Math 411: Honours Complex Variables
List of Theorems

Theorem 1.1 (C is a Field). The complex numbers are a field. Specifically,
we have:

e (0,0) is the identity element of addition;
o —(z,y) = (—z,—y) forz,y eR;

e (1,0) is the identity element of multiplication;

o (z,y)' = (ﬁyg x{—fyz> for z,y € R with (z,y) # (0,0).

Theorem 2.1 (Cauchy-Riemann Equations). Let D C C be open, and let
z0€ D. Let f: D — C and denote v := Re f, v:=1Im f. Then the following
are equivalent:

(i) f is complex differentiable at zy;

(ii) f is totally differentiable at zy (in the sense of multivariable calculus),
and the Cauchy-Riemann differential equations
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%(ZO) = 8—y(zo) and a—y(zo) = _8_:6(Z0>

hold.

Corollary 2.1.1. Let D C C be open and connected, and let f: D — C be
complex differentiable. Then f is constant on D if and only if f' = 0.

Theorem 3.1 (Radius of Convergence). Let >~ an(z — )" be a com-
plex power series. Then there ezists a unique R € [0, 00] with the following
properties:

o > % jan(z — z)" converges absolutely for each z € Br(z);

e for eachr € [0, R), the seriesy .~ a,(z—2)™ converges uniformly on
Bz ={z€C:|z—2|<r};

o > an(z — 20)" diverges for each z ¢ Bg[z).



Moreover, R can be computed via the Cauchy—Hadamard formula:
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It is called the radius of convergence for Y~ ", an(z — zo)".

Theorem 3.2 (Term-by-Term Differentiation). Let "> ja,(z — )" be a
complex power series with radius of convergence R. Then

f:Bgr(z0) = C, 2z ian(z —2z)"

is complex differentiable at each point z € Bgr(zo) with

(0.]
= Z nan(z — 2)" .
n=1

Corollary 3.2.1 (Higher Derivatives of Power Series). Let Y7 a,(z — 2)"
be a complex power series with radius of convergence R. Then

f: Bgr(20) — C, zHZan z—2z)"
is infinitely often complex differentiable on Bg(zg) with
f®(z Znn—l (n—k+ Dap(z — 20)" "
n=~k

for z € Br(29) and k € N. In particular, when z = z, we see that

1 n
ap = af( )(ZO)
holds for each n € Nj.

Corollary 3.2.2 (Integration of Power Series). Let Y a,(z — 29)" be a
complex power series with radius of convergence R. Then

F: Br(z) — C, zl—>z (2 — 2)"*?



is complex differentiable on Bg(zp) with

F'(z) = Z an(z — z)"

for z € Br(2o).

Theorem 4.1 (Antiderivative Theorem). Let D C C be open and connected
and let f: D — C be continuous. Then the following are equivalent:

(i) f has an antiderivative;
(ii) f,y f(¢)d¢ =0 for any closed, piecewise smooth curve 7 in D;

(iii) for any piecewise smooth curve v in D, the value of fv f depends only
on the inital point and the endpoint of ~y.

Theorem 5.1 (Goursat’s Lemma). Let D C C be open, let f: D — C be
holomorphic, and let A C D be a triangle. Then we have

/ £(0)dc¢ = 0.
OA

Theorem 5.2. Let D C C be open and star shaped with center zy, and let
f: D — C be continuous such that

/ Q)¢ =0
OA

for each triangle A C D with zy as a vertex. Then f has an antiderivative.

Corollary 5.2.1. Let D C C be open and star shaped, and let f: D — C
be holomorphic. Then f has an antiderivative.

Corollary 5.2.2. Let D C C be open, and let f: D — C be holomorphic.
Then, for each zy € D, there exists an open neighbourhood U C D of z; such
that f|y has an antiderivative.

Corollary 5.2.3 (Cauchy’s Integral Theorem for Star-Shaped Domains).
Let D C C be open and star shaped, and let f: D — C be holomorphic.
Then fﬁ/ f(¢)d¢ = 0 holds for each closed curve « in D.



Theorem 5.3 (Cauchy’s Integral Formula for Circles). Let D C C be open,
let f: D — C be holomorphic, and let zy € D and r > 0 be such that
B,[z0] € D. Then we have

f) =5 MO o

n 271 9B (20) C— z

for all z € B, (2).

Corollary 5.3.1 (Mean Value Equation). Let D C C be open, let f: D — C
be holomorphic, and let zy € D and r > 0 be such that B,[2] C D. Then

we have
1 27

f(z0) = o i f(zo +re')dt.

Theorem 5.4 (Higher Derivatives of Holomorphic Functions). Let D C C
be open, let zyg € D and r > 0 be such that B,.|z0] C D, and let f: D — C be
continuous such that

. /()

2mi 0B, (20) C — 7

d¢

holds for all z € B,(zy). Then f is infinitely often complex differentiable on
B,(z0) and satisfies

) 2mi /63,.(20) (¢ — 2t “ )

holds for all z € B,(z) and n € Ny.

Corollary 5.4.1 (Generalized Cauchy Integral Formula). Let D C C be
open, and let f: D — C be holomorphic. Then f is infinitely often complex
differentiable on D. Moreover, for any zo € D and r > 0 such that B, [z C
D, the generalized Cauchy integral formula holds, i.e.

e = 2mi /63,.(20) (¢ —z)n+! “

for all z € B,.(2) and n € Ny.

Theorem 5.5 (Characterizations of Holomorphic Functions). Let D C C be
open, and let f: D — C be continuous. Then the following are equivalent:
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(i) f is holomorphic;

(ii) the Morera condition holds, i.e. faA f(¢)d¢ = 0 for each triangle A C
D;

(iii) for each zy € D and r > 0 with B,[z] C D, we have

o /()
f2) = o /a o

for z € B.(20);

(iv) for each zy € D, there exists r > 0 with B,[z] C D and

(oo L[
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dg

for z € B.(20);
(v) f is infinitely often complex differentiable on D;

(vi) for each zy € D, there exists an open neighbourhood U C D of zy such
that f has an antiderivative on U.

Theorem 5.6 (Liouville’s Theorem). Let f: C — C be a bounded entire
function. Then f is constant.

Corollary 5.6.1 (Fundamental Theorem of Algebra). Let p be a non-constant
polynomial with complex coefficients. Then p has a zero.

Theorem 6.1 (Uniform Convergence Preserves Continuity). Let D C C be
open, and let (f,)5, be a sequence of continuous, C-valued functions on D
converging uniformly on D to f: D — C. Then f is continuous.

Theorem 6.2 (Weierstrall Theorem). Let D C C be open, let fi, fo, ... :
D — C be holomorphic such that (f,)>2, converges to f: D — C compactly.

Then f is holomorphic, and (f,gk));’f:l converges compactly to f* for each
ke N.

Theorem 6.3 (Power Series for Holomorphic Functions). Let D C C be
open. Then the following are equivalent for f: D — C:



(i) f is holomorphic;

(ii) for each zy € D, there exists r > 0 with B,(zy) C D and ag, ay,as, ... €
C such that f(z) =Y " qan(z — 20)" for all z € B,(z);

(ili) for each zy € D and r > 0 with B,(z)) C D, we have

< f) (5,
f) = By

n

for all z € B,(z).

Theorem 7.1 (Identity Theorem). Let D C C be open and connected, and
let f,g: D — C be holomorphic. Then the following are equivalent:

(i) f =g
(i) the set {z € D: f(z) = g(2)} has a cluster point in D;
(iii) there exists 2o € D such that f™(z) = g™ (z) for all n € Ny.

Theorem 7.2 (Open Mapping Theorem). Let D C C be open and connected,
and let f: D — C be holomorphic and not constant. Then f(D) C C is open
and connected.

Theorem 7.3 (Maximum Modulus Principle). Let D C C be open and
connected, and let f: D — C be holomorphic such that the function

fED—=C 2 [f(2)]

attains a local maximum on D. Then f is constant.

Corollary 7.3.1. Let D C C be open and connected, and let f: D — C be
holomorphic such that | f| attains a local minimum on D. Then f is constant
or f has a zero.

Corollary 7.3.2 (Maximum Modulus Principle for Bounded Domains). Let
D c C be open, connected, and bounded, and let f: D — C be continuous
such that f|p is holomorphic. Then |f| attains its maximum over D on 0D.



Theorem 7.4 (Schwarz’s Lemma). Let f: D — D be holomorphic such that
f(0) =0. Then one has

f(2)|<|z| forzeD  and  |f(0)< 1.

Moreover, if there exists zg € D\ {0} such that | f(20)|= |20| or if | f'(0)|=1,
then there exists ¢ € C with |c|=1 such that f(z) = cz for z € D.

Corollary 7.4.1. Let f: D — D be biholomorphic such that f(0) = 0. Then
there exists ¢ € C with |¢|= 1 such that f(z) = cz for z € D.

Theorem 7.5 (Biholomorphisms of D). Let f: D — D be biholomorphic.
Then there ezist w € D and ¢ € 0D with f(z) = cow(z) for z € D.

Theorem 7.6 (Riemann’s Removability Condition). Let D C C be open,
let f: D — C be holomorphic, and let zy € C\ D be an isolated singularity
for f. Then the following are equivalent:

(1) 2o is removable;
(i) there is a continuous function g: D U {z} — C such that g|p= f;
(ili) there exists € > 0 with B.(z0) \ {20} C D such that f is bounded on

Be(20) \ {20}

Theorem 8.1 (Poles). Let D C C be open, let f: D — C be holomorphic,
and let zg € C\ D be an isolated singularity of f. Then zy is a pole of f <=
there exist a unique k € N and a holomorphic function g: DU{z} — C such
that g(zo) # 0 and

f) =2

(2 — 20)"

for z € D.

Theorem 8.2 (Casorati-Weierstrafl Theorem). Let D C C be open, let f:
D — C be holomorphic, and let zg € C\ D be an isolated singularity of f.
Then zy is essential <= f(B(20) N D) = C for each € > 0.

Theorem 9.1 (Cauchy’s Integral Theorem for Annuli). Let zy € C, let
r,p,P, R € [0,00] be such that r < p < P < R, and let f: A, r(z) — C be
holomorphic. Then we have

/ £(0) dc = £(0) d.
OBp(20) 0B,(z0)



Theorem 9.2 (Laurent Decomposition). Let zyp € C, let r, R € [0,00] be
such that r < R, and let f: A, r(20) = C be holomorphic. Then there exists
a holomorphic function

g: Br(z9) = C and  h:C\ B,[2] — C

with f = g+h on A, g(20). Moreover, h can be chosen such that lim h(z) =

|z]—00
0, @n which case g and h are uniquely determined.

Theorem 9.3 (Laurent Coefficients). Let zy € C, let r, R € [0, 00] be such
that r < R, and let f: A, g(20) — C be holomorphic. Then f has a repre-

sentation
o

f(2) =Y anlz—2)"

n=—oo

for z € A, r(20) as a Laurent series, which converges uniformly and absolutely
on compact subsets of A, r(z0). Moreover, for everyn € Z and p € (r, R),
the coefficients a,, are uniquely determined as

L Qo

2 9B, () (€ — 20)" 1

Corollary 9.3.1. Let zy € C, let » > 0, and let f: B.(z0) \ {20} — C be
holomorphic with Laurent representation f(z) = >~ a,(z — 2z)". Then
the singularity 2y of f is

(i) removable if and only if a,, = 0 for n < 0;
(ii) a pole of order k € N if and only if a_j # 0 and a,, = 0 for all n < —Fk;
(iii) essential if and only if a,, # 0 for infinitely many n < 0.

Proposition 10.1. Let v be a closed curve in C, and let z € C\ {v}. Then
v(v,z2) € Z.

Proposition 10.2 (Winding Numbers Are Locally Constant). Let v be a
closed curve in C. Then:

(i) the map
C\{7} =C, zmv(y,2)

1s locally constant,



(ii) there exists R > 0 such that C\ Bg[0] C ext~.

Theorem 11.1 (Cauchy’s Integral Formula). Let D C C be open, let f :
D — C be holomorphic, and let v be a closed curve in D that is homologous
to zero. Then, forn € Ny and z € D\ {v}, we have

0.50) = g [ A e

Theorem 11.2 (Cauchy’s Integral Theorem). Let D C C be open, let f:
D — C be holomorphic, and let v be a closed curve in D that is homologous
to zero. Then fv f(¢)d¢ =0.

Corollary 11.2.1. Let D be an open, connected subset of C. Then D is
simply connected <= every holomorphic function on D has an antideriva-
tive.

Corollary 11.2.2 (Holomorphic Logarithms). A simply connected domain
admits holomorphic logarithms.

Corollary 11.2.3 (Holomorphic Roots). A simply connected domain admits
holomorphic roots.

Theorem 12.1 (Residue Theorem). Let D C C be open and simply con-
nected, 21, ..., 2z, € D be such that z; # z, for j # k, f: D\{z1,...,2,} = C
be holomorphic, and ~y be a closed curve in D\ {z1,...,z,}. Then we have

[ FQdc = 2mi 3" vl ) xes(s. ).

Corollary 12.1.1. Let D C C be open and simply connected, f: D — C
be holomorphic, and v be a closed curve in D. Then we have

.9 06) = o [ T g

for z € D\ {7}

Proposition 12.1 (Rational Trigonometric Polynomials). Let p and q be
polynomials of two real variables such that q(xz,y) # 0 for all (z,y) € R? with
2? +y?> =1. Then we have

/27r p(cost,sint)
0

q(cost,sint)

dt = 2mi Z res(f, z),

zeD



where

1 1 1 1
o) w(0)
1) =5 1\ 1 Y
1(5(+2) 5 (-2))
Proposition 12.2 (Rational Functions). Let p and q be polynomials of one
real variable with deg q > degp + 2 and such that q(z) # 0 for x € R. Then

we have * ()
y4¢Y . b
—~ dx = 2mi g res (—,z) ,
/_oo q(x) = \q

H:={2€C:Imz > 0}.

where

Theorem 13.1 (Meromorphic Functions Form a Field). Let D C C be open
and connected. Then the meromorphic functions on D, where we define

(7 +9)(=) = m[f(w) + g(w)] and (fg)(z) = I [f(w)g(w)]. form a ficld

Theorem 13.2 (Argument Principle). Let D C C be open and simply con-
nected, let f be meromorphic on D, and let v be a closed curve in D\ (P(f)U
Z(f)). Then we have

L) . _
2—m/y 0 d(—zezz: v(7y, z)ord(f,z) — Z v(7, z)ord(f, 2).

(f) z€P(f)

Theorem 13.3 (Bifurcation Theorem). Let D C C be open, let f: D — C
be holomorphic, and suppose that, at zo € D, the function f attains wq
with multiplicity k € N. Then there exist neighbourhoods V- C D of zy and
W c f(V) of wy such that, for each w € W \ {wo}, there exist distinct
2,2, € Vowith f(z1) = -+ = f(z,) = w, where f attains w at each z;
with multiplicity one.

Theorem 13.4 (Hurwitz’s Theorem). Let D C C be open and connected,
let f,f1,f2,...: D — C be holomorphic such that (f,)5%, converges to f
compactly on D, and suppose that Z(f,) = @ forn € N. Then f = 0 or

Z(f) = @.

Corollary 13.4.1. Let D C C be open and connected, let f, fi, fa,...:
D — C be holomorphic such that (f,,)>2; converges to f compactly on D,
and suppose that f,, is injective for n € N. Then f is constant or injective.
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Theorem 13.5 (Rouché’s Theorem). Let D C C be open and simply con-
nected, and let f,g: D — C be holomorphic. Suppose that v is a closed curve
in D such that inty = {z € D\ {7} : v(v,2) = 1} and that

/() = 9(O)I< | F(Q)]

for ¢ € {v}. Then f and g have the same number of zeros in int~y (counting
multiplicity).

Corollary 13.5.1 (Fundamental Theorem of Algebra). Let p be a polyno-
mial with n := degp > 1. Then p has n zeros (counting multiplicity).

Proposition 14.1 (Harmonic Components). Let D C C be open, and let
f: D — C be holomorphic. Then Re f and Im f are harmonic.

Theorem 14.1 (Harmonic Conjugates). Let D C C be open and suppose that
there exists (xg,yo) € D with the following property: for each (x,y) € D, we
have

o (x,t) € D for each t between y and yo and

e (s,y0) € D for each s between x and xy.
Then every harmonic function on D has a harmonic conjugate.

Corollary 14.1.1. Let D C C be open, and let u: D — R be harmonic.
Then, for each zg € D, there is a neighbourhood U C D of 2, such that u|y
has a harmonic conjugate.

Corollary 14.1.2. Let D C C be open, and let u: D — R be harmonic.
Then w is infinitely often partially differentiable.

Corollary 14.1.3. Let D C C be open and connected, and let u: D — R
be harmonic. Then the following are equivalent:

(i) u=0;
(ii) there exists a nonempty open set U C D with u|y= 0.

Corollary 14.1.4. Let D C C be open, let u: D — R be harmonic, and let
2o € D and r > 0 be such that B,[z] C D. Then we have

1

2T
u(zp) = %/0 u(zo + 7€) df.
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Corollary 14.1.5. Let D C C be open and connected, and let u: D — R
be harmonic with a local maximum or minimum on D. Then u is constant.

Corollary 14.1.6. Let D C C be open, connected, and bounded, and let
u: D — R be continuous such that u|p is harmonic. Then u attains its
maximum and minimum over D on 0D.

Theorem 14.2 (Poisson’s Integral Formula). Let r > 0, and let u: B,[0] —
R be continuous such that u|p, () is harmonic. Then

u(z)z/oﬂu(rew)Pr(rew,z) do

holds for all z € B,(0).
Theorem 14.3. Let r > 0, and let f: 0B,(0) — R be continuous. Define

f(2), z € 0B,(0),

g: BT[O] - C’ Z { 2m f(’f’ew)Pr(,rEw?Z) dea zZ € BT’(O)

0

Then g is continuous and harmonic on B, (0).

Theorem 14.4. Let D C C be open, and let f: D — C have the mean
value property such that |f| attains a local mazimum at zg € D. Then f is
constant on a neighbourhood of zy.

Corollary 14.4.1. Let D C C be open, let f: D — R be continuous and
have the mean value property, and suppose that f has a local maximum or
minimum at 2y € D. Then f is constant on a neighbourhood of z,.

Corollary 14.4.2. Let D C C be open, connected, and bounded, and let
f: D — R be continuous such that f|p has the mean value property. Then
f attains its maximum and minimum on 0D.

Corollary 14.4.3 (Equivalence of Harmonic and Mean-Value Properties).
Let D C C be open, and let f: D — R be continuous. Then the following
are equivalent:

(i) f is harmonic;

(ii) f has the mean value property.
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Theorem 17.1 (Conformality at Nondegenerate Points). Let Dy, Dy C C

be open, and let f: Dy — Dy be holomorphic. Then f is angle preserving at
20 € Dy whenever f'(zy) # 0.

Corollary 17.1.1 (Conformality of Biholomorphic Maps). Let Dy, Dy C C
be open and connected, and let f: D; — D, be biholomorphic. Then f is
angle preserving at every point of D;.

Theorem 17.2 (Holomorphic Inverses). Let Dy, Dy C C be open and con-
nected, and let f: Dy — Dy be holomorphic and bijective. Then f is biholo-
morphic and Z(f") = &.

Corollary 17.2.1. Let D C C be open and connected, and let f: D — C
be holomorphic and injective. Then Z(f’") = @.

Theorem 17.3 (Riemann Mapping Theorem). Let D C C be open and
connected and admit holomorphic square roots, and let zo € D. Then there
is a unique biholomorphic function f: D — D with f(z) = 0 and f'(z) > 0.

Theorem 17.4 (Simply Connected Domains). The following are equivalent
for an open and connected set D C C:

(i) D is simply connected;
(ii) D admits holomorphic logarithms;

(iii) D admits holomorphic roots;

(v) D is all of C or biholomorphically equivalent to D;

(vi

)
)
)
(iv) D admits holomorphic square roots;
)
) every holomorphic function f: D — C has an antiderivative;
)

(vii f,y f(¢)d¢ = 0 for each holomorphic function f: D — C and each closed
curve vy in D;

(viii) for every holomorphic function f: D — C, we have

v = 5 [ L ac

for each closed curve v in D and all z € D\ {v};

(ix) every harmonic function w: D — R has a harmonic conjugate.
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