Theorem 8.2 (Casorati–Weierstraß Theorem). Let D ⊂ C be open, let f :
D → C be holomorphic, and let z0 ∈ C \ D be an isolated singularity of f .
Then z0 is essential ⇐⇒ f(Bǫ(z0) ∩D) = C for each ǫ > 0.

Theorem 9.1 (Cauchy’s Integral Theorem for Annuli). Let z0 ∈ C, let
r, ρ,P, R ∈ [0,∞] be such that r < ρ < P < R, and let f : Ar,R(z0) → C be
holomorphic. Then we have

∫

∂BP(z0)

f(ζ) dζ =

∫

∂Bρ(z0)

f(ζ) dζ.
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Theorem 9.2 (Laurent Decomposition). Let z0 ∈ C, let r, R ∈ [0,∞] be
such that r < R, and let f : Ar,R(z0) → C be holomorphic. Then there exists
a holomorphic function

g : BR(z0) → C and h : C \Br[z0] → C

with f = g+h on Ar,R(z0). Moreover, h can be chosen such that lim
|z|→∞

h(z) =

0, in which case g and h are uniquely determined.

Theorem 9.3 (Laurent Coefficients). Let z0 ∈ C, let r, R ∈ [0,∞] be such
that r < R, and let f : Ar,R(z0) → C be holomorphic. Then f has a repre-
sentation

f(z) =

∞
∑

n=−∞

an(z − z0)
n

for z ∈ Ar,R(z0) as a Laurent series, which converges uniformly and absolutely
on compact subsets of Ar,R(z0). Moreover, for every n ∈ Z and ρ ∈ (r, R),
the coefficients an are uniquely determined as

an =
1

2πi

∫

∂Bρ(z0)

f(ζ)

(ζ − z0)n+1
dζ.

Corollary 9.3.1. Let z0 ∈ C, let r > 0, and let f : Br(z0) \ {z0} → C be
holomorphic with Laurent representation f(z) =

∑∞
n=−∞ an(z − z0)

n. Then
the singularity z0 of f is

(i) removable if and only if an = 0 for n < 0;

(ii) a pole of order k ∈ N if and only if a−k 6= 0 and an = 0 for all n < −k;

(iii) essential if and only if an 6= 0 for infinitely many n < 0.

Proposition 10.1. Let γ be a closed curve in C, and let z ∈ C \ {γ}. Then
ν(γ, z) ∈ Z.

Proposition 10.2 (Winding Numbers Are Locally Constant). Let γ be a
closed curve in C. Then:

(i) the map
C \ {γ} → C, z 7→ ν(γ, z)

is locally constant;
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(ii) there exists R > 0 such that C \BR[0] ⊂ ext γ.

Theorem 11.1 (Cauchy’s Integral Formula). Let D ⊂ C be open, let f :
D → C be holomorphic, and let γ be a closed curve in D that is homologous
to zero. Then, for n ∈ N0 and z ∈ D \ {γ}, we have

ν(γ, z)f (n)(z) =
n!

2πi

∫

γ

f(ζ)

(ζ − z)n+1
dζ.

Theorem 11.2 (Cauchy’s Integral Theorem). Let D ⊂ C be open, let f :
D → C be holomorphic, and let γ be a closed curve in D that is homologous
to zero. Then

∫

γ
f(ζ) dζ = 0.

Corollary 11.2.1. Let D be an open, connected subset of C. Then D is
simply connected ⇐⇒ every holomorphic function on D has an antideriva-
tive.

Corollary 11.2.2 (Holomorphic Logarithms). A simply connected domain
admits holomorphic logarithms.

Corollary 11.2.3 (Holomorphic Roots). A simply connected domain admits
holomorphic roots.

Theorem 12.1 (Residue Theorem). Let D ⊂ C be open and simply con-
nected, z1, . . . , zn ∈ D be such that zj 6= zk for j 6= k, f : D\{z1, . . . , zn} → C

be holomorphic, and γ be a closed curve in D \ {z1, . . . , zn}. Then we have

∫

γ

f(ζ) dζ = 2πi

n
∑

j=1

ν(γ, zj) res(f, zj).

Corollary 12.1.1. Let D ⊂ C be open and simply connected, f : D → C

be holomorphic, and γ be a closed curve in D. Then we have

ν(γ, z) f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ

for z ∈ D \ {γ}.

Proposition 12.1 (Rational Trigonometric Polynomials). Let p and q be
polynomials of two real variables such that q(x, y) 6= 0 for all (x, y) ∈ R2 with
x2 + y2 = 1. Then we have

∫ 2π

0

p(cos t, sin t)

q(cos t, sin t)
dt = 2πi

∑

z∈D

res(f, z),

9



where

f(z) =
1

iz
·

p

(

1

2

(

z +
1

z

)

,
1

2i

(

z −
1

z

))

q

(

1

2

(

z +
1

z

)

,
1

2i

(

z −
1

z

)) .

Proposition 12.2 (Rational Functions). Let p and q be polynomials of one
real variable with deg q ≥ deg p+ 2 and such that q(x) 6= 0 for x ∈ R. Then
we have

∫ ∞

−∞

p(x)

q(x)
dx = 2πi

∑

z∈H

res

(

p

q
, z

)

,

where
H := {z ∈ C : Im z > 0}.

Theorem 13.1 (Meromorphic Functions Form a Field). Let D ⊂ C be open
and connected. Then the meromorphic functions on D, where we define
(f + g)(z) = lim

w→z
[f(w) + g(w)] and (fg)(z) = lim

w→z
[f(w)g(w)], form a field.

Theorem 13.2 (Argument Principle). Let D ⊂ C be open and simply con-
nected, let f be meromorphic on D, and let γ be a closed curve in D\(P(f)∪
Z(f)). Then we have

1

2πi

∫

γ

f ′(ζ)

f(ζ)
dζ =

∑

z∈Z(f)

ν(γ, z) ord(f, z)−
∑

z∈P(f)

ν(γ, z) ord(f, z).

Theorem 13.3 (Bifurcation Theorem). Let D ⊂ C be open, let f : D → C

be holomorphic, and suppose that, at z0 ∈ D, the function f attains w0

with multiplicity k ∈ N. Then there exist neighbourhoods V ⊂ D of z0 and
W ⊂ f(V ) of w0 such that, for each w ∈ W \ {w0}, there exist distinct
z1, . . . , zk ∈ V with f(z1) = · · · = f(zk) = w, where f attains w at each zj
with multiplicity one.

Theorem 13.4 (Hurwitz’s Theorem). Let D ⊂ C be open and connected,
let f, f1, f2, . . . : D → C be holomorphic such that (fn)

∞
n=1 converges to f

compactly on D, and suppose that Z(fn) = ∅ for n ∈ N. Then f ≡ 0 or
Z(f) = ∅.

Corollary 13.4.1. Let D ⊂ C be open and connected, let f, f1, f2, . . . :
D → C be holomorphic such that (fn)

∞
n=1 converges to f compactly on D,

and suppose that fn is injective for n ∈ N. Then f is constant or injective.
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Theorem 13.5 (Rouché’s Theorem). Let D ⊂ C be open and simply con-
nected, and let f, g : D → C be holomorphic. Suppose that γ is a closed curve
in D such that int γ = {z ∈ D \ {γ} : ν(γ, z) = 1} and that

|f(ζ)− g(ζ)|< |f(ζ)|

for ζ ∈ {γ}. Then f and g have the same number of zeros in int γ (counting
multiplicity).

Corollary 13.5.1 (Fundamental Theorem of Algebra). Let p be a polyno-
mial with n := deg p ≥ 1. Then p has n zeros (counting multiplicity).

Proposition 14.1 (Harmonic Components). Let D ⊂ C be open, and let
f : D → C be holomorphic. Then Re f and Im f are harmonic.

Theorem 14.1 (Harmonic Conjugates). Let D ⊂ C be open and suppose that
there exists (x0, y0) ∈ D with the following property: for each (x, y) ∈ D, we
have

• (x, t) ∈ D for each t between y and y0 and

• (s, y0) ∈ D for each s between x and x0.

Then every harmonic function on D has a harmonic conjugate.

Corollary 14.1.1. Let D ⊂ C be open, and let u : D → R be harmonic.
Then, for each z0 ∈ D, there is a neighbourhood U ⊂ D of z0 such that u|U
has a harmonic conjugate.

Corollary 14.1.2. Let D ⊂ C be open, and let u : D → R be harmonic.
Then u is infinitely often partially differentiable.

Corollary 14.1.3. Let D ⊂ C be open and connected, and let u : D → R

be harmonic. Then the following are equivalent:

(i) u ≡ 0;

(ii) there exists a nonempty open set U ⊂ D with u|U≡ 0.

Corollary 14.1.4. Let D ⊂ C be open, let u : D → R be harmonic, and let
z0 ∈ D and r > 0 be such that Br[z0] ⊂ D. Then we have

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ) dθ.
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Corollary 14.1.5. Let D ⊂ C be open and connected, and let u : D → R

be harmonic with a local maximum or minimum on D. Then u is constant.

Corollary 14.1.6. Let D ⊂ C be open, connected, and bounded, and let
u : D → R be continuous such that u|D is harmonic. Then u attains its
maximum and minimum over D on ∂D.

Theorem 14.2 (Poisson’s Integral Formula). Let r > 0, and let u : Br[0] →
R be continuous such that u|Br(0) is harmonic. Then

u(z) =

∫ 2π

0

u(reiθ)Pr(re
iθ, z) dθ

holds for all z ∈ Br(0).

Theorem 14.3. Let r > 0, and let f : ∂Br(0) → R be continuous. Define

g : Br[0] → C, z 7→

{

f(z), z ∈ ∂Br(0),
∫ 2π

0
f(reiθ)Pr(re

iθ, z) dθ, z ∈ Br(0).

Then g is continuous and harmonic on Br(0).

Theorem 14.4. Let D ⊂ C be open, and let f : D → C have the mean
value property such that |f | attains a local maximum at z0 ∈ D. Then f is
constant on a neighbourhood of z0.

Corollary 14.4.1. Let D ⊂ C be open, let f : D → R be continuous and
have the mean value property, and suppose that f has a local maximum or
minimum at z0 ∈ D. Then f is constant on a neighbourhood of z0.

Corollary 14.4.2. Let D ⊂ C be open, connected, and bounded, and let
f : D → R be continuous such that f |D has the mean value property. Then
f attains its maximum and minimum on ∂D.

Corollary 14.4.3 (Equivalence of Harmonic and Mean-Value Properties).
Let D ⊂ C be open, and let f : D → R be continuous. Then the following
are equivalent:

(i) f is harmonic;

(ii) f has the mean value property.
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Theorem 17.1 (Conformality at Nondegenerate Points). Let D1, D2 ⊂ C

be open, and let f : D1 → D2 be holomorphic. Then f is angle preserving at
z0 ∈ D1 whenever f ′(z0) 6= 0.

Corollary 17.1.1 (Conformality of Biholomorphic Maps). Let D1, D2 ⊂ C

be open and connected, and let f : D1 → D2 be biholomorphic. Then f is
angle preserving at every point of D1.

Theorem 17.2 (Holomorphic Inverses). Let D1, D2 ⊂ C be open and con-
nected, and let f : D1 → D2 be holomorphic and bijective. Then f is biholo-
morphic and Z(f ′) = ∅.

Corollary 17.2.1. Let D ⊂ C be open and connected, and let f : D → C

be holomorphic and injective. Then Z(f ′) = ∅.

Theorem 17.3 (Riemann Mapping Theorem). Let D ( C be open and
connected and admit holomorphic square roots, and let z0 ∈ D. Then there
is a unique biholomorphic function f : D → D with f(z0) = 0 and f ′(z0) > 0.

Theorem 17.4 (Simply Connected Domains). The following are equivalent
for an open and connected set D ⊂ C:

(i) D is simply connected;

(ii) D admits holomorphic logarithms;

(iii) D admits holomorphic roots;

(iv) D admits holomorphic square roots;

(v) D is all of C or biholomorphically equivalent to D;

(vi) every holomorphic function f : D → C has an antiderivative;

(vii)
∫

γ
f(ζ) dζ = 0 for each holomorphic function f : D → C and each closed

curve γ in D;

(viii) for every holomorphic function f : D → C, we have

ν(γ, z)f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ

for each closed curve γ in D and all z ∈ D \ {γ};

(ix) every harmonic function u : D → R has a harmonic conjugate.

13


