Math 373: Mathematical Programming and Optimization I

Fall, 2023Assignment 1September 18, due October 3

1. Suppose that
$$(x_1, x_2, x_3)$$
 is a feasible solution to the linear programming problem

minimize
$$4x_1 + 2x_2 + x_3$$

subject to $x_1 - x_2 \ge 3$,
 $2x_1 + x_2 + x_3 \ge 4$,
 $x_1, x_2, x_3 \ge 0$.

Let y_1 and y_2 be non-negative numbers.

(a) Show that

$$x_1(y_1 + 2y_2) + x_2(-y_1 + y_2) + x_3y_2 \ge 3y_1 + 4y_2.$$

On summing the first constraint multiplied by y_1 with the second constraint multiplied by y_2 , we obtain

$$y_1(x_1 - x_2) + y_2(2x_1 + x_2 + x_3) \ge 3y_1 + 4y_2$$

The desired result then follows on rearranging to isolate x_1 , x_2 , and x_3 .

(b) Find constraints on y_1 and y_2 so that

$$4x_1 + 2x_2 + x_3 \ge x_1(y_1 + 2y_2) + x_2(-y_1 + y_2) + x_3y_2$$

at every feasible solution (x_1, x_2, x_3) .

We require that $y_1 + 2y_2 \le 4$, $-y_1 + y_2 \le 2$, and $y_2 \le 1$.

(c) Use parts (a) and (b) to find a lower bound to the optimal cost in terms of only the variables y_1 and y_2 .

By transitivity, we find

 $4x_1 + 2x_2 + x_3 \ge x_1(y_1 + 2y_2) + x_2(-y_1 + y_2) + x_3y_2 \ge 3y_1 + 4y_2.$

(d) Formulate the linear programming problem in the variables (y_1, y_2) that determines the **largest possible value** for the lower bound to the optimal cost found in part (c).

This is known as the *dual problem* to the original linear programming problem.

1

1

1

2. Let $g : \mathbb{R} \to \mathbb{R}$ be a convex function on an interval I. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex increasing (but not necessarily differentiable) function on \mathbb{R} . Show that $f \circ g$ is convex on I.

Let $p, q \in I$. Since g is convex on \mathbb{R} we know that

$$g(t\boldsymbol{p} + (1-t)\boldsymbol{q}) \le tg(\boldsymbol{p}) + (1-t)g(\boldsymbol{q}).$$

Since f is increasing and convex on $[g(\mathbf{p}), g(\mathbf{q})]$:

$$f(g(tp + (1-t)q)) \le f(tg(p) + (1-t)g(q)) \le tf(g(p)) + (1-t)f(g(q)).$$

Hence $f \circ g$ is convex on \mathbb{R} .

- 3. Let A be an $m \times n$ matrix and let $b \in \mathbb{R}^m$. Prove that exactly one of these alternatives holds:
 - (i) Ax = b has a solution x;
 - (ii) $\mathbf{A}^{\mathsf{T}} \mathbf{p} = \mathbf{0}$ has a solution \mathbf{p} with $\mathbf{p}^{\mathsf{T}} \mathbf{b} \neq 0$.

Suppose Ax = b has a solution x. If $A^{\mathsf{T}}p = 0$, then

$$p^{\mathsf{T}}b = p^{\mathsf{T}}Ax = (A^{\mathsf{T}}p)^{\mathsf{T}}x = 0^{\mathsf{T}}x = 0.$$

Thus (i) $\Rightarrow \overline{(ii)}$.

Alternatively, if Ax = b does not have a solution x, then $b \notin \text{span}\{A_1, \ldots, A_n\}$. On decomposing b = s + p, where $s \in \text{span}\{A_1, \ldots, A_n\}$ and $p^{\mathsf{T}}A = 0^{\mathsf{T}}$, it follows that $p \neq 0$. Then $p^{\mathsf{T}}b = p^{\mathsf{T}}s + p^{\mathsf{T}}p = 0 + |p|^2 > 0$. That is, (i) \Rightarrow (ii).

3

5