Math 411: Honours Complex Variables List of Theorems

Theorem 1.1 (\mathbb{C} is a Field). The complex numbers are a field. Specifically, we have:

- (0,0) is the identity element of addition;
- -(x,y) = (-x,-y) for $x, y \in \mathbb{R}$;
- (1,0) is the identity element of multiplication;

•
$$(x,y)^{-1} = \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right)$$
 for $x, y \in \mathbb{R}$ with $(x,y) \neq (0,0)$.

Theorem 2.1 (Cauchy–Riemann Equations). Let $D \subset \mathbb{C}$ be open, and let $z_0 \in D$. Let $f: D \to \mathbb{C}$ and denote $u := \operatorname{Re} f$, $v := \operatorname{Im} f$. Then the following are equivalent:

- (i) f is complex differentiable at z_0 ;
- (ii) f is totally differentiable at z_0 (in the sense of multivariable calculus), and the Cauchy-Riemann differential equations

$$\frac{\partial u}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0) \qquad and \qquad \frac{\partial u}{\partial y}(z_0) = -\frac{\partial v}{\partial x}(z_0)$$

hold.

Corollary 2.1.1. Let $D \subset \mathbb{C}$ be open and connected, and let $f: D \to \mathbb{C}$ be complex differentiable. Then f is constant on D if and only if $f' \equiv 0$.

Theorem 3.1 (Radius of Convergence). Let $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ be a complex power series. Then there exists a unique $R \in [0, \infty]$ with the following properties:

- $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges absolutely for each $z \in B_R(z_0)$;
- for each $r \in [0, R)$, the series $\sum_{n=0}^{\infty} a_n (z z_0)^n$ converges uniformly on $B_r[z_0] := \{z \in \mathbb{C} : |z z_0| \le r\};$
- $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ diverges for each $z \notin B_R[z_0]$.

Moreover, R can be computed via the Cauchy–Hadamard formula:

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

It is called the radius of convergence for $\sum_{n=0}^{\infty} a_n (z-z_0)^n$.

Theorem 3.2 (Term-by-Term Differentiation). Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a complex power series with radius of convergence R. Then

$$f: B_R(z_0) \to \mathbb{C}, \quad z \mapsto \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

is complex differentiable at each point $z \in B_R(z_0)$ with

$$f'(z) = \sum_{n=1}^{\infty} na_n (z - z_0)^{n-1}.$$

Corollary 3.2.1 (Higher Derivatives of Power Series). Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a complex power series with radius of convergence R. Then

$$f: B_R(z_0) \to \mathbb{C}, \quad z \mapsto \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

is infinitely often complex differentiable on $B_R(z_0)$ with

$$f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n(z-z_0)^{n-k}.$$

for $z \in B_R(z_0)$ and $k \in \mathbb{N}$. In particular, when $z = z_0$ we see that

$$a_n = \frac{1}{n!} f^{(n)}(z_0)$$

holds for each $n \in \mathbb{N}_0$.

Corollary 3.2.2 (Integration of Power Series). Let $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ be a complex power series with radius of convergence R. Then

$$F: B_R(z_0) \to \mathbb{C}, \quad z \mapsto \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-z_0)^{n+1}$$

is complex differentiable on $B_R(z_0)$ with

$$F'(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

for $z \in B_R(z_0)$.

Theorem 4.1 (Antiderivative Theorem). Let $D \subset \mathbb{C}$ be open and connected and let $f: D \to \mathbb{C}$ be continuous. Then the following are equivalent:

- (i) f has an antiderivative;
- (ii) $\int_{\gamma} f(\zeta) d\zeta = 0$ for any closed, piecewise smooth curve γ in D;
- (iii) for any piecewise smooth curve γ in D, the value of $\int_{\gamma} f$ depends only on the initial point and the endpoint of γ .

Theorem 5.1 (Goursat's Lemma). Let $D \subset \mathbb{C}$ be open, let $f : D \to \mathbb{C}$ be holomorphic, and let $\Delta \subset D$ be a triangle. Then we have

$$\int_{\partial\Delta} f(\zeta) \, d\zeta = 0.$$

Theorem 5.2. Let $D \subset \mathbb{C}$ be open and star shaped with center z_0 , and let $f: D \to \mathbb{C}$ be continuous such that

$$\int_{\partial\Delta} f(\zeta) \, d\zeta = 0$$

for each triangle $\Delta \subset D$ with z_0 as a vertex. Then f has an antiderivative.

Corollary 5.2.1. Let $D \subset \mathbb{C}$ be open and star shaped, and let $f: D \to \mathbb{C}$ be holomorphic. Then f has an antiderivative.

Corollary 5.2.2. Let $D \subset \mathbb{C}$ be open, and let $f: D \to \mathbb{C}$ be holomorphic. Then, for each $z_0 \in D$, there exists an open neighbourhood $U \subset D$ of z_0 such that $f|_U$ has an antiderivative.

Corollary 5.2.3 (Cauchy's Integral Theorem for Star-Shaped Domains). Let $D \subset \mathbb{C}$ be open and star shaped, and let $f: D \to \mathbb{C}$ be holomorphic. Then $\int_{\gamma} f(\zeta) d\zeta = 0$ holds for each closed curve γ in D. **Theorem 5.3** (Cauchy's Integral Formula for Circles). Let $D \subset \mathbb{C}$ be open, let $f: D \to \mathbb{C}$ be holomorphic, and let $z_0 \in D$ and r > 0 be such that $B_r[z_0] \subset D$. Then we have

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

for all $z \in B_r(z_0)$.

Corollary 5.3.1 (Mean Value Equation). Let $D \subset \mathbb{C}$ be open, let $f: D \to \mathbb{C}$ be holomorphic, and let $z_0 \in D$ and r > 0 be such that $B_r[z_0] \subset D$. Then we have

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

Theorem 5.4 (Higher Derivatives of Holomorphic Functions). Let $D \subset \mathbb{C}$ be open, let $z_0 \in D$ and r > 0 be such that $B_r[z_0] \subset D$, and let $f: D \to \mathbb{C}$ be continuous such that

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{\zeta - z} \, d\zeta$$

holds for all $z \in B_r(z_0)$. Then f is infinitely often complex differentiable on $B_r(z_0)$ and satisfies

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$
(*)

holds for all $z \in B_r(z_0)$ and $n \in \mathbb{N}_0$.

Corollary 5.4.1 (Generalized Cauchy Integral Formula). Let $D \subset \mathbb{C}$ be open, and let $f: D \to \mathbb{C}$ be holomorphic. Then f is infinitely often complex differentiable on D. Moreover, for any $z_0 \in D$ and r > 0 such that $B_r[z_0] \subset D$, the generalized Cauchy integral formula holds, i.e.

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{(\zeta - z)^{n+1}} \, d\zeta$$

for all $z \in B_r(z_0)$ and $n \in \mathbb{N}_0$.

Theorem 5.5 (Characterizations of Holomorphic Functions). Let $D \subset \mathbb{C}$ be open, and let $f: D \to \mathbb{C}$ be continuous. Then the following are equivalent:

- (i) f is holomorphic;
- (ii) the Morera condition holds, i.e. ∫_{∂Δ} f(ζ) dζ = 0 for each triangle Δ ⊂ D;
- (iii) for each $z_0 \in D$ and r > 0 with $B_r[z_0] \subset D$, we have

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

for $z \in B_r(z_0)$;

(iv) for each $z_0 \in D$, there exists r > 0 with $B_r[z_0] \subset D$ and

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{\zeta - z} \, d\zeta$$

for $z \in B_r(z_0)$;

- (v) f is infinitely often complex differentiable on D;
- (vi) for each $z_0 \in D$, there exists an open neighbourhood $U \subset D$ of z_0 such that f has an antiderivative on U.

Theorem 5.6 (Liouville's Theorem). Let $f : \mathbb{C} \to \mathbb{C}$ be a bounded entire function. Then f is constant.

Corollary 5.6.1 (Fundamental Theorem of Algebra). Let p be a non-constant polynomial with complex coefficients. Then p has a zero.

Theorem 6.1 (Uniform Convergence Preserves Continuity). Let $D \subset \mathbb{C}$ be open, and let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous, \mathbb{C} -valued functions on Dconverging uniformly on D to $f: D \to \mathbb{C}$. Then f is continuous.

Theorem 6.2 (Weierstraß Theorem). Let $D \subset \mathbb{C}$ be open, let f_1, f_2, \ldots : $D \to \mathbb{C}$ be holomorphic such that $(f_n)_{n=1}^{\infty}$ converges to $f: D \to \mathbb{C}$ compactly. Then f is holomorphic, and $(f_n^{(k)})_{n=1}^{\infty}$ converges compactly to $f^{(k)}$ for each $k \in \mathbb{N}$.

Theorem 6.3 (Power Series for Holomorphic Functions). Let $D \subset \mathbb{C}$ be open. Then the following are equivalent for $f: D \to \mathbb{C}$:

- (i) f is holomorphic;
- (ii) for each $z_0 \in D$, there exists r > 0 with $B_r(z_0) \subset D$ and $a_0, a_1, a_2, \ldots \in \mathbb{C}$ such that $f(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n$ for all $z \in B_r(z_0)$;
- (iii) for each $z_0 \in D$ and r > 0 with $B_r(z_0) \subset D$, we have

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

for all $z \in B_r(z_0)$.

Theorem 7.1 (Identity Theorem). Let $D \subset \mathbb{C}$ be open and connected, and let $f, g: D \to \mathbb{C}$ be holomorphic. Then the following are equivalent:

- (i) f = g;
- (ii) the set $\{z \in D : f(z) = g(z)\}$ has a cluster point in D;
- (iii) there exists $z_0 \in D$ such that $f^{(n)}(z_0) = g^{(n)}(z_0)$ for all $n \in \mathbb{N}_0$.

Theorem 7.2 (Open Mapping Theorem). Let $D \subset \mathbb{C}$ be open and connected, and let $f: D \to \mathbb{C}$ be holomorphic and not constant. Then $f(D) \subset \mathbb{C}$ is open and connected.

Theorem 7.3 (Maximum Modulus Principle). Let $D \subset \mathbb{C}$ be open and connected, and let $f: D \to \mathbb{C}$ be holomorphic such that the function

$$|f|: D \to \mathbb{C}, \quad z \mapsto |f(z)|$$

attains a local maximum on D. Then f is constant.

Corollary 7.3.1. Let $D \subset \mathbb{C}$ be open and connected, and let $f: D \to \mathbb{C}$ be holomorphic such that |f| attains a local minimum on D. Then f is constant or f has a zero.

Corollary 7.3.2 (Maximum Modulus Principle for Bounded Domains). Let $D \subset \mathbb{C}$ be open, connected, and bounded, and let $f: \overline{D} \to \mathbb{C}$ be continuous such that $f|_D$ is holomorphic. Then |f| attains its maximum over \overline{D} on ∂D .

Theorem 7.4 (Schwarz's Lemma). Let $f : \mathbb{D} \to \overline{\mathbb{D}}$ be holomorphic such that f(0) = 0. Then one has

 $|f(z)| \le |z|$ for $z \in \mathbb{D}$ and $|f'(0)| \le 1$.

Moreover, if there exists $z_0 \in \mathbb{D} \setminus \{0\}$ such that $|f(z_0)| = |z_0|$ or if |f'(0)| = 1, then there exists $c \in \mathbb{C}$ with |c| = 1 such that f(z) = cz for $z \in \mathbb{D}$.

Corollary 7.4.1. Let $f: \mathbb{D} \to \mathbb{D}$ be biholomorphic such that f(0) = 0. Then there exists $c \in \mathbb{C}$ with |c|=1 such that f(z)=cz for $z \in \mathbb{D}$.

Theorem 7.5 (Biholomorphisms of \mathbb{D}). Let $f : \mathbb{D} \to \mathbb{D}$ be biholomorphic. Then there exist $w \in \mathbb{D}$ and $c \in \partial \mathbb{D}$ with $f(z) = c\phi_w(z)$ for $z \in \mathbb{D}$.

Theorem 7.6 (Riemann's Removability Condition). Let $D \subset \mathbb{C}$ be open, let $f: D \to \mathbb{C}$ be holomorphic, and let $z_0 \in \mathbb{C} \setminus D$ be an isolated singularity for f. Then the following are equivalent:

- (i) z_0 is removable;
- (ii) there is a continuous function $g: D \cup \{z_0\} \to \mathbb{C}$ such that $g|_D = f$;
- (iii) there exists $\epsilon > 0$ with $B_{\epsilon}(z_0) \setminus \{z_0\} \subset D$ such that f is bounded on $B_{\epsilon}(z_0) \setminus \{z_0\}.$

Theorem 8.1 (Poles). Let $D \subset \mathbb{C}$ be open, let $f: D \to \mathbb{C}$ be holomorphic, and let $z_0 \in \mathbb{C} \setminus D$ be an isolated singularity of f. Then z_0 is a pole of $f \iff$ there exist a unique $k \in \mathbb{N}$ and a holomorphic function $g: D \cup \{z_0\} \to \mathbb{C}$ such that $g(z_0) \neq 0$ and

$$f(z) = \frac{g(z)}{(z - z_0)^k}$$

for $z \in D$.

Theorem 8.2 (Casorati–Weierstraß Theorem). Let $D \subset \mathbb{C}$ be open, let $f : D \to \mathbb{C}$ be holomorphic, and let $z_0 \in \mathbb{C} \setminus D$ be an isolated singularity of f. Then z_0 is essential $\iff \overline{f(B_{\epsilon}(z_0) \cap D)} = \mathbb{C}$ for each $\epsilon > 0$.

Theorem 9.1 (Cauchy's Integral Theorem for Annuli). Let $z_0 \in \mathbb{C}$, let $r, \rho, P, R \in [0, \infty]$ be such that $r < \rho < P < R$, and let $f : A_{r,R}(z_0) \to \mathbb{C}$ be holomorphic. Then we have

$$\int_{\partial B_{\mathcal{P}}(z_0)} f(\zeta) \, d\zeta = \int_{\partial B_{\rho}(z_0)} f(\zeta) \, d\zeta.$$

Theorem 9.2 (Laurent Decomposition). Let $z_0 \in \mathbb{C}$, let $r, R \in [0, \infty]$ be such that r < R, and let $f: A_{r,R}(z_0) \to \mathbb{C}$ be holomorphic. Then there exists a holomorphic function

$$g: B_R(z_0) \to \mathbb{C}$$
 and $h: \mathbb{C} \setminus B_r[z_0] \to \mathbb{C}$

with f = g + h on $A_{r,R}(z_0)$. Moreover, h can be chosen such that $\lim_{|z|\to\infty} h(z) = 0$, in which case g and h are uniquely determined.

Theorem 9.3 (Laurent Coefficients). Let $z_0 \in \mathbb{C}$, let $r, R \in [0, \infty]$ be such that r < R, and let $f : A_{r,R}(z_0) \to \mathbb{C}$ be holomorphic. Then f has a representation

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

for $z \in A_{r,R}(z_0)$ as a Laurent series, which converges uniformly and absolutely on compact subsets of $A_{r,R}(z_0)$. Moreover, for every $n \in \mathbb{Z}$ and $\rho \in (r, R)$, the coefficients a_n are uniquely determined as

$$a_n = \frac{1}{2\pi i} \int_{\partial B_\rho(z_0)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \, d\zeta.$$

Corollary 9.3.1. Let $z_0 \in \mathbb{C}$, let r > 0, and let $f : B_r(z_0) \setminus \{z_0\} \to \mathbb{C}$ be holomorphic with Laurent representation $f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$. Then the singularity z_0 of f is

- (i) removable if and only if $a_n = 0$ for n < 0;
- (ii) a pole of order $k \in \mathbb{N}$ if and only if $a_{-k} \neq 0$ and $a_n = 0$ for all n < -k;
- (iii) essential if and only if $a_n \neq 0$ for infinitely many n < 0.

Proposition 10.1. Let γ be a closed curve in \mathbb{C} , and let $z \in \mathbb{C} \setminus \{\gamma\}$. Then $\nu(\gamma, z) \in \mathbb{Z}$.

Proposition 10.2 (Winding Numbers Are Locally Constant). Let γ be a closed curve in \mathbb{C} . Then:

(i) the map

 $\mathbb{C} \setminus \{\gamma\} \to \mathbb{C}, \quad z \mapsto \nu(\gamma, z)$

is locally constant;

(ii) there exists R > 0 such that $\mathbb{C} \setminus B_R[0] \subset \operatorname{ext} \gamma$.

Theorem 11.1 (Cauchy's Integral Formula). Let $D \subset \mathbb{C}$ be open, let $f : D \to \mathbb{C}$ be holomorphic, and let γ be a closed curve in D that is homologous to zero. Then, for $n \in \mathbb{N}_0$ and $z \in D \setminus {\gamma}$, we have

$$\nu(\gamma, z) f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta.$$

Theorem 11.2 (Cauchy's Integral Theorem). Let $D \subset \mathbb{C}$ be open, let $f : D \to \mathbb{C}$ be holomorphic, and let γ be a closed curve in D that is homologous to zero. Then $\int_{\gamma} f(\zeta) d\zeta = 0$.

Corollary 11.2.1. Let *D* be an open, connected subset of \mathbb{C} . Then *D* is simply connected \iff every holomorphic function on *D* has an antiderivative.

Corollary 11.2.2 (Holomorphic Logarithms). A simply connected domain admits holomorphic logarithms.

Corollary 11.2.3 (Holomorphic Roots). A simply connected domain admits holomorphic roots.

Theorem 12.1 (Residue Theorem). Let $D \subset \mathbb{C}$ be open and simply connected, $z_1, \ldots, z_n \in D$ be such that $z_j \neq z_k$ for $j \neq k$, $f: D \setminus \{z_1, \ldots, z_n\} \to \mathbb{C}$ be holomorphic, and γ be a closed curve in $D \setminus \{z_1, \ldots, z_n\}$. Then we have

$$\int_{\gamma} f(\zeta) d\zeta = 2\pi i \sum_{j=1}^{n} \nu(\gamma, z_j) \operatorname{res}(f, z_j).$$

Corollary 12.1.1. Let $D \subset \mathbb{C}$ be open and simply connected, $f: D \to \mathbb{C}$ be holomorphic, and γ be a closed curve in D. Then we have

$$\nu(\gamma, z) f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

for $z \in D \setminus \{\gamma\}$.

Proposition 12.1 (Rational Trigonometric Polynomials). Let p and q be polynomials of two real variables such that $q(x, y) \neq 0$ for all $(x, y) \in \mathbb{R}^2$ with $x^2 + y^2 = 1$. Then we have

$$\int_0^{2\pi} \frac{p(\cos t, \sin t)}{q(\cos t, \sin t)} dt = 2\pi i \sum_{z \in \mathbb{D}} \operatorname{res}(f, z),$$

where

$$f(z) = \frac{1}{iz} \cdot \frac{p\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2i}\left(z-\frac{1}{z}\right)\right)}{q\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2i}\left(z-\frac{1}{z}\right)\right)}.$$

Proposition 12.2 (Rational Functions). Let p and q be polynomials of one real variable with deg $q \ge \deg p + 2$ and such that $q(x) \ne 0$ for $x \in \mathbb{R}$. Then we have

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} dx = 2\pi i \sum_{z \in \mathbb{H}} \operatorname{res}\left(\frac{p}{q}, z\right),$$

where

$$\mathbb{H} := \{ z \in \mathbb{C} : \operatorname{Im} z > 0 \}.$$

Theorem 13.1 (Meromorphic Functions Form a Field). Let $D \subset \mathbb{C}$ be open and connected. Then the meromorphic functions on D, where we define $(f+g)(z) = \lim_{w \to z} [f(w) + g(w)]$ and $(fg)(z) = \lim_{w \to z} [f(w)g(w)]$, form a field.

Theorem 13.2 (Argument Principle). Let $D \subset \mathbb{C}$ be open and simply connected, let f be meromorphic on D, and let γ be a closed curve in $D \setminus (\mathbf{P}(f) \cup \mathbf{Z}(f))$. Then we have

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(\zeta)}{f(\zeta)} d\zeta = \sum_{z \in \mathbf{Z}(f)} \nu(\gamma, z) \operatorname{ord}(f, z) - \sum_{z \in \mathbf{P}(f)} \nu(\gamma, z) \operatorname{ord}(f, z).$$

Theorem 13.3 (Bifurcation Theorem). Let $D \subset \mathbb{C}$ be open, let $f: D \to \mathbb{C}$ be holomorphic, and suppose that, at $z_0 \in D$, the function f attains w_0 with multiplicity $k \in \mathbb{N}$. Then there exist neighbourhoods $V \subset D$ of z_0 and $W \subset f(V)$ of w_0 such that, for each $w \in W \setminus \{w_0\}$, there exist distinct $z_1, \ldots, z_k \in V$ with $f(z_1) = \cdots = f(z_k) = w$, where f attains w at each z_j with multiplicity one.

Theorem 13.4 (Hurwitz's Theorem). Let $D \subset \mathbb{C}$ be open and connected, let $f, f_1, f_2, \ldots : D \to \mathbb{C}$ be holomorphic such that $(f_n)_{n=1}^{\infty}$ converges to fcompactly on D, and suppose that $\mathbf{Z}(f_n) = \emptyset$ for $n \in \mathbb{N}$. Then $f \equiv 0$ or $\mathbf{Z}(f) = \emptyset$.

Corollary 13.4.1. Let $D \subset \mathbb{C}$ be open and connected, let f, f_1, f_2, \ldots : $D \to \mathbb{C}$ be holomorphic such that $(f_n)_{n=1}^{\infty}$ converges to f compactly on D, and suppose that f_n is injective for $n \in \mathbb{N}$. Then f is constant or injective. **Theorem 13.5** (Rouché's Theorem). Let $D \subset \mathbb{C}$ be open and simply connected, and let $f, g: D \to \mathbb{C}$ be holomorphic. Suppose that γ is a closed curve in D such that int $\gamma = \{z \in D \setminus \{\gamma\} : \nu(\gamma, z) = 1\}$ and that

$$|f(\zeta) - g(\zeta)| < |f(\zeta)|$$

for $\zeta \in \{\gamma\}$. Then f and g have the same number of zeros in int γ (counting multiplicity).

Corollary 13.5.1 (Fundamental Theorem of Algebra). Let p be a polynomial with $n := \deg p \ge 1$. Then p has n zeros (counting multiplicity).

Proposition 14.1 (Harmonic Components). Let $D \subset \mathbb{C}$ be open, and let $f: D \to \mathbb{C}$ be holomorphic. Then Re f and Im f are harmonic.

Theorem 14.1 (Harmonic Conjugates). Let $D \subset \mathbb{C}$ be open and suppose that there exists $(x_0, y_0) \in D$ with the following property: for each $(x, y) \in D$, we have

- $(x,t) \in D$ for each t between y and y_0 and
- $(s, y_0) \in D$ for each s between x and x_0 .

Then every harmonic function on D has a harmonic conjugate.

Corollary 14.1.1. Let $D \subset \mathbb{C}$ be open, and let $u: D \to \mathbb{R}$ be harmonic. Then, for each $z_0 \in D$, there is a neighbourhood $U \subset D$ of z_0 such that $u|_U$ has a harmonic conjugate.

Corollary 14.1.2. Let $D \subset \mathbb{C}$ be open, and let $u : D \to \mathbb{R}$ be harmonic. Then u is infinitely often partially differentiable.

Corollary 14.1.3. Let $D \subset \mathbb{C}$ be open and connected, and let $u: D \to \mathbb{R}$ be harmonic. Then the following are equivalent:

(i) $u \equiv 0;$

(ii) there exists a nonempty open set $U \subset D$ with $u|_U \equiv 0$.

Corollary 14.1.4. Let $D \subset \mathbb{C}$ be open, let $u: D \to \mathbb{R}$ be harmonic, and let $z_0 \in D$ and r > 0 be such that $B_r[z_0] \subset D$. Then we have

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) \, d\theta.$$

Corollary 14.1.5. Let $D \subset \mathbb{C}$ be open and connected, and let $u: D \to \mathbb{R}$ be harmonic with a local maximum or minimum on D. Then u is constant.

Corollary 14.1.6. Let $D \subset \mathbb{C}$ be open, connected, and bounded, and let $u: \overline{D} \to \mathbb{R}$ be continuous such that $u|_D$ is harmonic. Then u attains its maximum and minimum over \overline{D} on ∂D .

Theorem 14.2 (Poisson's Integral Formula). Let r > 0, and let $u: B_r[0] \rightarrow \mathbb{R}$ be continuous such that $u|_{B_r(0)}$ is harmonic. Then

$$u(z) = \int_0^{2\pi} u(re^{i\theta}) P_r(re^{i\theta}, z) \, d\theta$$

holds for all $z \in B_r(0)$.

Theorem 14.3. Let r > 0, and let $f: \partial B_r(0) \to \mathbb{R}$ be continuous. Define

$$g: B_r[0] \to \mathbb{C}, \quad z \mapsto \begin{cases} f(z), & z \in \partial B_r(0), \\ \int_0^{2\pi} f(re^{i\theta}) P_r(re^{i\theta}, z) \, d\theta, & z \in B_r(0). \end{cases}$$

Then g is continuous and harmonic on $B_r(0)$.

Theorem 14.4. Let $D \subset \mathbb{C}$ be open, and let $f : D \to \mathbb{C}$ have the mean value property such that |f| attains a local maximum at $z_0 \in D$. Then f is constant on a neighbourhood of z_0 .

Corollary 14.4.1. Let $D \subset \mathbb{C}$ be open, let $f: D \to \mathbb{R}$ be continuous and have the mean value property, and suppose that f has a local maximum or minimum at $z_0 \in D$. Then f is constant on a neighbourhood of z_0 .

Corollary 14.4.2. Let $D \subset \mathbb{C}$ be open, connected, and bounded, and let $f: \overline{D} \to \mathbb{R}$ be continuous such that $f|_D$ has the mean value property. Then f attains its maximum and minimum on ∂D .

Corollary 14.4.3 (Equivalence of Harmonic and Mean-Value Properties). Let $D \subset \mathbb{C}$ be open, and let $f: D \to \mathbb{R}$ be continuous. Then the following are equivalent:

- (i) f is harmonic;
- (ii) f has the mean value property.

Theorem 17.1 (Conformality at Nondegenerate Points). Let $D_1, D_2 \subset \mathbb{C}$ be open, and let $f: D_1 \to D_2$ be holomorphic. Then f is angle preserving at $z_0 \in D_1$ whenever $f'(z_0) \neq 0$.

Corollary 17.1.1 (Conformality of Biholomorphic Maps). Let $D_1, D_2 \subset \mathbb{C}$ be open and connected, and let $f: D_1 \to D_2$ be biholomorphic. Then f is angle preserving at every point of D_1 .

Theorem 17.2 (Holomorphic Inverses). Let $D_1, D_2 \subset \mathbb{C}$ be open and connected, and let $f: D_1 \to D_2$ be holomorphic and bijective. Then f is biholomorphic and $\mathbf{Z}(f') = \emptyset$.

Corollary 17.2.1. Let $D \subset \mathbb{C}$ be open and connected, and let $f: D \to \mathbb{C}$ be holomorphic and injective. Then $\mathbf{Z}(f') = \emptyset$.

Theorem 17.3 (Riemann Mapping Theorem). Let $D \subsetneq \mathbb{C}$ be open and connected and admit holomorphic square roots, and let $z_0 \in D$. Then there is a unique biholomorphic function $f: D \to \mathbb{D}$ with $f(z_0) = 0$ and $f'(z_0) > 0$.

Theorem 17.4 (Simply Connected Domains). The following are equivalent for an open and connected set $D \subset \mathbb{C}$:

- (i) D is simply connected;
- (ii) D admits holomorphic logarithms;
- (iii) D admits holomorphic roots;
- (iv) D admits holomorphic square roots;
- (v) D is all of \mathbb{C} or biholomorphically equivalent to \mathbb{D} ;
- (vi) every holomorphic function $f: D \to \mathbb{C}$ has an antiderivative;
- (vii) $\int_{\gamma} f(\zeta) d\zeta = 0$ for each holomorphic function $f: D \to \mathbb{C}$ and each closed curve γ in D;
- (viii) for every holomorphic function $f: D \to \mathbb{C}$, we have

$$\nu(\gamma, z) f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \, d\zeta$$

for each closed curve γ in D and all $z \in D \setminus {\gamma};$

(ix) every harmonic function $u: D \to \mathbb{R}$ has a harmonic conjugate.