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Lemma 5.1 (Partition Refinement): If P and Q are partitions of [a, b] such that
Q ⊃ P , then

L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f).

Lemma 5.2 (Upper Sums Bound Lower Sums): Let f be bounded on [a, b]. If P
and Q are any partitions of [a, b], then

L(P, f) ≤ U(Q, f).

Lemma 5.3 (Lower Integrals vs. Upper Integrals): Let f be bounded on [a, b]. Then

∫ b

a

f ≤

∫ b

a

f.

Theorem 5.1 (Integrability):
∫ b

a
f exists and equals α ⇐⇒ there exists a sequence

of partitions {Pn}
∞

n=1 of [a, b] such that

lim
n→∞

L(Pn, f) = α = lim
n→∞

U(Pn, f).

Theorem 5.2 (Cauchy Criterion for Integrability): Suppose f is bounded on [a, b].

Then
∫ b

a
f exists ⇐⇒ for each ǫ > 0 there exists a partition P of [a, b] such that

U(P, f) − L(P, f) < ǫ.

Corollary 5.2.1 (Piecewise Integration): Suppose a < c < b. Then

∫ b

a

f ∃ ⇐⇒

∫ c

a

f ∃ and

∫ b

c

f ∃.

Furthermore, when either side holds,

∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Theorem 5.3 (Darboux Integrability Theorem):
∫ b

a
f exists and equals α ⇐⇒ for

any sequence of partitions Pn having subinterval widths that go to zero as n → ∞,
all Riemann sums S(Pn, f) converge to α.
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Theorem 5.4 (Linearity of Integral Operator): Suppose
∫ b

a
f and

∫ b

a
g exist. Then

(i)
∫ b

a
(f + g) ∃ =

∫ b

a
f +

∫ b

a
g

(ii)
∫ b

a
(cf) ∃ = c

∫ b

a
f for any constant c ∈ R.

Theorem 5.5 (Integral Bounds): Suppose

(i)
∫ b

a
f ∃,

(ii) m ≤ f(x) ≤ M for x ∈ [a, b].

Then

m(b − a) ≤

∫ b

a

f ≤ M(b − a).

Corollary 5.5.1 (Preservation of Non-Negativity): If f(x) ≥ 0 for all x ∈ [a, b] and
∫ b

a
f exists then

∫ b

a
f ≥ 0.

Corollary 5.5.2 (Continuity of Integrals): Suppose
∫ b

a
f exists. Then the function

F (x) =
∫ x

a
f is continuous on [a, b].

Theorem 5.6 (Integrability of Continuous Functions): If f is continuous on [a, b]

then
∫ b

a
f exists.

Theorem 5.7 (Integrability of Monotonic Functions): If f is monotonic on [a, b]

then
∫ b

a
f exists.

Lemma 5.4 (Families of Antiderivatives): Let F0(x) be an antiderivative of f on an
interval I. Then F is an antiderivative of f on I ⇐⇒ F (x) = F0(x)+C for some
constant C.

Theorem 5.8 (Antiderivatives at Points of Continuity): Suppose

(i)
∫ b

a
f exists;

(ii) f is continuous at c ∈ (a, b).

Then f has the antiderivative F (x) =
∫ x

a
f at x = c.

Corollary 5.8.1 (Antiderivative of Continuous Functions): If f is continuous on [a, b]
then f has an antiderivative on [a, b].

Theorem 5.9 (Fundamental Theorem of Calculus [FTC]): Let f be integrable and
have an antiderivative F on [a, b]. Then

∫ b

a

f = F (b) − F (a).
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Corollary 5.9.1 (FTC for Continuous Functions): Let f be continuous on [a, b] and
let F be any antiderivative of f on [a, b]. Then

∫ b

a

f = F (b) − F (a).

Theorem 5.10 (Mean Value Theorem for Integrals): Suppose f is continuous on
[a, b]. Then

∫ b

a

f = f(c)(b − a)

for some number c ∈ [a, b].

Theorem 7.1 (Change of Variables): Suppose g′ is continuous on [a, b] and f is
continous on g([a, b]). Then

∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du.

Theorem 7.2 (Integration by Parts): Suppose f ′ and g′ are continuous functions on
[a, b]. Then

∫ b

a

fg′ = [fg]ba −

∫ b

a

f ′g.

Lemma 7.1 (Polynomial Factors): If z0 is a root of a polynomial P (z) then P (z) is
divisible by (z − z0).

Lemma 7.2 (Linear Partial Fractions): Suppose that P (x)/Q(x) is a proper rational
function such that Q(x) = (x− a)nQ0(x), where Q0(a) 6= 0 and n ∈ N. Then there
exists a constant A and a polynomial P0 with deg P0 < deg Q − 1 such that

P (x)

Q(x)
=

A

(x − a)n
+

P0(x)

(x − a)n−1Q0(x)
.

Lemma 7.3 (Quadratic Partial Fractions): Let x2 + γx + λ be an irreducible qua-
dratic polynomial (i.e. γ2 − 4λ < 0). Suppose that P (x)/Q(x) is a proper rational
function such that Q(x) = (x2 + γx + λ)mQ0(x), where Q0(x) is not divisible by
(x2 + γx + λ) and m ∈ N. Then there exists constants Γ and Λ and a polynomial
P0 with deg P0 < deg Q − 2 such that

P (x)

Q(x)
=

Γx + Λ

(x2 + γx + λ)m
+

P0(x)

(x2 + γx + λ)m−1Q0(x)
.
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Theorem 7.3 (Linear Interpolation Error): Let f be a twice-differentiable function
on [0, h] satisfying |f ′′(x)| ≤ M for all x ∈ [0, h]. Let

L(x) = f(0) +
f(h) − f(0)

h
x.

Then
∫ h

0

|L(x) − f(x)| dx ≤
Mh3

12
.

Corollary 7.3.1 (Trapezoidal Rule Error): Let P be a uniform partition of [a, b] into
n subintervals of width h = (b − a)/n, and f be a twice-differentiable function on

[a, b] satisfying |f ′′(x)| ≤ M for all x ∈ [a, b]. Then the error ET

n

.
= Tn −

∫ b

a
f of the

uniform Trapezoidal Rule

Tn = h

n
∑

i=1

f(xi−1) + f(xi)

2

satisfies
∣

∣ET

n

∣

∣ ≤
nMh3

12
=

M(b − a)3

12n2
.

Theorem 8.1 (Pappus’ Theorems): Let L be a line in a plane.

(i) If a curve lying entirely on one side of L is rotated about L, the area of the
surface generated is the product of the length of the curve times the distance
travelled by the centroid.

(ii) If a region lying entirely on one side of L is rotated about L, the volume of
the solid generated is the product of the area of the region times the distance
travelled by the centroid.

Theorem 9.1 (Increasing Functions: Bounded ⇐⇒ Asymptotic Limit Exists): Let
f be a monotonic increasing function on [a,∞). Then f is bounded on [a,∞) ⇐⇒
lim
x→∞

f exists.

Corollary 9.1.1 (Improper Integrals of Non-Negative Functions): Let f be a non-
negative function that is integrable on [a, T ] for all T ≥ a. If there exists a bound B

such that
∫ T

a
f ≤ B for all T ≥ a, then

∫

∞

a
f converges.

Corollary 9.1.2 (Comparison Test): Suppose 0 ≤ f(x) ≤ g(x) and
∫ T

a
f and

∫ T

a
g

exist for all T ≥ a. Then

(i)
∫

∞

a
g ∈ C ⇒

∫

∞

a
f ∈ C;

(ii)
∫

∞

a
f ∈ D ⇒

∫

∞

a
g ∈ D.
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Corollary 9.1.3 (Limit Comparison Test): Let f and g be positive integrable func-
tions satisfying

lim
x→∞

f(x)

g(x)
= L.

(i) For 0 < L < ∞ we have
∫

∞

a
g ∈ C ⇐⇒

∫

∞

a
f ∈ C.

(ii) When L = 0 we can only say
∫

∞

a
g ∈ C ⇒

∫

∞

a
f ∈ C.

Theorem 9.2 (Cauchy Criterion for Improper Integrals): Let f be a function.

(i) Suppose
∫ t

a
f exists for all t ∈ (a, b). Then

∫ b−

a
f ∈ C ⇐⇒ ∀ǫ > 0, ∃δ > 0

such that

x, y ∈ (b − δ, b) ⇒

∣

∣

∣

∣

∫ y

x

f

∣

∣

∣

∣

< ǫ;

(ii) Suppose
∫ T

a
f exists for all T > a. Then

∫

∞

a
f ∈ C ⇐⇒ ∀ǫ > 0, ∃T such that

T2 ≥ T1 ≥ T ⇒

∣

∣

∣

∣

∫ T2

T1

f

∣

∣

∣

∣

< ǫ.

Theorem 9.3 (Cauchy Criterion for Infinite Series): The infinite series
∑

∞

k=1 ak

converges if and only if for each ǫ > 0, there exists N ∈ N such that

m > n ≥ N ⇒

∣

∣

∣

∣

∣

m
∑

k=n

ak

∣

∣

∣

∣

∣

< ǫ.

Theorem 9.4 (Divergence Test): If

∞
∑

k=1

ak ∈ C then lim
n→∞

an = 0.

Theorem 9.5 (Non-Negative Terms: Convergence ⇐⇒ Bounded Partial Sums): If
ak ≥ 0 and Sn =

∑n

k=1 ak then
∑

∞

k=1 ak ∈ C ⇐⇒ {Sn}
∞

n=1 is a bounded sequence.

Corollary 9.5.1 (Comparison Test): If 0 ≤ ak ≤ bk for k ∈ N then

(i)

∞
∑

k=1

bk ∈ C ⇒

∞
∑

k=1

ak ∈ C;

(ii)

∞
∑

k=1

ak ∈ D ⇒

∞
∑

k=1

bk ∈ D.

5



Corollary 9.5.2 (Limit Comparison Test): Suppose ak ≥ 0 and bk > 0 for k ∈ N

and lim
k→∞

ak/bk = L. Then

(i) if 0 < L < ∞:

∞
∑

k=1

ak ∈ C ⇐⇒

∞
∑

k=1

bk ∈ C;

(ii) if L = 0:

∞
∑

k=1

bk ∈ C ⇒

∞
∑

k=1

ak ∈ C.

Corollary 9.5.3 (Ratio Comparison Test): If ak > 0 and bk > 0 and

ak+1

ak

≤
bk+1

bk

for all k ≥ N , then

(i)

∞
∑

k=1

bk ∈ C ⇒

∞
∑

k=1

ak ∈ C;

(ii)

∞
∑

k=1

ak ∈ D ⇒

∞
∑

k=1

bk ∈ D.

Corollary 9.5.4 (Ratio Test): Suppose ak > 0 and bk > 0.

(i) If ∃ a number x < 1 such that
ak+1

ak

≤ x for all k ≥ N , then
∑

∞

k=1 ak ∈ C.

(ii) If ∃ a number x ≥ 1 such that ak+1

ak

≥ x for all k ≥ N , then
∑

∞

k=1 ak ∈ D.

Corollary 9.5.5 (Limit Ratio Test): Suppose ak > 0 for all k ∈ N and

lim
k→∞

ak+1

ak

= c.

Then

(i) 0 ≤ c < 1 ⇒
∞

∑

k=1

ak ∈ C,

(ii) c > 1 ⇒
∞

∑

k=1

ak ∈ D,

(iii) c = 1 ⇒ ?

6



Theorem 9.6 (Integral Test): Suppose f is continuous, decreasing, and non-negative
on [1,∞). Then

∞
∑

k=1

f(k) ∈ C ⇐⇒

∫

∞

1

f ∈ C.

Theorem 9.7 (Absolute Convergence): An absolutely convergent series is convergent.

Theorem 9.8 (Radius of Convergence): For each power series
∑

∞

k=0 ckx
k there exists

a number R, called the radius of convergence, with 0 ≤ R ≤ ∞, such that

∞
∑

k=0

ckx
k ∈







Abs C if |x| < R,
D if |x| > R,
? if |x| = R.

Lemma A.1 (Complex Conjugate Roots): Let P be a polynomial with real coeffi-
cients. If z is a root of P , then so is z.

Theorem A.1 (Fundamental Theorem of Algebra): Any non-constant polynomial
P (z) with complex coefficients has a complex root.

Corollary A.1.1 (Polynomial Factorization): Every complex polynomial P (z) of
degree n ≥ 0 has exactly n complex roots z1, z2, . . ., zn and can be factorized as
P (z) = A(z − z1)(z − z2) . . . (z − zn), where A ∈ C.

Corollary A.1.2 (Real Polynomial Factorization): Every polynomial with real coef-
ficients can be factorized as

P (x) = A(x − a1)
n1 . . . (x − ak)

nk(x2 + γ1x + λ1)
m1 . . . (x2 + γℓx + λℓ)

mℓ .
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