Math 373: Mathematical Programming and Optimization I

Fall, 2023 Assignment 1
September 18, due October 3

1. Suppose that $\left(x_{1}, x_{2}, x_{3}\right)$ is a feasible solution to the linear programming problem

$$
\begin{array}{lr}
\operatorname{minimize} & 4 x_{1}+2 x_{2}+x_{3} \\
\text { subject to } & x_{1}-x_{2}
\end{array} \geq 3,
$$

Let y_{1} and y_{2} be non-negative numbers.
(a) Show that

$$
x_{1}\left(y_{1}+2 y_{2}\right)+x_{2}\left(-y_{1}+y_{2}\right)+x_{3} y_{2} \geq 3 y_{1}+4 y_{2} .
$$

On summing the first constraint multiplied by y_{1} with the second constraint multiplied by y_{2}, we obtain

$$
y_{1}\left(x_{1}-x_{2}\right)+y_{2}\left(2 x_{1}+x_{2}+x_{3}\right) \geq 3 y_{1}+4 y_{2} .
$$

The desired result then follows on rearranging to isolate x_{1}, x_{2}, and x_{3}.
(b) Find constraints on y_{1} and y_{2} so that

$$
4 x_{1}+2 x_{2}+x_{3} \geq x_{1}\left(y_{1}+2 y_{2}\right)+x_{2}\left(-y_{1}+y_{2}\right)+x_{3} y_{2}
$$

at every feasible solution $\left(x_{1}, x_{2}, x_{3}\right)$.
We require that $y_{1}+2 y_{2} \leq 4,-y_{1}+y_{2} \leq 2$, and $y_{2} \leq 1$.
(c) Use parts (a) and (b) to find a lower bound to the optimal cost in terms of only the variables y_{1} and y_{2}.

By transitivity, we find

$$
4 x_{1}+2 x_{2}+x_{3} \geq x_{1}\left(y_{1}+2 y_{2}\right)+x_{2}\left(-y_{1}+y_{2}\right)+x_{3} y_{2} \geq 3 y_{1}+4 y_{2} .
$$

(d) Formulate the linear programming problem in the variables $\left(y_{1}, y_{2}\right)$ that determines the largest possible value for the lower bound to the optimal cost found in part (c).

$$
\begin{aligned}
& \text { maximize } 3 y_{1}+4 y_{2} \\
& \text { subject to } y_{1}+2 y_{2} \leq 4 \text {, } \\
& -y_{1}+y_{2} \leq 2 \text {, } \\
& y_{2} \leq 1 \text {, } \\
& y_{1}, y_{2} \geq 0 .
\end{aligned}
$$

This is known as the dual problem to the original linear programming problem.
2. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on an interval I. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex increasing (but not necessarily differentiable) function on \mathbb{R}. Show that $f \circ g$ is convex on I.
Let $\boldsymbol{p}, \boldsymbol{q} \in I$. Since g is convex on \mathbb{R} we know that

$$
g(t \boldsymbol{p}+(1-t) \boldsymbol{q}) \leq t g(\boldsymbol{p})+(1-t) g(\boldsymbol{q}) .
$$

Since f is increasing and convex on $[g(\boldsymbol{p}), g(\boldsymbol{q})]$:

$$
f(g(t \boldsymbol{p}+(1-t) \boldsymbol{q})) \leq f(t g(\boldsymbol{p})+(1-t) g(\boldsymbol{q})) \leq t f(g(\boldsymbol{p}))+(1-t) f(g(\boldsymbol{q})) .
$$

Hence $f \circ g$ is convex on \mathbb{R}.
3. Let \boldsymbol{A} be an $m \times n$ matrix and let $\boldsymbol{b} \in \mathbb{R}^{m}$. Prove that exactly one of these alternatives holds:
(i) $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has a solution \boldsymbol{x};
(ii) $\boldsymbol{A}^{\top} \boldsymbol{p}=\mathbf{0}$ has a solution \boldsymbol{p} with $\boldsymbol{p}^{\top} \boldsymbol{b} \neq 0$.

Suppose $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has a solution \boldsymbol{x}. If $\boldsymbol{A}^{\top} \boldsymbol{p}=\mathbf{0}$, then

$$
\boldsymbol{p}^{\top} b=\boldsymbol{p}^{\top} \boldsymbol{A} \boldsymbol{x}=\left(\boldsymbol{A}^{\top} p\right)^{\top} \boldsymbol{x}=\mathbf{0}^{\top} \boldsymbol{x}=\mathbf{0} .
$$

Thus (i) $\Rightarrow \overline{(i i)}$.
Alternatively, if $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ does not have a solution \boldsymbol{x}, then $\boldsymbol{b} \notin \operatorname{span}\left\{\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{n}\right\}$. On decomposing $\boldsymbol{b}=\boldsymbol{s}+\boldsymbol{p}$, where $\boldsymbol{s} \in \operatorname{span}\left\{\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{n}\right\}$ and $\boldsymbol{p}^{\boldsymbol{\top}} \boldsymbol{A}=\boldsymbol{0}^{\boldsymbol{\top}}$, it follows that $\boldsymbol{p} \neq \mathbf{0}$. Then $\boldsymbol{p}^{\top} \boldsymbol{b}=\boldsymbol{p}^{\top} \boldsymbol{s}+\boldsymbol{p}^{\top} \boldsymbol{p}=0+|\boldsymbol{p}|^{2}>0$. That is, (i) \Rightarrow (ii).

