Review of Math 373

1 Linear Programming

Objective function: Linear function (cost) to be minimized.

Constraints: Linear inequalities or equalities on decision variables.

Feasible solution: Decision variables that satisfy the constraints.

Feasible set: Set of all feasible solutions.

Optimal value: Desired minimum.

Optimal solution: A feasible solution that achieves the optimal value.

Optimal set: Set of all optimal solutions.

Cost vector: Vector of cost weights for each decision variable.

Standard form:

- 1. Elimination of free variables.
- 2. Elimination of inequality constraints.

2 Geometry

Polyhedron:

$$\{oldsymbol{x}\in\mathbb{R}^n:oldsymbol{A}oldsymbol{x}\geqoldsymbol{b}\}.$$

Polyhedron in standard form:

$$\{oldsymbol{x}\in\mathbb{R}^n:oldsymbol{A}oldsymbol{x}=oldsymbol{b},oldsymbol{x}\geqoldsymbol{0}\}.$$

Hyperplane:

 $\{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}^{\mathsf{T}} \boldsymbol{x} = b\}.$

Half space:

$$\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}^{\intercal} \boldsymbol{x} \ge b \}.$$

Convex function: $f(t\mathbf{p} + (1-t)\mathbf{q}) \leq tf(\mathbf{p}) + (1-t)f(\mathbf{q})$ for all $t \in [0,1]$, \mathbf{p}, \mathbf{q} . Convex combination: $\sum_{i=1}^{k} t_i \mathbf{x}_i$, where the nonnegative weights t_i sum up to 1. Convex hull: the set of all convex combinations.

Convex set: contains all convex combinations of points p, q in the set.

Absolute values: Minimize $\sum_{i=1}^{n} c_i |x_i|$, where all $c_i \ge 0$:

$$|x_i| \to x_i^+ + x_i^-, \qquad x_i \to x_i^+ - x_i^-.$$

Active constraint: holds with equality.

Extreme point: not a convex combination of two distinct points of the polyhedron.

Vertex: lies on separating hyperplane.

Basic solution: all equality constraints active, for a total of n linearly independent active constraints.

Extreme point=vertex=basic feasible solution.

Adjacent basic solutions in \mathbb{R}^n : share n-1 linearly independent active constraints.

Edge: line segment joining two adjacent basic feasible solutions.

Basic solutions in standard-form (feasible if $x_B \ge 0$):

- i) A_{j_1}, \ldots, A_{j_m} are linearly independent;
- ii) if $i \neq j_1, \ldots, j_m$, then $x_i = 0$.

$$oldsymbol{B} = [oldsymbol{A}_{j_1}, \dots, oldsymbol{A}_{j_m}], \qquad oldsymbol{x}_B = \begin{bmatrix} x_{j_1} \\ dots \\ x_{j_m} \end{bmatrix}$$
 $oldsymbol{x}_B = oldsymbol{B}^{-1}oldsymbol{b}.$

Degenerate: more than n constraints are active at x.

Degenerate polyhedra in standard-form: some zero basic variables.

Contains a line.

- **Theorem 2.7**: Suppose that the polyhedron $P = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} \ge b_i, i = 1, ..., k \}$ is nonempty. Then the following are equivalent:
 - (i) P does not contain a line.
 - (ii) P has at least one extreme point.
- (iii) The set $\{a_1, \ldots, a_k\}$ contains n linearly independent vectors.
- **Theorem 2.9**: Consider the linear programming problem of minimizing $\mathbf{c}^{\mathsf{T}} \mathbf{x}$ over a polyhedron P. Suppose that P has at least one extreme point. Then either the optimal cost equals $-\infty$ or P has an optimal extreme point.
- **Remark**: Nonempty polyhedra that are bounded *or* in standard form always have an extreme point!

3 The Simplex Method

Basic components of *j*th simplex direction (feasible if nondegenerate):

$$\boldsymbol{d}_B = -\boldsymbol{B}^{-1} \boldsymbol{A}_j$$

Reduced cost:

$$\bar{c}_j = c_j + \boldsymbol{c}_B^{\mathsf{T}} \boldsymbol{d}_B = c_j - \boldsymbol{c}_B^{\mathsf{T}} \boldsymbol{B}^{-1} \boldsymbol{A}_j.$$

Reduced cost of basic variable: 0.

Optimality: if $\bar{c} \ge 0$, x is optimal. If x is optimal and nondegenerate, then $\bar{c} \ge 0$.

Phase II: full tableau constructed from negative cost, reduced costs \bar{c} , x_B , and $B^{-1}A$.

Entering variable: negative reduced cost \bar{c}_i .

- Exiting variable: minimize x_{j_i}/u_i , where $\boldsymbol{u} = -\boldsymbol{d}_B = \boldsymbol{B}^{-1}\boldsymbol{A}_j$.
- **Bland's rule:** if there is more than than one choice for the entering or exiting variable, always choose the one with the lowest subscript.

Phase I: look for an initial basic feasible solution by considering the auxillary problem

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^m y_i \\ \text{subject to} & \boldsymbol{A}\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{b}, \\ & \boldsymbol{x}, \boldsymbol{y} \geq \boldsymbol{0}. \end{array}$$

Optimization: omit from the tableau any artificial column that is a positive multiple of another column.

4 Duality

Primal vs. Dual:

minimize	$c^{\intercal}x$		maximize	$m{b}^{\intercal}m{p}$	
subject to	$\boldsymbol{a}_i^{T} \boldsymbol{x} \leq b_i,$	$i \in \mathcal{M}_1,$	subject to	$p_i \leq 0,$	$i \in \mathcal{M}_1,$
	$\boldsymbol{a}_i^{T} \boldsymbol{x} \geq b_i,$	$i \in \mathcal{M}_2,$		$p_i \ge 0,$	$i \in \mathcal{M}_2,$
	$\boldsymbol{a}_i^{T} \boldsymbol{x} = b_i,$	$i \in \mathcal{M}_3,$		p_i free,	$i \in \mathcal{M}_3,$
	$\boldsymbol{x}_{j}\leq0,$	$j \in \mathcal{N}_1,$		$\boldsymbol{A}_{j}^{T}\boldsymbol{p}\geq c_{j},$	$j \in \mathcal{N}_1,$
	$\boldsymbol{x}_j \geq 0,$	$j \in \mathcal{N}_2,$		$\boldsymbol{A}_{j}^{T} \boldsymbol{p} \leq c_{j},$	$j \in \mathcal{N}_2,$
	\boldsymbol{x}_{j} free,	$j \in \mathcal{N}_3,$		$\boldsymbol{A}_{j}^{T}\boldsymbol{p}=c_{j},$	$j \in \mathcal{N}_3.$

	minimize	maximize	
	$\leq b_i$	≤ 0	
constaints	$\geq b_i$	≥ 0	variables
	$= b_i$	free	
	≤ 0	$\geq c_j$	
variables	≥ 0	$ \geq c_j \\ \leq c_j $	constraints
	free	$=c_j$	

$\begin{array}{ c c } Primal \ \ Dual \end{array}$	Finite optimum	Unbounded	Infeasible
Finite optimum	Possible	Impossible	Impossible
Unbounded	Impossible	Impossible	Possible
Infeasible	Impossible	Possible	Possible

Theorem 4.3 (Weak duality): If x is a feasible solution to the primal problem and p is a feasible solution to the dual problem, then

$$p^{\intercal}b \leq c^{\intercal}x$$
 .

- Corollary 4.3.2: Let x and p be feasible solutions to the primal and dual problems, respectively, and suppose that $p^{\mathsf{T}}b = c^{\mathsf{T}}x$. Then x and p are optimal solutions.
- **Theorem 4.4** (Strong duality): If a linear programming problem has an optimal solution, so does its dual, and the respective optimal costs are equal.
- **Theorem 4.5** (Complementary slackness): Let \boldsymbol{x} and \boldsymbol{p} be feasible solutions to the primal and dual problem, respectively. Then \boldsymbol{x} and \boldsymbol{p} are optimal solutions if and only if

$$p_i(\boldsymbol{a}_i^{\mathsf{T}}\boldsymbol{x} - b_i) = 0, \quad for \ all \ i = 1, \dots, m$$

and

$$(c_j - \boldsymbol{A}_j^{\mathsf{T}} \boldsymbol{p}) x_j = 0, \quad \text{for all } j = 1, \dots, n$$

- **Theorem 4.6** (Farkas' lemma): Let A be an $m \times n$ matrix and let $b \in \mathbb{R}^m$. Exactly one of the following alternatives holds:
 - (i) Ax = b has a solution $x \ge 0$;
- (ii) $\mathbf{A}^{\mathsf{T}} \mathbf{p} \geq \mathbf{0}$ has a solution \mathbf{p} with $\mathbf{p}^{\mathsf{T}} \mathbf{b} < 0$.

5 Sensitivity Analysis

Look for conditions under which \boldsymbol{B} remains optimal:

- 1. feasibility: $\boldsymbol{x}_B = \boldsymbol{B}^{-1} \boldsymbol{b} \ge \boldsymbol{0};$
- 2. optimality: $\bar{\boldsymbol{c}}^{\mathsf{T}} = \boldsymbol{c}^{\mathsf{T}} \boldsymbol{c}_B^{\mathsf{T}} \boldsymbol{B}^{-1} \boldsymbol{A} \ge \boldsymbol{0}.$

Dual simplex method ($\bar{c} \ge 0$):

Entering variable: lowest subscript with negative pivot-row entry v_j that minimizes $\bar{c}_j/-v_j$.

Exiting variable: lowest subscript with negative basic variable.