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Chapter 0

Real Numbers

Mathematics deals with different types of numbers:

N = {1, 2, 3, . . .}, the set of natural (counting) numbers;

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of integers;

Q = {m
n

: m,n ∈ Z, n 6= 0}, the set of rational numbers (fractions);

R, the set of all real numbers.

Notice that N ⊂ Z ⊂ Q ⊂ R.

Remark: The decimal expansion of a rational number ends in a repeating pattern
of digits:

1/2 = 0.5000 . . . = 0.50

1/3 = 0.3333 . . . = 0.3

2/7 = 0.285714285714 . . . = 0.285714

Remark: The real numbers are those numbers like
√

2 = 1.414213562373 . . . and
π = 3.1415926535897 . . . that do not end in a repeating pattern and thus cannot
be represented as a ratio of two integers.

0.1 Open and Closed Intervals

Let a, b ∈ R and a < b. There are 4 types of (finite) intervals:

[a, b] = {x : a ≤ x ≤ b},← closed (contains both endpoints)

(a, b) = {x : a < x < b},← open (excludes both endpoints)

[a, b) = {x : a ≤ x < b},
(a, b] = {x : a < x ≤ b}.

7



8 CHAPTER 0. REAL NUMBERS

It is convenient to also define:

(−∞,∞) = R,
[a,∞) = {x : x ≥ a},
(a,∞) = {x : x > a},
(−∞, a] = {x : x ≤ a},
(−∞, a) = {x : x < a}.

0.2 Inequalities

• a < b ⇒ a+ c < b+ c

• a < b and c < d ⇒ a+ c < b+ d

• a < b and c > 0 ⇒ ac < bc

• a < b and c < 0 ⇒ ac > bc

• 0 < a < b ⇒ 1/a > 1/b

• To determine the set of x values for which x2− 5x+ 6 < 0, we factor x2− 5x+ 6 =
(x− 2)(x− 3) and consider the following table:

Interval x− 2 x− 3 (x− 2)(x− 3)
x < 2 − − +

2 < x < 3 + − −
x > 3 + + +

We thus see that x2 − 5x + 6 = (x − 2)(x − 3) < 0 if and only if 2 < x < 3, in
other words, when x ∈ (2, 3).
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0.3 Absolute Value

The fact that for any nonzero real number either x > 0 or −x > 0 makes it convenient
to define an absolute value function:

|x| =
{
x if x ≥ 0,
−x if x < 0.

Properties: Let x and y be any real numbers.

(A1) |x| ≥ 0.

(A2) |x| = 0 ⇐⇒ x = 0.

(A3) |−x| = |x|.

(A4) |xy| = |x| |y|.

(A5) If a ≥ 0, then
|x| ≤ a⇐⇒ −a ≤ x ≤ a.

Proof: First note the equivalence

|x| ≤ a ⇐⇒ 0 ≤ x ≤ a or 0 < −x ≤ a

⇐⇒ −a ≤ x ≤ a.

(A6) − |x| ≤ x ≤ |x|.
Proof: Apply (A5) with a = |x|.

(A7)
|x+ y| ≤ |x|+ |y| . (Triangle Inequality)

Proof:

(A6)⇒
{
− |x| ≤ x ≤ |x|
− |y| ≤ y ≤ |y|

⇒ −(|x|+ |y|) ≤ x+ y ≤ |x|+ |y| = a

(A5)⇒ |x+ y| ≤ |x|+ |y| .

Remark: On letting y → −y, we can use (A3) to rewrite the Triangle Inequality as

|x− y| ≤ |x|+ |y| .
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• If |u− 1|< 0.1 and |v − 1| < 0.2 then

|u− v|= |(u− 1)− (v − 1)| ≤ |u− 1|+|v − 1|
< 0.1 + 0.2 = 0.3.

Remark: For all real x,
√
x2 = |x| ≥ 0. By definition,

√
x and x1/2 denote the

non-negative square root of x. For example,
√

4 = 2, not ±2.

Remark: Note the following equivalences:

• |x| = a ⇐⇒ x = ±a;

• |x| < a ⇐⇒ −a < x < a;

• |x| > a ⇐⇒ x < −a or x > a.

Problem 0.1: Find the set of x such that |x− 1| ≤ x.

To handle the absolute value, we must break the problem into cases:
We know that the argument x− 1 of the absolute value is non-negative when x ≥ 1. In

this case, the inequality reduces to
x− 1 ≤ x,

which always holds. The solutions set for this case is thus [1,∞).
In the remaining case, where x < 1, the inequality becomes

−x+ 1 ≤ x,

which means that 1 ≤ 2x, or equivalently, x ≥ 1/2. But this is still under the restriction
that x < 1 so our solution set for this case is the interval [1/2, 1).

The complete solution to the original inequality |x− 1| ≤ x is the union of our two

solutions sets, namely [1,∞) ∪ [1/2, 1) = [1/2,∞).



Chapter 1

Functions

1.1 Examples of Functions

Definition: A function f is a rule that associates a real number y to each real
number x in some subset D of R. The set D is called the domain of f .

Definition: The range f(D) of f is the set {f(x) : x ∈ D}.

• f(x) = x2 on domain D = [0, 2):

f(D) = {x2 : x ∈ [0, 2)} = [0, 4).

An equivalent definition is:

Definition: A function is a collection of pairs of numbers (x, y) such that if (x, y1)
and (x, y2) are in the collection, then y1 = y2. That is,

x1 = x2 ⇒ f(x1) = f(x2).

This can be restated as the vertical line test: an set of ordered pairs (x, y) is a
function if every vertical line intersects their graph at most once.

Definition: If a function f has domain A and range B, we write f : A→ B.

Definition: Constant functions are functions of the form f(x) = c, where c is a
constant.

• f(x) = 1 is a constant function.

11



12 CHAPTER 1. FUNCTIONS

Definition: Polynomials are functions of the form

f(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0.

When an 6= 0, we say that the degree of f is n and write deg f = n. While a
nonzero constant function has degree 0, it turns out to be convenient to define the
degree of the zero function f(x) = 0 to be −∞.

• f(x) = x2 + 1 and f(x) = 3x2 − 1 are polynomials of degree 2.

Note that a polynomial f(x) with only even-degree terms (all the odd-degree coef-
ficients are zero) satisfies the property f(−x) = f(x), while a polynomial f(x) with
only odd-degree terms satisfies f(−x) = −f(x). We generalize this notion with the
following definition.

Definition: A function f is said to be even if f(−x) = f(x) for every x in the domain
of f .

Definition: A function f is said to be odd if f(−x) = −f(x) for every x in the
domain of f .

• The functions x, x3, and sinx are odd.

• The functions 1, x2, and cosx are even.

• The functions x+ 1, log x, ex are neither even nor odd.

Problem 1.1: Show that an odd function f with domain R satisfies f(0) = 0.

Definition: Rational functions are functions of the form f(x) =
P (x)

Q(x)
, where P (x)

and Q(x) are polynomials. They are defined on the set of all x for which Q(x) 6= 0.

• 1

x
and

x3 + 3x2 + 1

x2 + 1
are both rational functions.

Composition Once we have defined a few elementary functions, we can create new
functions by combining them together using +, −, ·, ÷, or by introducing the
composition operator ◦.
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Definition: If f : A → B and g : B → C then we define g ◦ f : A → C to be the
function that takes x ∈ A to g(f(x)) ∈ C.

•
f(x) = x2 + 1 f : R→ [1,∞),
g(x) = 2

√
x g : [1,∞)→ [2,∞),

g(f(x)) = 2
√
x2 + 1 g ◦ f : R→ [2,∞).

Note however that f(g(x)) = 4x+ 1, so that f ◦ g : [0,∞)→ [1,∞).

•
f(x) = x2 + 1 f : R→ [1,∞),
g(x) = 1

x
g : [1,∞)→ (0, 1],

g(f(x)) = 1
x2+1

g ◦ f : R→ (0, 1].

One can also build new functions from old ones using cases, or piecewise definitions:

•

f(x) =





0 x < 0,
1
2

x = 0,
1 x > 0.

•
f(x) = |x| =

{
x x ≥ 0,
−x x < 0.

Cases can sometimes introduce jumps in a function.

Problem 1.2: Graph the function

f(x) =

{
x if 0 ≤ x ≤ 1,
2− x if 1 < x ≤ 2.

Definition: A function is said to be increasing (decreasing) on an interval I if

x, y ∈ I, x ≤ y ⇒ f(x) ≤ f(y) (f(x) ≥ f(y))

and strictly increasing (strictly decreasing) if

x, y ∈ I, x < y ⇒ f(x) < f(y) (f(x) > f(y)).

Note that a strictly increasing function is increasing.

1.2 Transformations of Functions

Transformations can be used to obtain new functions from old ones:
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• To obtain the graph of y = f(x) + c, shift the graph of f(x) a distance c upwards.

• To obtain the graph of y = f(x−c), shift the graph of f(x) a distance c rightwards.

• To obtain the graph of y = cf(x), stretch the graph of f(x) vertically by the factor
c > 0.

• To obtain the graph of y = f(x/c), stretch the graph of f(x) horizontally by the
factor c > 0.

• To obtain the graph of y = −f(x), reflect the graph of f(x) about the x axis.

• To obtain the graph of y = f(−x), reflect the graph of f(x) about the y axis.

Problem 1.3: Sketch the graphs of |x− 1| and x on the same axes and use your
graph to verify the results of Prob. 0.1.

1.3 Trigonometric Functions

Trigonometric functions are functions relating the shape of a right-angle triangle to
one of its other angles.

Definition: If we label one of the non-right angles by θ, the length of the hypotenuse
by hyp, and the lengths of the sides opposite and adjacent to x by opp and adj,
respectively, then

sin θ =
opp

hyp
,

cos θ =
adj

hyp
,

tan θ =
opp

adj
.

Note here that since θ is one of the nonright angles of a right-angle triangle, these
definitions apply only when 0 < θ < 90◦. Note also that tan θ = sin θ/cos θ.
Sometimes it is convenient to work with the reciprocals of these functions:

csc θ =
1

sin θ
,

sec θ =
1

cos θ
,

cot θ =
1

tan θ
.
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a b

c
a

b

Figure 1.1: Pythagoras’ Theorem

Pythagoras’ Theorem states that the square of the length c of the hypotenuse of
a right-angle triangle equals the sum of the squares of the lengths a and b of the
other two sides. A simple geometric proof of this important result is illustrated in
Figure 1.1. Four identical copies of the triangle, each with area ab/2, are placed
around a square of side c, so as to form a larger square with side a + b. The area c2

of the inner square is then just the area (a + b)2 = a2 + 2ab + b2 of the large square
minus the total area 2ab of the four triangles. That is, c2 = a2 + b2.

Remark: If we scale a right-angle triangle with angle θ and 90◦ − θ, so that the
hypotenuse c = 1, the length of the sides opposite and adjacent to the angle θ
are sin θ and cos θ, respectively. Pythagoras’ Theorem then leads to the following
important identity:

Pythagorean Identities:

sin2 θ + cos2 θ = 1. (1.1)

Other useful identities result from dividing both sides of this equation either by
sin2 θ:

1 + cot2 θ = csc2 θ,

or by cos2 θ:

tan2 θ + 1 = sec2 θ.

Note that Eq. (1.1) implies both that |sin θ| ≤ 1 and |cos θ| ≤ 1.

Definition: We define the number π to be the area of a unit circle (a circle with
radius 1).
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Definition: Instead of using degrees, in our development of calculus it will be more
convenient to measure angles in terms of the area of the sector they subtend on
the unit circle. Specifically, we define an angle measured in radians to be twice1

the area of the sector that it subtends, as shown in Figure 1.2. For example, our
definition of π says that a full unit circle (360◦) has area π; the corresponding angle
in radians would then be 2π. Thus, we can convert between radians and degrees
with the formula

π radians = 180◦.

(1,0)

(x, y) = (cos θ, sin θ)

area θ
2θ

Figure 1.2: The unit circle

The coordinates x and y of a point P on the unit circle are related to θ as follows:

cos θ =
adj

hyp
=
x

1
= x,

sin θ =
opp

hyp
=
y

1
= y.

Complementary Angle Identities:

cos θ = sin
(π

2
− θ
)
,

cos
(π

2
− θ
)

= sin θ.

1The reason for introducing the factor of two in this definition is to make the angle x expressed in
radians equal to the length of the arc it subtends on the unit circle, as we will see later using integral
calculus, once we have developed the notion of the length of an arc. For example, the circumference
of a full circle of unit radius will be found to be precisely 2π.
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Supplementary Angle Identities:

sin(π − θ) = sin θ,

cos(π − θ) = − cos θ.

Symmetries:
sin(−θ) = − sin θ,

cos(−θ) = cos θ,

sin(θ + 2π) = sin θ,

cos(θ + 2π) = cos θ.

Problem 1.4: We thus see that sin θ is an odd periodic function of θ and cos θ is
an even periodic function of θ, both with period 2π. Use these facts to prove that
tan θ is an odd periodic function of θ with period π.

Special Values:

sin(0) = cos
(π

2

)
= 0,

sin
(π

2

)
= cos(0) = 1,

sin
(π

4

)
= cos

(π
4

)
=

1√
2
,

sin
(π

6

)
= cos

(π
3

)
=

1

2
,

sin
(π

3

)
= cos

(π
6

)
=

√
3

2
.

Addition Formulae:

Claim:
cos(A−B) = cosA cosB + sinA sinB.

Proof: Consider the points P = (cosA, sinA), Q = (cosB, sinB), and R =
(1, 0) on the unit circle, as illustrated in Fig. 1.3. We can use Pythagoras’ Theorem
to obtain a formula for the length (squared) of a chord subtended by an angle:

QR
2

= (1− cosB)2 + sin2B = 1− 2 cosB + cos2B + sin2B = 2− 2 cosB.

For example, since the angle subtended by PQ is A−B,

PQ
2

= 2− 2 cos(A−B).
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A
B

R = (1, 0)

P = (cosA, sinA)
Q = (cosB, sinB)

Figure 1.3: The unit circle with points P = (cosA, sinA), Q = (cosB, sinB), and
R = (1, 0)

Alternatively, we could compute PQ
2

directly:

PQ
2

= (cosA− cosB)2 + (sinA− sinB)2

= cos2A− 2 cosA cosB + cos2B + sin2A− 2 sinA sinB + sin2B

= 2− 2(cosA cosB + sinA sinB).

On comparing these two results, we conclude that

cos(A−B) = cosA cosB + sinA sinB.

The claim thus holds.

Remark: Other trigonometric addition formulae follow easily from the above
result:

cos(A+B) = cos(A− (−B))

= cosA cos(−B) + sinA sin(−B)

= cosA cosB − sinA sinB.

sin(A+B) = cos
[π

2
− (A+B)

]

= cos
[(π

2
− A

)
−B

]

= cos
(π

2
− A

)
cosB + sin

(π
2
− A

)
sinB

= sinA cosB + cosA sinB.
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sin(A−B) = sin(A− (−B))

= sinA cos(−B) + cosA sin(−B)

= sinA cosB − cosA sinB.

tan(A+B) =
sin(A+B)

cos(A+B)
=

sinA cosB + cosA sinB

cosA cosB − sinA sinB

=
(sinA cosB + cosA sinB) · 1

cosA cosB

(cosA cosB − sinA sinB) · 1
cosA cosB

=
tanA+ tanB

1− tanA tanB
, provided A, B, A+B are not odd multiples of π

2 .

Double-Angle Formulae:

sin 2A = sin(A+ A)

= sinA cosA+ sinA cosA

= 2 sinA cosA.

cos 2A = cos(A+ A)

= cosA cosA− sinA sinA

= cos2A− sin2A

= cos2A− (1− cos2A)

= 2 cos2A− 1

= (1− sin2A)− sin2A

= 1− 2 sin2A.

Also, if A is not an odd multiple of π/4 or π/2,

tan 2A = tan(A+ A)

=
tanA+ tanA

1− tanA tanA

=
2 tanA

1− tan2A
.

Inequalities: We have already seen that |sinx| ≤ 1 and |cosx| ≤ 1. Our develop-
ment of trigonometric calculus will rely on the following additional key result:

sinx ≤ x ≤ tanx for all x ∈
[
0,
π

2

)
.
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x

A

B

C

D

E

1

Figure 1.4: Geometric proof of sin x ≤ x ≤ tanx

We establish this result geometrically, referring to the arc of unit radius in
Fig 1.4. The shaded area of the sector ABC subtended by the angle x (measured
in radians) is x/2. Since BE = sinx and DC = tanx, we deduce

Area4ABC ≤ AreaSectorABC ≤ Area4ADC

⇒ 1

2
(1) sinx ≤ x

2
≤ 1

2
(1) tanx

⇒ sinx ≤ x ≤ tanx for all x ∈
[
0,
π

2

)
.

Problem 1.5: Verify that the graphs of the functions y = sinx, y = cosx, and
y = tanx are periodic extensions of the illustrated graphs.

y

x

sinx

−1

1

−π
2

π
2

−π π

y

x

cosx

−1

1

−π
2

π
2

−π π
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y

x

tanx

−π
2

π
2

Problem 1.6: Verify that the graphs of the functions y = csc x = 1/sinx, y =
secx = 1/cosx, and y = cotx = 1/tanx are periodic extensions of the illustrated
graphs.

y

x

cscx

−π π

y

x

secx

−π
2

π
2
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y

x

cotx

−π π

1.4 Exponential and Logarithmic Functions

The graph of the natural exponential function ex, sometimes written exp(x), is shown
below:

y

x

1

ex

Remark: Notice that ex > 0 for all real x.

The inverse of the exponential function is the natural logarithm log x, sometimes
written lnx. It is defined for all positive x:
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y

x1

log x

Remark: There are other exponential function (e.g. 10x or 2x) corresponding to other
choices of the base (e.g. 10 or 2). The natural logarithm corresponds to the base
e ≈ 2.718281828459 . . ..

Definition: The general exponential function to the base b is defined as

bx
.
= ex log b.

(We use the symbol
.
= to emphasize a definition, although the notation := is more

common.)

Remark: For a positive base b and real x and y:

1. bx+y = bxby.

2. bx−y =
bx

by
.

3. (bx)y = bxy.

4. (ab)x = axbx.

Remark: We can also define a logarithm function to the base b:

logb x
.
=

log x

log b
.

Remark: If x, y, and b are positive numbers,
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1. logb(xy) = logb x+ logb y.

2. logb

(
x

y

)
= logb x− logb y.

3. logb (xr) = r logb x.

1.5 Induction

Suppose that the weather office makes a long-term forecast consisting of two state-
ments:

(A) If it rains on any given day, then it will also rain on the following day.

(B) It will rain today.

What would we conclude from these two statements? We would conclude that it
will rain every single day from now on!

Or, consider a secret passed along an infinite line of people, P1P2 . . . PnPn+1 . . .,
each of whom enjoys gossiping. If we know for every n ∈ N that Pn will always pass
on a secret to Pn+1, then the mere act of telling a secret to the first person in line
will result in everyone in the line eventually knowing the secret!

These amusing examples encapsulate the axiom of Mathematical Induction:

If a subset S ⊂ N satisfies

(i) 1 ∈ S,

(ii) k ∈ S ⇒ k + 1 ∈ S,

then S = N.

For example, suppose we wish to find the sum of the first n natural numbers.
For small values of n, we could just compute the total of these n numbers directly.
But for large values of n, this task could become quite time consuming! The great
mathematician and physicist Carl Friedrich Gauss (1777–1855) at age 10 noticed that
the rate of increase of the terms in the sum

1 + 2 + . . .+ n

could be exactly compensated by first writing the sum backwards, as

n+ (n− 1) + . . .+ 1,
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and then averaging the two equal expressions term by term to obtain a sum of n
identical terms:

n+ 1

2
+
n+ 1

2
+ . . .+

n+ 1

2︸ ︷︷ ︸
n terms

= n

(
n+ 1

2

)
.

We will use mathematical induction to verify Gauss’ claim that

1 + 2 + . . .+ n ≡
n∑

i=1

i =
n(n+ 1)

2
. (1.2)

Let S be the set of numbers n for which Eq. (1.2) holds.

Step 1: Check 1 ∈ S:

1 =
1(1 + 1)

2
= 1.

Step 2: Suppose k ∈ S, i.e.

k∑

i=1

i =
k(k + 1)

2
.

Then

k+1∑

i=1

i =

(
k∑

i=1

i

)
+ (k + 1)

=
k(k + 1)

2
+ (k + 1)

= (k + 1)

(
k

2
+ 1

)

=
(k + 1)(k + 2)

2
.

Hence k + 1 ∈ S.

That is, k ∈ S ⇒ k + 1 ∈ S.

By the Axiom of Mathematical Induction, we know that S = N.
In other words,

n∑

i=1

i =
n(n+ 1)

2
, for all n ∈ N.

• Prove that for all natural numbers n,

(1.3)
n∑

i =1

i3 =
n2(n+ 1)2

4
.
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Step 1: We see for n = 1 that 1 = 12(1 + 1)2/4.

Step 2: Suppose
n∑

i=1

i3 =
n2(n+ 1)2

4
.
= Sn.

Then

n+1∑

i=1

i3 =

(
n∑

i=1

i3

)
+ (n+ 1)3

=
n2(n+ 1)2

4
+ (n+ 1)3 =

(n+ 1)2

4
(n2 + 4n+ 4)

=
(n+ 1)2(n+ 2)2

4
= Sn+1.

Hence by induction, Eq. (1.3) holds.

Problem 1.7: Use induction to prove that 22n−15 is a multiple of 7 for every natural
number n.

Step 1: We see for n = 1 that 22− 15 = 7 is a multiple of 7.

Step 2: Assume that 22n − 15 is a multiple of 7, say 7m. We need only show that
22n+1 − 15 is also a multiple of 7:

22n+1 − 15 = 22n · 22− 15 = (7m+ 15) · 22− 15 = 7m · 22 + 15 · 21 = 7(m · 22 + 15 · 3),

which is indeed a multiple of 7. By mathematical induction, we see that 22n−15 is multiple

of 7 for every n ∈ N.

1.6 Summation Notation

Recall
k=n∑

k=1

k = 1 + 2 + . . .+ n =
n(n+ 1)

2
.

Q. What is
k=n∑

k=0

k?

A.
k=n∑

k=0

k = 0 +
k=n∑

k=1

k = 0 +
n(n+ 1)

2
=
n(n+ 1)

2
.
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Q. How about
k=n+1∑

k=1

k?

A.
k=n+1∑

k=1

k =

(
k=n∑

k=1

k

)
+ (n+ 1) =

n(n+ 1)

2
+ n+ 1 =

(n+ 1)(n+ 2)

2
.

Q. How about
k=n∑

k=1

(k + 1)?

A.

Method 1:

k=n∑

k=1

(k + 1) =
k=n∑

k=1

k +
k=n∑

k=1

1 =
n(n+ 1)

2
+ n =

n(n+ 3)

2
.

Method 2: First, let k′ = k + 1:

k=n∑

k=1

(k + 1) =
k′=n+1∑

k′=2

k′.

Next, it is convenient to replace the symbol k′ with k (since it is only
a dummy index anyway):

k′=n+1∑

k′=2

k′ =
k=n+1∑

k=2

k =

(
k=n+1∑

k=1

k

)
−1 =

(n+ 1)(n+ 2)

2
−1 =

n(n+ 3)

2
.

In general,
k=U∑

k=L

ak+m =
k=U+m∑

k=L+m

ak.

Verify this by writing out both sides explicitly.

Problem 1.8: For any real numbers a1, a2, . . ., an, b1, b2, . . ., bn, and c prove that

n∑

k=1

c(ak + bk) = c

n∑

k=1

ak + c

n∑

k=1

bk.
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• Telescoping sum:

n∑

k=1

(ak+1 − ak) =
n∑

k=1

ak+1 −
n∑

k=1

ak

=
n+1∑

k=2

ak −
n∑

k=1

ak

=
n∑

k=2

/
ak + an+1 −

(
a1 +

n∑

k=2

/
ak

)

= an+1 − a1.



Chapter 2

Limits

2.1 Sequence Limits

Definition: A sequence is a function on the domain N. The value of a function f at
n ∈ N is often denoted by an,

an = f(n).

The consecutive function values are often written in a list:

{an}∞n=1 = {a1, a2, . . .} ← Repeated values are allowed.

• an = f(n) = n2,
{an}∞n=1 = {1, 4, 9, 16 . . .}.

• The Fibonacci sequence,

{1, 1, 2, 3, 5, 8, 13, 21, . . .},

begins with the numbers 1 and 1, with subsequent numbers defined as the sum of
the two immediately preceding numbers.

•
{cos(nπ)}∞n=0 = {(−1)n}∞n=0 = {1,−1, 1,−1, . . .}.

•
{sin(nπ)}∞n=0 = {0, 0, 0, 0, . . .}.

•
{

(−1)n

n

}∞

n=1

=

{
−1,

1

2
,−1

3
,
1

4
, . . .

}
.

Notice that as n gets large, the terms of this sequence get closer and closer to
zero. We say that they converge to 0. However, an is not equal to 0 for any n ∈ N.

We can formalize this observation with the following concept:

29
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Definition: The sequence {an}∞n=1 is convergent with limit L if, for each ε > 0, there
exist a number N such that

n > N ⇒ |an − L| < ε.

We abbreviate this as: lim
n→∞

an = L.

If no such number L exists, we say {an}∞n=1 diverges.

Remark: The statement lim
n→∞

an = L means that |an − L| can be made as small as

we please, simply by choosing n large enough.

Remark: Equivalently, as illustrated in Fig. 2.1, lim
n→∞

an = L means that any open

interval about L contains all but a finite number of terms of {an}∞n=1.

Remark: If a sequence {an}∞n=1 converges to L, the previous remark implies that
every open interval (L − ε, L + ε) will contain an infinite number of terms of the
sequence (there cannot be only a finite number of terms inside the interval since a
sequence has infinitely many terms and only finitely many of them are allowed to
lie outside the interval).

an

n2

3
2

2

L

L+ ε

L− ε

N = 1
ε

an = 1 + 1
n
, ε = 1

4

Figure 2.1: Limit of a sequence

• Let an = 1, for all n ∈ N
i.e. {1, 1, 1, . . .}.
Let ε > 0. Choose N = 1.

n > 1⇒ |an − 1| = |1− 1| = 0 < ε.

That is, L = 1. Write lim
n→∞

an = 1.
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Remark: Here N does not depend on ε, but normally it will.

• The sequence an =
1

n
converges to 0 since given ε > 0, we may force |an − 0| < ε

for n > N simply by picking N ≥ 1

ε
:

n > N ⇒ |an − 0| = 1

n
<

1

N
≤ ε.

• an =
(−1)n

n
.

lim
n→∞

an = 0 since |an − 0| =
∣∣∣∣
(−1)n

n

∣∣∣∣ =
1

n
<

1

N
if n > N .

So, given ε > 0, we may force |an − 0| < ε for n > N simply by picking N ≥ 1

ε
:

n > N ⇒ |an − 0| = 1

n
<

1

N
≤ ε.

• The sequence an =
1

n+ 1
converges to 0 since given ε > 0, we may force |an − 0| < ε

for n > N simply by picking N ≥ 1

ε
:

n > N ⇒ |an − 0| = 1

n+ 1
<

1

n
<

1

N
≤ ε.

Problem 2.1: Show that the sequence

an =
n

n+ 1

converges to 1.

Given ε > 0, we may force |an − 1| < ε for n > N simply by picking N ≥ 1

ε
:

n > N ⇒ |an − 1| =
∣∣∣∣

n

n+ 1
− 1

∣∣∣∣ =

∣∣∣∣
n

n+ 1
− n+ 1

n+ 1

∣∣∣∣ =
1

n+ 1
<

1

n
<

1

N
≤ ε.

Thus limn→∞ n
n+1 = 1.
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Remark: Such limit calculations can quickly become quite technical. Fortunately,
many limit questions can be greatly simplified using the following properties.

Properties of Limits: Let {an} and {bn} be convergent sequences. Denote
L = lim

n→∞
an and M = lim

n→∞
bn.

lim
n→∞

(an + bn) = L+M ;

lim
n→∞

anbn = LM ;

lim
n→∞

an
bn

=
L

M
if M 6= 0.

• An easier way to show that lim
n→∞

n

n+ 1
= 1 is to use the fact that the limit of a

difference is the difference of limits, provided that each individual limit exists:

lim
n→∞

n

n+ 1
= lim

n→∞
n+ 1− 1

n+ 1
= lim

n→∞

[
n+ 1

n+ 1
− 1

n+ 1

]

= lim
n→∞

n+ 1

n+ 1
− lim

n→∞
1

n+ 1
= lim

n→∞
1− lim

n→∞
1

n+ 1
= 1− 0 = 1.

• Another way to show that lim
n→∞

n

n+ 1
= 1 is divide numerator and denomator by

the highest power of n appearing (in this case, n1) and use the fact that the ratio
of limits is the limit of the ratio, provided that each individual limit exists:

lim
n→∞

n

n+ 1
= lim

n→∞
1

1 + 1/n
=

lim
n→∞

1

lim
n→∞

1 + 1/n

=
1

1 + lim
n→∞

1/n
=

1

1 + lim
n→∞

1/n
=

1

1 + 0
= 1.

Problem 2.2: Show by first dividing numerator and denominator by n2 that

lim
n→∞

2n2 − 5

3n2 + n+ 1
=

2

3
.
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Problem 2.3: Find lim
n→∞

(√
n+ 1−√n

)
.

We find

lim
n→∞

(√
n+ 1−√n

)
= lim

n→∞

(√
n+ 1−√n ·

√
n+ 1 +

√
n√

n+ 1 +
√
n

)

= lim
n→∞

(n+ 1− n) · 1√
n+ 1 +

√
n

= lim
n→∞

1√
n+ 1 +

√
n

= 0

since the final fraction is less than ε whenever n > 1/ε2.

Remark: The Squeeze Theorem states that if xn ≤ zn ≤ yn for all n ∈ N and the
sequences {xn} and {yn} both converge to the same number c, then {zn} is also
convergent to c.

• The Squeeze Theorem provides an alternative means to show lim
n→∞

an =
(−1)n

n
= 0:

Since

− 1

n
≤ (−1)n

n
≤ 1

n

and lim
n→∞

− 1

n
= − lim

n→∞
1

n
= −0 = 0 = lim

n→∞
1

n
, the Squeeze Theorem guarantees

that lim
n→∞

(−1)n

n
= 0 too.

Definition: A sequence is bounded if there exists a number B such that

|an| ≤ B for all n ∈ N.

Recall that this means that an lies within some interval (−B,B).

Definition: A sequence {an}∞n=1 is increasing if

a1 ≤ a2 ≤ a3 ≤ . . . , i.e. an ≤ an+1 for all n ∈ N

and decreasing if

a1 ≥ a2 ≥ a3 ≥ . . . , i.e. an ≥ an+1 for all n ∈ N.

Definition: A sequence is monotone if it is either (i) an increasing sequence or (ii) a
decreasing sequence.

The following theorem can be helpful in establishing the convergence of monotone
sequences:
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Remark: Every bounded, monotone sequence is convergent.

• The sequence an =
n∑

k=0

2−k = 1 + 1/2 + 1/4 + . . . + 1/2n is bounded below by 1

and above by 2. Since each new term in the sum is positive, an is also a monotone
(increasing) sequence and is thus convergent.

Problem 2.4: Let x ∈ [0, 1]. Consider the sequence {an}∞n=1 defined inductively by
a1 = x, and an+1 = an(1− an) for n ≥ 1.

(a) Show that {an}∞n=1 is a decreasing sequence.

an+1 − an = −a2
n ≤ 0.

(b) Prove that {an}∞n=1 is bounded.
We show that 0 ≤ an ≤ 1 for all n. For n = 1, we are given that a1 = x ∈ [0, 1]. Suppose

that 0 ≤ an ≤ 1. Then 0 ≤ 1 − an ≤ 1 and hence an+1 = an(1 − an) is also in [0, 1]. By

induction, we see that an ∈ [0, 1] for all n.

(c) Does {an}∞n=1 converge? Why or why not? If it does converge, find its limit.
The sequence converges because it is a decreasing bounded sequence. To find the limit,

let

L = lim
n→∞

an.

The sequences {an+1} and {an} converge to the same limit since n + 1 → ∞ as n → ∞.
Hence

L = lim
n→∞

an+1 = lim
n→∞

[an(1− an)] = lim
n→∞

an lim
n→∞

(1− an) = L(1− L) = L− L2.

This implies that L2 = 0, from which we deduce lim
n→∞

an = 0.

2.2 Function Limits

Consider the function f(x) = 1
x

(x 6= 0).
Notice that as x gets large, f(x) gets closer to, but never quite reaches, 0, very

much like the terms of the sequence { 1
n
} as n→∞. In fact, at integer values of x, f

evaluates to a member of the sequence { 1
n
}:

f(n) =
1

n
−→ 0 as n→∞.

Unlike a sequence, f is defined also for nonintegral values of x. We therefore need to
generalize our definition of a limit:
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Definition: We say lim
x→∞

f(x) = L if for every ε > 0 we can find a real number N

such that
x > N ⇒ |f(x)− L| < ε.

• Let f(x) = 1/x. Given any ε > 0, we can make

|f(x)− 0| =
∣∣∣∣
1

x

∣∣∣∣ <
1

N
= ε

for x > N simply by picking N =
1

ε
.

Hence lim
x→∞

f(x) = 0.

•
lim
x→∞

tan−1 x =
π

2
.

Remark: As with sequence limits, we have the following properties:

Properties: Suppose L = lim
x→∞

f(x) and M = lim
x→∞

g(x). Then

lim
x→∞

(f(x) + g(x)) = L+M ;

lim
x→∞

f(x)g(x) = LM ;

lim
x→∞

f(x)

g(x)
=

L

M
if M 6= 0;

Remark: We can also introduce the notion of a limit of a function f(x) as x ap-
proaches some real number a.

• Cnsider the function f(x) = sinx. Notice for all real numbers near x = 0 that sinx
is very close to 0. That is, if δ is a small positive number, the value of sin x is very
close to zero for all x ∈ (−δ, δ). Given ε > 0, we can in fact always find a small
region (−δ, δ) about the origin such that

x ∈ (−δ, δ)⇒ |sinx| < ε.

For example, we could choose δ = ε since we have already shown that |sinx| ≤ |x|
for all real x:

|x| < δ ⇒ |sinx| ≤ |x| < δ = ε.

We express this fact with the statement lim
x→0

sinx = 0.
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Definition: We say lim
x→a

f(x) = L if for every ε > 0 we can find a δ > 0 such that

0 < |x− a| < δ ⇒ |f(x)− L| < ε.

Remark: In the previous example we see that a = 0 and the limit L is 0. Notice in
this case that lim

x→0
f(x) = 0 = f(0). However, this is not true for all functions f .

The value of a limit as x→ a might be quite different from the value of the function
at x = a. Sometimes the point a might not even be in the domain of the function,
but the limit may still be defined. This is why we restrict 0 < |x− a| (that is,
x 6= a) in the above definition.

Remark: The value of a function at a itself is irrelevant to its limit at a. We don’t
need to evaluate the function at x = a any more than we need to evaluate the
function f(x) = 1/x at x =∞ to find lim

x→∞
f(x) = 0.

• Let

f(x) =
{
x if x > 0,
−x if x < 0.

When we say lim
x→0

f(x) = 0 we mean the following. Given ε > 0, we can make

|f(x)| < ε

for all x satisfying 0 < |x| < δ just by choosing δ = ε. That is,

0 < |x| < δ ⇒ |f(x)| = |x| < δ = ε.

• How about

f(x) = |x| =
{
x if x > 0,
0 if x = 0,
−x if x < 0,

Is lim
x→0

f(x) = 0? Yes, the value of f at x = 0 does not matter.

• Consider now

f(x) =

{
x if x > 0,
1 if x = 0,
−x if x < 0.

Is lim
x→0

f(x) = 0? Yes, the value of f at x = 0 does not matter.
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• Let

f(x) =

{
0 if x < 0,
1
2

if x = 0,
1 if x > 0.

This function is defined everywhere. Does limx→0 f(x) exist?

No, given ε = 1
2
, there are values of x 6= 0 in every interval (−δ, δ) with very

different values of f :

f

(
δ

2

)
= 1,

f

(
−δ

2

)
= 0.

Thus lim
x→0

f(x) does not exist.

• Let f(x) = 7x− 3. Show that lim
x→1

f(x) = 4.

Let ε > 0. Our task is to produce a δ > 0 such that

0 < |x− 1| < δ ⇒ |f(x)− 4| < ε.

Well, |f(x)− 4| = |7x− 7| = 7 |x− 1| < 7δ.
How can we make |f(x)− 4| < ε?
No matter what ε we are given, we can easily choose δ = ε/7, so that 7δ = ε.

Q. Suppose

f(x) =

{
7x− 3 x 6= 1,

5 x = 1.

What is lim
x→1

f(x)?

A. The limit is still 4; the value of f(x) at x = 1 is completely irrelevant. The
function need not even be defined at x = 1.

Remark: lim
x→a

describes the behaviour of a function near a, not at a.

• Let f(x) = x2, x ∈ R.
Show lim

x→3
f(x) = 9.

|x− 3| < δ ⇒ |f(x)− 9| =
∣∣x2 − 9

∣∣ = |x− 3| |x+ 3| = |x− 3| |x− 3 + 6|
< δ(δ + 6) from the Triangle Inequality.
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We could solve the quadratic equation δ(δ+ 6) = ε, but it is easier to restrict δ ≤ 1
so that

δ(δ + 6) ≤ δ(1 + 6) = 7δ ≤ ε if δ ≤ ε

7
.

Note here that we must allow for the possibility that δ < ε/7 instead of just setting
δ = ε/7, in order to satisfy our simplifying restriction that δ ≤ 1.
Hence

|x− 3| < min
(

1,
ε

7

)
⇒ |f(x)− 9| < ε.

• Let f(x) = 1
x
, x 6= 0.

Show lim
x→2

f(x) =
1

2
.

Given ε > 0, try to find a δ such that

0 < |x− 2| < δ ⇒
∣∣∣∣f(x)− 1

2

∣∣∣∣ < ε.

Note

∣∣∣∣f(x)− 1

2

∣∣∣∣ =

∣∣∣∣
1

x
− 1

2

∣∣∣∣ =

∣∣∣∣
2− x

2x

∣∣∣∣ becomes very large near x = 0.

Is this a problem? No, we are only interested in the behaviour of the function
near x = 2.
Let us restrict δ ≤ 1, to keep the factor 2x in the denominator from getting really

small (and hence the whole expression from getting really large). Then

|x− 2| < 1⇒ −1 < x− 2 < 1⇒ 1 ≤ x ≤ 3⇒ 1

x
≤ 1.

So ∣∣∣∣f(x)− 1

2

∣∣∣∣ =

∣∣∣∣
2− x

2x

∣∣∣∣ ≤
1

2
|x− 2| < 1

2
δ ≤ ε,

if we take δ = min(1, 2ε).

Properties: Suppose L = lim
x→a

f(x) and M = lim
x→a

g(x). Then

lim
x→a

(f(x) + g(x)) = L+M ;

lim
x→a

f(x)g(x) = LM ;

lim
x→a

f(x)

g(x)
=

L

M
if M 6= 0;

Remark: If M = 0, we need to simplify a result before we can use the final property:
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•
lim
x→1

x− 1

x2 − 1
= lim

x→1

x− 1

(x− 1)(x+ 1)
= lim

x→1

1

(x+ 1)
=

lim
x→1

1

lim
x→1

(x+ 1)
=

1

2
.

Remark: The Squeeze Theorem for Functions states that if f(x) ≤ h(x) ≤ g(x)
when x ∈ (a− δ, a+ δ), for some δ > 0, then

lim
x→a

f(x) = lim
x→a

g(x) = L⇒ lim
x→a

h(x) = L.

Remark: If a > 0, then lim
x→a

√
x =
√
a. To see this, consider

0 ≤
∣∣√x−√a

∣∣ =
∣∣√x−√a

∣∣ ·
√
x+
√
a√

x+
√
a

=
|x− a|√
x+
√
a
≤ |x− a|√

a
.

The Squeeze Theorem then implies that

lim
x→a

∣∣√x−√a
∣∣ = 0,

or equivalently,
lim
x→a

(√
x−√a

)
= 0.

Thus
lim
x→a

√
x = lim

x→a

√
a.

Remark: Similarly, it can be shown that

lim
x→a

√
g(x) =

√
lim
x→a

g(x)

for any non-negative function g(x).

Problem 2.5: Let f(x) > 0 be a positive function, defined everywhere except perhaps
at x = 0. Suppose that

lim
x→0

(
f(x) +

1

f(x)

)
= 2.

Prove that lim
x→0

f(x) exists and equals 1. Hint: First note that

lim
x→0

(
√
f(x)± 1√

f(x)

)
=

√√√√lim
x→0

(
√
f(x)± 1√

f(x)

)2

.

Then sum these two expressions to find lim
x→0

√
f(x).
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Definition: If for everyM > 0 there exists a δ > 0 such that x ∈ (a− δ, a+ δ)⇒ f(x) > M ,
we say lim

x→a
f(x) =∞.

•
lim
x→0

1

x2
=∞.

Definition: We say lim
x→∞

f(x) =∞ if for every M > 0 we can find a real number N

such that
x > N ⇒ f(x) > M.

•
lim
x→∞

ex =∞.

2.3 Continuity

Definition: Let D ⊂ R. A point c is an interior point of D if it belongs to some
open interval (a, b) entirely contained in D: c ∈ (a, b) ⊂ D.

• 1

10
,
1

2
,
2

3
,

9

10
are interior points of [0, 1] but 0 and 1 are not.

• All points of (0, 1) are interior points of (0, 1).

Recall that the value of f at x = a is completely irrelevant to the value of its limit
as x → a. Sometimes, however, these two values will happen to agree. In that case,
we say that f(x) is continuous at x = a.

Definition: A function f is continuous at an interior point a of its domain if

lim
x→a

f(x) = f(a).

Remark: Otherwise, if

(a) the limit fails to exist, or

(b) the limit exists and equals some number L 6= f(a),

the function is said to be discontinuous.
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Remark: f is continuous at a ⇐⇒ for every ε > 0, there exists a δ > 0 such that

|x− a| < δ ⇒ |f(x)− f(a)| < ε.

Note that when x = a we have |f(a)− f(a)| = 0 < ε.

• f(x) = x is continuous at every point a of its domain (R) since lim
x→a

x = a = f(a)

for all a ∈ R.

• f(x) = x2 is continuous at all points a since

lim
x→a

f(x) = lim
x→a

x2 = lim
x→a

x · lim
x→a

x = a · a = a2 = f(a).

• Likewise, we see that every polynomial is continuous at all real numbers a.

Remark: Suppose f and g are continuous at a. Then f + g and fg are continuous
at a and f/g is continuous at a if g(a) 6= 0.

Remark: A rational function is continuous at all points of its domain.

• f(x) =
1

x
is continuous at all x 6= 0.

• f(x) =
1

x2 + 1
is continuous everywhere.

• f(x) =
1

x2 − 1
is continuous on (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

• We have seen that lim
x→a

√
x =
√
a. This means that f(x) =

√
x is continuous at all

a > 0.

Remark: If g is continuous at a and f is continuous at g(a), then f ◦ g is continuous
at a.

2.4 One-Sided Limits
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Definition: We write lim
x→a+

f(x) = L if for each ε > 0, there exists δ > 0 such that

0 < x− a < δ︸ ︷︷ ︸
i.e. a<x<a+δ

⇒ |f(x)− L| < ε.

• For the function

H(x) =

{
1 if x ≥ 0,
0 if x < 0,

we see that lim
x→0+

H(x) = 1.

Definition: We write lim
x→a−

f(x) = L if for each ε > 0, there exists δ > 0 such that

0 < a− x < δ ⇒ |f(x)− L| < ε.

• In the above example, we see that lim
x→0−

H(x) = 0.

Remark: lim
x→a

f(x) = L ⇐⇒ lim
x→a+

f(x) = lim
x→a−

f(x) = L.

Definition: A function f is continuous from the right at a if

lim
x→a+

f(x) = f(a).

Definition: A function f is continuous from the left at a if

lim
x→a−

f(x) = f(a).

• f(x) =
√
x is continuous from the right at x = 0.

Remark: A function is continuous at an interior point a of its domain if and only if
it is continuous both from the left and from the right at a.

Definition: A function f is said to be continuous on [a, b] if f is continuous at each
point in (a, b) and continuous from the right at a and from the left at b.

• f(x) =
√
x is continuous on [ 0,∞).
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Remark: Continuous functions are free of sudden jumps. This property may be
exploited to help locate the roots of a continuous function. Suppose we want to
know whether the continuous function f(x) = x3 + x2 − 1 has a root in (0, 1). We
might notice that f(0) is negative and f(1) is positive. Since f has no jumps, it
would then seem plausible that there exists a number c ∈ (0, 1) where f(c) = 0.
The following theorem establishes that this is indeed the case.

Theorem 2.1 (Intermediate Value Theorem [IVT]): Suppose

(i) f is continuous on [a,b],

(ii) f(a) < y < f(b).

Then there exists a number c ∈ (a, b) such that f(c) = y.

Problem 2.6: Show that f(x) = x7 + x5 + 2x− 1 has at least one real root in (0, 1).

Since f is a polynomial, it is continuous. Noting that −1 = f(0) < f(1) = 3, we then

know by the Intermediate Value Theorem that there exists an c ∈ (0, 1) for which f(c) = 0.

Problem 2.7: Let f(x) = 2x3 + x2 − 1. Show that there exists x ∈ (0, 1) such that
f(x) = x.

Consider the continuous function g(x) = f(x)−x. We see that g(0) = −1 and g(1) = 1.

By the Intermediate Value Theorem, there exists a point c ∈ (0, 1) for which g(c) = 0, so

that f(c) = c.



Chapter 3

Differentiation

3.1 Tangent Lines

Definition: Given a function f and a fixed point a of its domain, we can construct
the secant line joining the points (a, f(a)) and (b, f(b)) for every point b 6= a in the
domain of f . The precise equation for this line depends on the value of b:

y = f(a) +m(b) · (x− a),

where the slope m(b) is

m(b) =
f(b)− f(a)

b− a .

• If f(x) = x2, the equation of the secant line through (3, 9) and (b, b2) for b 6= 3 is

y = 9 +
b2 − 9

b− 3
(x− 3).

Definition: The tangent line of f at an interior point a of its domain, is obtained as
the limit of the secant line as b approaches a:

y = f(a) +m · (x− a),

where the limiting slope m is a number (independent of b):

m = lim
b→a

f(b)− f(a)

b− a .

• If f(x) = x2, the slope of the tangent line through (3, 9) is

m = lim
b→3

b2 − 9

b− 3
= lim

b→3

(b− 3)(b+ 3)

b− 3
= lim

b→3
(b+ 3) = 6.

The equation of the tangent line to f through (2, 4) is thus

y = 9 + 6(x− 3).

44
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3.2 The Derivative

Definition: Let a be an interior point of the domain of a function f . If

lim
x→a

f(x)− f(a)

x− a
exists, then f is said to be differentiable at a. The limit is denoted f ′(a) and is
called the derivative of f at a. If f is differentiable at every point a of its domain,
we say that f is differentiable.

Written in this way, we see that the derivative is the limit of the slope

m(x) =
f(x)− f(a)

x− a
of a secant line joining the points (a, f(a)) and (x, f(x)), where x 6= a. The limit is
taken as x gets closer to a; that is,

f ′(a) = lim
x→a

m(x).

Remark: Using the substition h = x− a, we see that

lim
x→a

m(x) = L ⇐⇒ lim
h→0

m(a+ h) = L.

This subsitution allows us to rewrite the definition of a derivative as

f ′(a) = lim
x→a

f(x)− f(a)

x− a = lim
h→0

f(a+ h)− f(a)

h
.

• Let f(t) be the position of a particle on a curve at time t. The average velocity of
the particle between time t and t+ h is the ratio of the distance travelled over the
time interval, h:

change in position

change in time
=
f(t+ h)− f(t)

h
(h 6= 0).

The instantaneous velocity at t is calculated by taking the limit h→ 0:

lim
h→0

f(t+ h)− f(t)

h
= f ′(t).

• If f(x) = c, where c is a constant, then

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

c− c
h

= 0 for all a ∈ R.
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• The derivative of the affine function f(x) = mx+ b, where m and b are constants,
(the graph of which is a straight line) has the constant value m:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

m(a+ h)−ma
h

= m.

In the case where b = 0, the function f(x) = mx is said to be linear. A function
that is neither linear nor affine is said to be nonlinear.

Remark: The derivative is the natural generalization of the slope of linear and affine
functions to nonlinear functions. In general, the value of the local (or instantaneous)
slope of a nonlinear function will depend on the point at which it is evaluated.

• Consider the function f(x) = x2. Then

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

(a+ h)2 − a2

h

= lim
h→0

6a2 +2ha+ h2− 6a2

h
= lim

h→0
(2a+ h) = 2a.

We see here that the value of the derivative of f at the point a depends on a. Note
that

f ′(a) < 0 for a < 0,

f ′(a) = 0 for a = 0,

f ′(a) > 0 for a > 0.

It is convenient to think of the derivative as a function on its own, which in general
will depend on exactly where we evaluate it. We emphasize this fact by writing
the derivative in terms of a dummy argument such as a or x. In this case, we can
express this functional relationship as f ′(a) = 2a for all a, or with equal validity,
f ′(x) = 2x for all x.

• If f(x) =
√
x, we find that

f ′(x) = lim
h→0

√
x+ h−√x

h
= lim

h→0

(√
x+ h−√x

h
·
√
x+ h+

√
x√

x+ h+
√
x

)

= lim
h→0

(
x+ h− x

h
· 1√

x+ h+
√
x

)
= lim

h→0

1√
x+ h+

√
x

=
1

2
√
x
.
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• Let f(x) = xn, where n ∈ N. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)n − xn
h

= lim
h→0

6xn +nxn−1h+ n(n−1)
2

xn−2h2 + . . .+ hn− 6xn
h

= lim
h→0

[
nxn−1 +

n(n− 1)

2
xn−2h+ . . .+ hn−1

]

= nxn−1.

Remark: An alternative proof of the above result relies on the factorization

xn − an = (x− a)(xn−1 + xn−2a+ xn−3a2 + . . .+ xan−2 + an−1),

which may be established either by long division, summing a geometric series, or by
multiplying out the right-hand-side, exploiting the collapse of this Telescoping sum
to just two end terms:

(x− a)
n−1∑

k=0

xn−1−kak =
n−1∑

k=0

xn−kak −
n−1∑

k=0

xn−1−kak+1 =
n−1∑

k=0

xn−kak −
n∑

k=1

xn−kak

= xn − an.

For example, when n = 2 we recover the result x2 − a2 = (x− a)(x+ a) and when
n = 3 we obtain x3 − a3 = (x− a)(x2 + ax+ a2).

• If f(x) = xn, we then find that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a
xn − an
x− a

= lim
x→a

(
xn−1 + xn−2a+ xn−3a2 + . . .+ xan−2 + an−1

)

= nan−1.

• We can compute the derivative of the function f(x) = x1/n where x > 0 and n ∈ N
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by applying the above factorization to x− a = (x1/n)n − (a1/n)n:

f ′(a) = lim
x→a

f(x)− f(a)

x− a

= lim
x→a

x1/n − a1/n

x− a

= lim
x→a

x1/n − a1/n

(x1/n − a1/n)(x(n−1)/n + x(n−2)/na1/n + . . .+ x1/na(n−2)/n + a(n−1)/n)

=
1

lim
x→a

x(n−1)/n + lim
x→a

x(n−2)/na1/n + . . .+ lim
x→a

a(n−1)/n

︸ ︷︷ ︸
n terms

=
1

na(n−1)/n
=

1

n
a

1−n
n

=
1

n
a

1
n
−1.

Remark: The derivative of an exponential function f(x) = bx can be found by using
the properties of exponentials:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

bx+h − bx
h

= bx lim
h→0

bh − 1

h
= bxf ′(0),

on noting that f ′(0) = bh−1
h

. This emphasizes the important property that the
slope of an exponential function is proportional to the value of the function itself.

Remark: For the special choice of base b = e, this proportionality constant equals
one; that is, f ′(0) = 1. That is, if f(x) = ex, then f ′(x) = ex. The natural
exponential function is thus its own derivative.

Problem 3.1: At what point on the graph of f(x) = ex is the tangent line parallel
to the line y = 2x?

On setting f ′(x) = ex = 2 we find that x = 2. The required point is thus (log 2, 2).

Q. Are all functions differentiable?

A. No, consider

f(x) =

{
0 if x < 0,
1 if x ≥ 0.

We see that

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

1− 1

x
= lim

x→0+

0

x
= 0,
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but

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

0− 1

x
does not exist.

So lim
x→0

f(x)− 1

x− 0
does not exist. It appears, at the very least, that we must avoid

jumps, as the following theorem points out.

Theorem 3.1 (Differentiable ⇒ Continuous): If f is differentiable at a then f is
continuous at a.

Proof: For x 6= a, we may write

f(x) = f(a) +
f(x)− f(a)

x− a (x− a).

If lim
x→a

f(x)− f(a)

x− a exists, then

lim
x→a

f(x) = lim
x→a

f(a) + lim
x→a

f(x)− f(a)

x− a · lim
x→a

(x− a)

= f(a) + f ′(a) · 0
= f(a),

so f is continuous at a.

Q. Are all continuous functions differentiable?

A. No, consider f(x) = |x|:
f(x)− f(0)

x− 0
=
|x| − 0

x− 0
=
|x|
x

=
{

1 if x > 0,
−1 if x < 0.

Hence lim
x→0

f(x)− f(0)

x− 0
does not exist; f is not differentiable at 0, even though f

is continuous at 0.

Derivative Notation

Three equivalent notations for the derivative have evolved historically. Letting
y = f(x), ∆y = f(x+ h)− f(x), and ∆x = (x+ h)− x = h, we may write

f ′(x) = lim
∆x→0

∆y

∆x
.

To help us remember this, we sometimes denote the derivative by dy/dx (Leibniz
notation).

The operator notation Df (or Dxf , which reminds us that the derivative is with
respect to x) is also occasionally used to emphasize that the derivativeDf is a function
derived from the original function, f .
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Remark: When the derivative f ′ of a function f is itself differentiable we will use
either the notation f ′′ or f (2) to denote the second derivative of f . In general,
we will let f (n) denote the n-th derivative of f , obtained by differentiating f with
respect to its argument n times (the parentheses help us avoid confusion with
powers). It is also convenient to define f (0) = f itself.

Remark: Observe that f (n+1) = (f (n))′ and that if f (n+1) exists at a point x, then
f (n) and all lower-order derivatives must also exist at x.

3.3 Properties

Theorem 3.2 (Properties of Differentiation): If f and g are both differentiable at a,
then

(a) (f + g)′(a) = f ′(a) + g′(a),

(b) (fg)′(a) = f ′(a)g(a) + f(a)g′(a),

(c)

(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

[g(a)]2
if g(a) 6= 0.

Proof: We are given that f ′(a) = lim
x→a

f(x)− f(a)

x− a exists and g′(a) = lim
x→a

g(x)− g(a)

x− a
exists.

(a)

lim
x→a

(f + g)(x)− (f + g)(a)

x− a = lim
x→a

f(x) + g(x)− f(a)− g(a)

x− a
= lim

x→a
f(x)− f(a)

x− a + lim
x→a

g(x)− g(a)

x− a
= f ′(a) + g′(a).

(b)

lim
x→a

(fg)(x)− (fg)(a)

x− a = lim
x→a

f(x)g(x)− f(a)g(a)

x− a
= lim

x→a
f(x)g(x)− f(a)g(x) + f(a)g(x)− f(a)g(a)

x− a
= lim

x→a
f(x)− f(a)

x− a lim
x→a

g(x)
︸ ︷︷ ︸

exists =g(a) by Theorem 3.1

+f(a) lim
x→a

g(x)− g(a)

x− a

= f ′(a)g(a) + f(a)g′(a).
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(c) Let h(x) =
1

g(x)
. Then

h′(a) = lim
x→a

h(x)− h(a)

x− a = lim
x→a

1
g(x)
− 1

g(a)

x− a

= lim
x→a

g(a)−g(x)
g(x)g(a)

x− a
= − 1

g2(a)
lim
x→a

g(x)− g(a)

x− a = − g
′(a)

g2(a)
.

Then from (b),
(
f

g

)′
(a) = (fh)′(a) = f ′(a)h(a) + f(a)h′(a)

=
f ′(a)

g(a)
− f(a)g′(a)

g2(a)

=
f ′(a)g(a)− f(a)g′(a)

g2(a)
.

Remark: Any polynomial is differentiable on R.

Remark: A rational function is differentiable at every point of its domain.

Problem 3.2: If f(x) = ex − x, find f ′ and f ′′
.
= (f ′)′.

Since f ′(x) = ex − 1, we see that f ′′(x) = ex.

Problem 3.3: Use the quotient rule to show that the rule dxn/dx = nxn−1 is valid
for all n ∈ Z, including n = 0 and n < 0.

For n = 0, the derivative evaluates to lim
h→0

1− 1

h
= 0. For n < 0, we have

d

dx
xn =

d

dx

1

x−n
=

0 · x−n − 1 · ddxx−n
(x−n)2

=
−(−n)x−n−1

(x−n)2
= nxn−1.

Problem 3.4: Use the following procedure to show that the derivative of sinx is
cosx.

(a) Use the inequality sinx ≤ x ≤ tanx for 0 ≤ x < π/2 to prove that

cosx ≤ sinx

x
≤ 1 for 0 < |x| < π

2
.

For 0 < x < π/2, we know that both x and cosx are positive, which allows us rewrite
the inequalities x ≤ tanx and sinx ≤ x as

cosx ≤ sinx

x
≤ 1.

Since each of these expressions are even functions of x, the inequality also holds for −π/2 <
x < 0.
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(b) Prove that

lim
x→0

sinx

x

exists and evaluate the limit.
Since cosx is a continuous function, we know that lim

x→0
cosx = cos 0 = 1. We then

deduce from the Squeeze Theorem that

lim
x→0

sinx

x
= 1.

(c) Prove that

1− cosx ≤ x2

2
for all x ∈ R.

Hint: Try replacing x by 2x.

1− cosx = 2 sin2 x

2
= 2

∣∣∣sin x
2

∣∣∣
2
≤ 2

∣∣∣x
2

∣∣∣
2

=
x2

2
.

(d) Prove that

lim
x→0

1− cosx

x

exists and evaluate the limit.
Since cosx ≤ 1 for all x, we know for x 6= 0 that

∣∣∣∣
1− cosx

x

∣∣∣∣ =
1− cosx

|x| ≤ |x|
2

and hence

−|x|
2
≤ 1− cosx

x
≤ |x|

2
.

As x→ 0, we deduce from the Squeeze Principle that

lim
x→0

1− cosx

x
= 0.

Alternatively,

lim
x→0

1− cosx

x
= lim

x→0

(1− cosx)(1 + cosx)

x(1 + cosx)
= lim

x→0

sin2 x

x(1 + cosx)

= lim
x→0

sinx

x
lim
x→0

sinx

1 + cosx
= 1 · 0

2
= 0.
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(e) Use the above results to prove that sinx is differentiable at any real number a
and find its derivative. That is, show that

lim
h→0

sin(a+ h)− sin a

h

exists and evaluate the limit.

lim
h→0

sin a cosh+ cos a sinh− sin a

h
= sin a lim

h→0

cosh− 1

h
+cos a lim

h→0

sinh

h
= 0+cos a = cos a.

Problem 3.5: Compute

lim
x→∞

x tan

(
1

x

)

Hint: let y = 1/x. As x→∞, what happens to y?

= lim
y→0+

tan y

y
= lim

y→0+

(
sin y

y

)
lim
y→0+

(
1

cos y

)
= 1 · 1 = 1.

Theorem 3.3 (Chain Rule): Suppose h = f ◦ g, i.e. h(x) = f(g(x)). Let a be an
interior point of the domain of h and define b = g(a). If f ′(b) and g′(a) both exist,
then h is differentiable at a and

h′(a) = f ′(b)g′(a).

That is, if y = f(u) and u = g(x), then

dy

dx

∣∣∣∣
a

=
dy

du

∣∣∣∣
b

du

dx

∣∣∣∣
a

.

• Consider that
d

dx
(x2 + 1)2 =

d

dx
f(g(x)), where u = g(x) = x2 + 1 and f(u) = u2.

We let h(x) = f(g(x)):

h′(x) = f ′(u)g′(x)

= 2u · 2x
= 2(x2 + 1) · 2x = 4x3 + 4x.

As a check, we could also work out this derivative directly:

d

dx
(x2 + 1)2 =

d

dx
(x4 + 2x2 + 1) = 4x3 + 4x.
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• The Chain Rule makes it easy to find

d

dx
(x3 + 1)100 = 100(x3 + 1)993x2

= 300x2(x3 + 1)99.

• Letf(u) = u
1
n ⇒ f ′(u) =

1

n
u

1
n
−1 and g(x) = xm ⇒ g′(x) = mxm−1.

Then h(x) = f(g(x)) = x
m
n ⇒ h′(x) = f ′(u)g′(x) where u = g(x). Thus

h′(x) = f ′(g(x))g′(x)

=
1

n
(xm)

1
n
−1mxm−1

=
m

n
x
m
n
−6m+ 6m−1.

Hence
d

dx
xq = qxq−1 for all q ∈ Q.

• Find
d

dx

1

g(x)
(cf. Theorem 3.2(c)).

Let f(x) = x−1, f ′(x) = −x−2, and h(x) =
1

g(x)
= f(g(x)). Then

h′(x) = f ′(g(x))g′(x)

= − 1

[g(x)]2
g′(x),

We may express this using an alternative notation. Letting y =
1

u
and u = g(x), we

find
dy

dx
=
dy

du

du

dx
= − 1

u2
g′(x) = − g

′(x)

g2(x)
.

•
d

dx

√
1

1 + x3
=

1

2
√

1
1+x3

[
− 1

(1 + x3)2
· 3x2

]

= −3x2(1 + x3)
1
2

2(1 + x3)2
= −3

2
x2(1 + x3)−

3
2 .

Here is an even easier way to find this derivative:

d

dx

√
1

1 + x3
=

d

dx
(1 + x3)−

1
2

= −1

2
(1 + x3)−

3
2 · 3x2.
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•
d

dx
sin(sin(x)) = cos(sin(x)) cos(x).

•
d

dx
sin(sin(sin(x))) = cos(sin(sin(x))) cos(sin(x)) cos(x).

Remark: To prove the Chain Rule it is not enough to argue

lim
∆x→0

∆y

∆x
= lim

∆u→0

∆y

∆u
lim

∆x→0

∆u

∆x

because ∆u = g(x)− g(a) might be zero for values of x close to (but not equal to)
a. However, we can easily fix up this argument as follows.

Proof (of Theorem 3.3):
Let b = g(a) and define

m(u) =





f(u)− f(b)

u− b if u 6= b,

f ′(b) if u = b.

Then

f ′(b) exists⇒ lim
u→b

m(u) = f ′(b) = m(b)⇒ m is continuous at b

and

g′(a) exists⇒ g is continuous at a⇒ m ◦ g is continuous at a,

⇒ lim
x→a

m(g(x)) = m(g(a)) = m(b) = f ′(b).

Note that
f(u)− f(b) = m(u)(u− b) for all u.

Letting u = g(x), we then find that

lim
x→a

f(g(x))− f(g(a))

x− a = lim
x→a

m(g(x)) lim
x→a

g(x)− g(a)

x− a
= f ′(b)g′(a).

• With the help of the Chain Rule, the derivative of cos x can be calculated as:

d

dx
cosx =

d

dx
sin
(π

2
− x
)

= cos
(π

2
− x
)

(−1) = − sinx,
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• We can also find the derivative of tanx:

d

dx
tanx =

d

dx

sinx

cosx
=

cosx cosx− sinx(− sinx)

cos2 x
=

1

cos2 x
= sec2 x.

Problem 3.6: Compute

d

dx
(x cosx)

= cosx− x sinx.

Problem 3.7: Find
d

dx

(
1

cosx

)

=

(
1

cos2 x

)
sinx.

Problem 3.8: Let f be a differentiable function. Find the following derivatives

(a)
d

dx
f(f(f(x)))

= f ′(f(f(x)))f ′(f(x))f ′(x).

(b)

d

dx

[
f 3(x) + 1

f 2(x)

]

=
d

dx

[
f(x) +

1

f2(x)

]
=

[
1− 2

f3(x)

]
f ′(x).

Problem 3.9: If f(x) = bx = ex log b, show that f ′(x) = bx log b. Note for b = e that
this reduces to f ′(x) = ex since log e = 1.
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Problem 3.10: Calculate the following derivatives:

(a)
d

dx

x2

x3 + 1

=
2x(x3 + 1)− x2(3x2)

(x3 + 1)2
=
−x4 + 2x

(x3 + 1)2
.

(b)
d

dx

(√
2x+ 1

sinx

)

sinx 1√
2x+1

−
√

2x+ 1 cosx

sin2 x
=

sinx− (2x+ 1) cosx√
2x+ 1 sin2 x

.

(c)
d

dx

1

sin3(sinx)

d

dx
sin−3(sinx) = −3 sin−4(sinx) cos(sinx) cosx = −3

cos(sinx) cosx

sin4(sinx)
.

Problem 3.11: Let f : R→ R be a differentiable function. Consider g(x) = f(−x).

(a) Compute g′ in terms of f ′.
Using the Chain Rule, we find that g′(x) = −f ′(−x).

(b) If f is an even function, show that f ′ is odd.
If f is even then g(x) = f(−x) = f(x); that is, g and f are the same function. From

part (a) we then see that f is odd: f ′(x) = −f ′(−x).

(c) If f is an odd function, show that f ′ is even.
If f is odd then g(x) = f(−x) = −f(x). From part (a) we then see that f is even:

f ′(x) = f ′(−x).

Problem 3.12:

(a) A spherical balloon is being inflated at the rate of 10 cm3/s. Given that the
volume V of the balloon is related to the radius by V = 4

3
πr3, use the Chain Rule to

compute how fast the radius of the balloon is growing when the volume has reached
100 cm3.

The rate of inflation r(t) must equal the rate of volume increase: dV/dt = 10 cm3/s.
We will need to know the formula for r in terms of V ,

r =

(
3

4π

)1/3

V 1/3.
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and its derivative,

dr

dV
=

(
3

4π

)1/3 1

3
V −2/3 =

(
1

36π

)1/3

V −2/3.

When the volume of the balloon is 100 cm3, we can use the Chain Rule to determine that
the radius is growing at the rate

dr

dt
=

dr

dV

dV

dt
=

(
1

36π

)1/3

(100 cm3)−2/3 × 10
cm3

s
= 0.096

cm

s
.

Incidentally, the derivative of r with respect to V can also be calculated by first calcu-

lating dV/dr = 4πr2, taking the reciprocal to get dr/dV , and finally expressing the result

in terms of V . (What justifies that one can calculate dr/dV in this way?)

(b) Suppose now that the (constant) inflation rate of the balloon is unknown, but
it is known that when the volume is 100 cm3, the radius is growing at a rate of 1
cm/s. How fast is the radius of the balloon growing when the volume has reached
1000 cm3?

We are given that at a time t1, the volume V (t1) = 100 cm3 and dr
dt t1| = 1 cm/s. By

the Chain Rule,
dr

dt
t1| =

dr

dV
t1|
dV

dt

and
dr

dt
t2| =

dr

dV
t2|
dV

dt
,

since the inflation rate dV
dt is constant. Hence

dr

dt
t2| =

(
dr
dV t2|
dr
dV t1|

)
dr

dt
t1| =

(
V (t2)

V (t1)

)−2/3dr

dt
t1| =

(
1

10

)2/3

× 1
cm

s
= 0.215

cm

s
.

Problem 3.13: Let

f(x) =

{
x2 cos

(
1
x

)
if x 6= 0,

0 if x = 0.

Prove that f is differentiable for all x ∈ R and find f ′(x). A graph of f is shown
below, including an inset where the y axis is stretched to show more detail around
the origin.

x

{
x2 cos 1

x
if x 6= 0,

0 if x = 0.
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Since cos(x) is differentiable at all x and 1/x is differentiable on (−∞, 0) ∪ (0,∞), the
composite function cos(1/x), and hence f , is differentiable on (−∞, 0) ∪ (0,∞). Moreover,
f is also differentiable at x = 0, with derivative 0:

lim
x→0

x2 cos
(

1
x

)
− 0

x− 0
= lim

x→0
x cos

(
1

x

)
= 0

by the Squeeze Theorem since

0 ≤
∣∣∣∣x cos

(
1

x

)∣∣∣∣ ≤ |x|

and lim
x→0

0 = 0 = lim
x→0
|x|.

Hence f is differentiable on R and

f ′(x) =

{
2x cos

(
1
x

)
+ sin

(
1
x

)
if x 6= 0,

0 if x = 0.

Problem 3.14: Suppose that two functions f and g are differentiable n times at the
point a. Use induction to prove Leibniz’s formula:

(fg)(n)(x) =
n∑

k=0

(
n

k

)
f (n−k)(x)g(k)(x).

3.4 Implicit Differentiation

Suppose that a variable y is defined implicitly in terms of x and we wish to know dy/dx.
For example, given the implicit equation

(3.1)y3 + 3y2 + 3y + 1 = x5 + x,

we could solve for y to find
(y + 1)3 = x5 + x

⇒ y + 1 = (x5 + x)
1
3

⇒ dy

dx
=

1

3
(x5 + x)−

2
3 (5x4 + 1). (3.2)

But what happens if you can’t (or don’t want to) solve for y? You might try first
to solve for x in terms of y and then find the derivative dx/dy of the inverse function.
But what if this is also difficult?

It is often easier in these cases to differentiate both sides of Eq. (3.1) with respect
to x, noting that y = y(x):

d

dx

[
y3(x) + 3y2(x) + 3y(x) + 1

]
=

d

dx
(x5 + x).
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By the Chain Rule, we find

(
3y2 + 6y + 3

)
y′(x) = 5x4 + 1,

which we can easily solve to obtain dy/dx as a function of x and y,

dy

dx
=

5x4 + 1

3y2 + 6y + 3
=

5x4 + 1

3(y + 1)2
. (3.3)

Once we know an (x, y) pair that satisfies Eq. (3.1), we can immediately compute the
derivative from Eq. (3.3).

It is instructive to verify that Eqs. (3.2) and (3.3) agree:

dy

dx
=

5x4 + 1

3(y + 1)2
=

5x4 + 1

3(x5 + x)
2
3

.

Problem 3.15: If x2 + y2 = 25, find dy/dx. Then find an equation for the tangent
line to this circle through the point (3, 4).

On implicitly differentiating both sides with respect to x, we find

2x+ 2y
dy

dx
= 0.

When y 6= 0 we can then solve for dy
dx :

dy

dx
= −x

y
.

Since the slope of the tangent line at (3, 4) is −3/4, an equation of the tangent line is

y − 4 = −3

4
(x− 3).

Problem 3.16: Find dy/dx if x3 + y3 = 6xy.

3.5 Inverse Functions and Their Derivatives

This section addresses the question: given a function f , when is it possible to find a
function g that undoes the effect of f , so that

y = f(x) ⇐⇒ x = g(y)?

Recall that a function is a collection of pairs of numbers (x, y) such that if (x, y1) and
(x, y2) are in the collection, then y1 = y2.
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Definition: A function f : A→ B is one-to-one on its domain A if, whenever (x1, y)
and (x2, y) are in the collection, then x1 = x2. That is,

x1 = x2 ⇐⇒ f(x1) = f(x2).

We say that such a function is 1–1 or invertible.

This can be restated using the horizontal line test: a set of ordered pairs (x, y) is
a one-to-one function if every horizontal and every vertical line intersects their graph
at most once.

Remark: Equivalently, a 1–1 function f satisfies

x1 6= x2 ⇐⇒ f(x1) 6= f(x2).

• f(x) = x and f(x) = x3 are 1–1 functions.

• f(x) = x2 and f(x) = sinx are not 1–1 functions.

Remark: Sometimes a noninvertible function can be made invertible by restricting
its domain.

• f = sinx restricted to the domain [−π
2
, π

2
] is 1–1.

Remark: If f : A→ B is 1–1 then the collection of pairs of numbers (y, x) such that
(x, y) belong to f is also a function.

Definition: The function defined by the pairs {(y, x) : (x, y) ∈ f} is the inverse
function f−1 : B → A of f .

Problem 3.17: Show that the inverse of a 1–1 function is itself an invertible function;
that is, it satisfies both the horizontal and vertical line tests.

• The inverse of the function sinx restricted to the domain [−π
2
, π

2
] is denoted arcsinx

or sin−1 x; it is itself a 1–1 function on [−1, 1], yielding values in the range [−π
2
, π

2
].

Remark: Do not confuse the notation sin−1 x with 1
sinx

; they are not the same func-
tion! Because of this rather unfortunate notational ambiguity, we will use the
short-hand notation fn(x) to denote (f(x))n only when n ≥ 0; in particular, we
reserve the notation f−1(x) for the inverse of f .
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Problem 3.18: Suppose that f and g are inverse functions of each other. Show that
g(f(x)) = x for all x in the domain of f and f(g(y)) = y for all y in the range of f .

Theorem 3.4 (Continuous Invertible Functions): Suppose f is continuous on I.
Then f is one-to-one on I ⇐⇒ f is strictly monotonic on I.

Theorem 3.5 (Continuity of Inverse Functions): Suppose f is continuous and one-
to-one on an interval I. Then its inverse function f−1 is continuous on f(I) =
{f(x) : x ∈ I}.

Theorem 3.6 (Differentiability of Inverse Functions): Suppose f is continuous and
one-to-one on an interval I and differentiable at a ∈ I. Let b = f(a) and denote
the inverse function of f on I by g. If

(i) f ′(a) = 0, then g is not differentiable at b;

(ii) f ′(a) 6= 0, then g is differentiable at b and g′(b) =
1

f ′(a)
.

• The inverse of the function f(x) = x3 is f−1(y) = y1/3 since y = x3 ⇒ x = y
1
3 .

Notice that f ′(x) = 3x2 6= 0 for x 6= 0 (i.e. y 6= 0). We can then verify that

d

dy
f−1(y) =

1

3
y−

2
3 =

1

3y
2
3

=
1

3[f−1(y)]2
=

1

f ′(f−1(y))
.

• What is the derivative of y = arctanx (or y = tan−1 x, the inverse function of
x = tan y?

Theorem 3.6 ⇒ dy

dx
=

1
dx
dy

where x = tan y and
dx

dy
=

1

cos2 y
. That is,

dy

dx
=

1
1

cos2 y

= cos2 y.

Normally, we will want to re-express the derivative in terms of x. Recalling that
tan2 y + 1 = 1

cos2 y
and x = tan y, we see that

dy

dx
=

1

1 + tan2 y
=

1

1 + x2
.

∴
d

dx
arctanx =

1

1 + x2
on (−∞,∞).
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Remark: Although f(x) = tan x does not satisfy the horizontal line test on R, it does
if we restrict tanx to the domain (−π

2
, π

2
). We call tanx on (−π

2
, π

2
) the principal

branch of tanx, which is sometimes denoted Tanx. Its inverse, which is sometimes
written Arctanx or Tan−1 x, maps R to the interval (−π

2
, π

2
).

• Consider f(x) =
√

1− x2, which is 1–1 on [0, 1].

Note that f ′(x) = − x√
1−x2 exists on [0, 1).

Now y =
√

1− x2 ⇒ x =
√

1− y2 ⇒ x = f−1(y) = f(y).
In this case f and f−1 are identical functions of their respective arguments!

d

dy
f−1(y) =

1

f ′(x)

= −
√

1− x2

x

= −
√

1− [f−1(y)]2

f−1(y)

= −
√

1− [f(y)]2

f(y)

= −
√

1− (1− y2)√
1− y2

= − y√
1− y2

on [0, 1).

• y = sinx is 1–1 on
[
−π

2
,
π

2

]
.

dy

dx
= cosx 6= 0 on (−π

2
, π

2
).

The inverse function (as a function of y) is

x = arcsin y (or x = sin−1 y),

with derivative
dx

dy
=

1
dy
dx

=
1

cosx
.

We can express cos x as a function of y:

cosx =
√

1− sin2 x

=
√

1− y2,
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noting that cosx > 0 on (−π
2
, π

2
), to find

d

dy
arcsin y =

1√
1− y2

on (−1, 1).

That is,

d

dx
arcsinx =

1√
1− x2

on (−1, 1).

• y = cosx is 1–1 on [0, π].

dy

dx
= − sinx 6= 0 on (0, π).

The inverse function x = arccos y (or x = cos−1 y) has derivative

dx

dy
=

1
dy
dx

=
1

− sinx
,

which we can express as a function of y, noting that sinx > 0 on (0, π),

sinx =
√

1− cos2 x =
√

1− y2.

∴
d

dy
arccos y = − 1√

1− y2
,

i.e.
d

dx
arccosx = − 1√

1− x2
on (−1, 1).

It is not surprising that d
dx

arccosx = − d
dx

arcsinx since arccosx = π
2
− arcsinx,

as can readily be seen by taking the cosine of both sides and using cos y = sin(π
2
− y).

• Prove that cos−1 x+ sin−1 x = π
2

for all x ∈ [−1, 1]. Let

f(x) = cos−1 x+ sin−1 x

f ′(x) =
−1√

1− x2
+

1√
1− x2

= 0

⇒ f(x) = c, a constant.

Set x = 0 to find c:
c = f(0) = cos−1 0 =

π

2
.

∴ f(x) =
π

2
for all x ∈ [−1, 1].

Problem 3.19: Let f(x) = sin−1(x2 − 1). Find

(a) the domain of f ;

The inverse function y = sin−1 x has domain [−1, 1], and x2 − 1 ∈ [−1, 1] implies

x2 ∈ [0, 2]. Hence, the domain of f is [−
√

2,
√

2].
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(b) f ′(x);

Letting y = sin−1(x2 − 1), we first find the derivative for x > 0:

x2 − 1 = sin y

⇒ x =
√

sin y + 1

⇒ dx

dy
=

cos y

2
√

sin y + 1

=

√
1− (x2 − 1)2

2
√
x2

=

√
2x2 − x4

2x

⇒ dy

dx
=

2x√
2x2 − x4

.

Since the derivative of an even function is odd (and vice-versa) we see that the same
result holds for x < 0 as well.

Alternatively, one could use the formula for the derivative of sin−1 x together with the

Chain Rule.

(c) the domain of f ′.

The domain of f ′ = dy/dx is the set of x such that 2x2 − x4 > 0:

2x2 > x4 ⇒ 2 > x2 if x 6= 0.

∴ domain of f ′ is
{
x : 0 < |x| <

√
2
}

=
(
−
√

2, 0
)
∪
(
0,
√

2
)
.

Problem 3.20: Verify that the graphs of the functions y = sin−1 x, y = cos−1 x, and
y = tan−1 x are as shown below.

y

x

sin−1 x

−π
2

π
2

−1 1
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y

x

cos−1 x

π

−1 1

y

x

tan−1 x

−π
2

π
2

Remark: We may use the fact that the derivative of the exponential function y =
f(x) = ex is f(x) itself to find the derivative of the inverse function x = g(y) = log y.
Since

f ′(x) =
dy

dx
= y,

we see that

g′(y) =
dx

dy
=

1

y
,

Thus for x > 0 we find that
d

dx
log x =

1

x
.

That is, the derivative of the natural logarithm is the reciprocal function.

Remark: The derivative of the logarithm to the base b follows immediately:

d

dx
logb x =

d

dx

log x

log b
=

1

x log b
.
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• Consider

F (x) = log |x| =
{

log x x > 0,
log(−x) x < 0.

Then

F ′(x) =





1

x
x > 0,

1

−x(−1) x < 0

=
1

x
for all x 6= 0.

That is, for x 6= 0 we find that

d

dx
log |x| = 1

x
.

Problem 3.21: Suppose that f and its inverse g are twice differentiable functions
on R. Let a ∈ R and denote b = f(a).

(a) Implicitly differentiate both sides of the identity g(f(x)) = x with respect to x.
By the Chain Rule,

g′(f(x))f ′(x) = 1.

(b) Using part(a), prove that f ′(a) 6= 0.
If f ′(a) = 0, we would obtain a contradiction:

0 = g′(f(a))f ′(a) = 1.

(c) Using parts (a) and (b), find a formula expressing g′(b) in terms of f ′(a).

g′(b) =
1

f ′(a)
.

(d) Show that

g′′(b) = − f ′′(a)

[f ′(a)]3
.

On differentiating the expression in part (a), we find that

g′′(f(x))[f ′(x)]2 + g′(f(x))f ′′(x) = 0.

On setting x = a and using part(c), we find that

g′′(f(a))[f ′(a)]2 +
f ′′(a)

f ′(a)
= 0,

from which the desired result immediately follows.
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3.6 Logarithmic Differentiation

Because they can be used to transform multiplication problems into addition prob-
lems, logarithms are frequently exploited in calculus to facilitate the calculation of
derivatives of complicated products or quotients. For example, if we need to calculate
the derivative of a positive function f(x), the following procedure may simplify the
task:

1. Take the logarithm of both sides of y = f(x).

2. Differentiate each side implicitly with respect to x.

3. Solve for dy/dx.

• Differentiate y = x
√
x for x > 0.

We have
log y = log x

√
x =
√
x log x.

Thus

1

y

dy

dx
=

1

2
√
x

log x+
√
x

(
1

x

)
.

⇒ dy

dx
= y

(
log x

2
√
x

+
1√
x

)

= x
√
x

(
log x+ 2

2
√
x

)
.

Problem 3.22: Show that the same result follows on differentiating y = e
√
x log x

directly.

• For x > 0 differentiate

y = −x
3
4

√
x2 + 1

(3x+ 2)5
.

Since

log(−y) =
3

4
log x+

1

2
log(x2 + 1)− 5 log(3x+ 2),

we find

1

y

dy

dx
=

3

4

(
1

x

)
+

1

2

(
1

x2 + 1

)
(2x)− 5

3x+ 2
(3)

⇒ dy

dx
= −x

3
4

√
x2 + 1

(3x+ 2)5

(
3

4x
+

x

x2 + 1
− 15

3x+ 2

)
.
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Remark: We can use logarithmic differentiation to show that if y = f(x) = xn for
some real number n, then f ′(x) = nxn−1. First, we take the absolute value of y to
ensure that the argument of the logarithm is non-negative:

log |y| = log |x|n = n log |x|.

We then implicitly differentiate both sides with respect to x:

1

y

dy

dx
=
n

x
,

from which we find that

dy

dx
=
ny

x
=
nxn

x
= nxn−1.

Problem 3.23: Alternatively, show directly from the definition xn = en log x that the
rule dxn/dx = nxn−1 is valid for any real n.

d

dx
xn =

d

dx
en log x = en log xn

1

x
= nxn−1.

Remark: Recall that

1

y
=

d

dy
log(y) = lim

h→0

log(y + h)− log(y)

h
.

In particular, at y = 1/x we find

x = lim
h→0

log
(

1
x

+ h
)

+ log x

h
= lim

h→0
log(1 + xh)

1
h = log lim

n→∞

(
1 +

x

n

)n
.

We thus obtain another expression for ex:

ex = lim
n→∞

(
1 +

x

n

)n
.

Remark: In particular at x = 1 we obtain a limit expression for the number e:

e = lim
n→∞

(
1 +

1

n

)n
.
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3.7 Rates of Change: Physics

Problem 3.24: The position at time t of a particle in meters is given by the equation

x = f(t) = t3 − 6t2 + 9t.

Find (a) the velocity at time t.

v(t) =
dx

dt
= f ′(t) = 3t2 − 12t+ 9.

(b) When is the particle at rest? Setting

0 = v(t) = 3(t2 − 4t+ 3) = 3(t− 3)(t− 1),

we see that the particle is at rest when t = 1 or t = 3.

(c) When is the particle moving forward?
The particle is moving forward when v(t) > 0; that is when t − 3 and t − 1 have the

same sign. This happens when t < 1 and t > 3. For t ∈ (1, 3) we see that v(t) < 0, so the

particle moves backwards.

(d) Find the total distance travelled during the first five seconds.
Because the particle retraces it path for t ∈ (1, 3), we must calculate these distance

travelled during [0, 1], [1, 3], and [3, 5] separately. From t = 0 to t = 1, the distance

travelled is |f(1) − f(0)|= |4 − 0|= 4m. From t = 1 to t = 3, the distance travelled is

|f(3) − f(1)|= |0 − 4|= 4m. From t = 3 to t = 5, the distance travelled is |f(5) − f(3)|=
|20− 0|= 20m. The total distance travelled is therefore 28m.

(e) Determine the acceleration a = dv/dt of the particle as a function of t.

a(t) = 6t− 12.

3.8 Related Rates

The Chain Rule is useful for solving problems with two variables that are related to
one another. In this, the rate of change of one variable may be related to the rate of
change of the other.

Problem 3.25: A boat is pulled into a dock by a rope attached to the bow of the
boat and passing through a pulley on the dock that is 3m higher than the bow of
the boat. If the rope is pulled in at a rate of 2m/s, how fast is the boat approaching
the dock when it is 4m from the dock?

Let r denote the length of the rope, from bow to pulley, and x the (horizontal) distance
between the bow and the dock. Then r(x) =

√
x2 + 32 so that dr/dx = x/

√
x2 + 32. Thus

dx

dt
=
dx

dr
· dr
dt

=

√
42 + 32

4
× 2 =

5

2
m/s.
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Problem 3.26: A stone thrown into a pond produces a circular ripple which expands
from the point of impact. When the radius is 8m it is observed that the radius is
increasing at a rate of 1.5m/s. How fast is the area increasing at that instant?

Problem 3.27: Water is leaking out of a tank shaped like an inverted cone (pointed
end at the bottom) at a rate of 10 m3/min. The tank has a height of 6m and a
diameter at the top of 4m. How fast is the water level dropping when the height
of the water in the tank is 2m?

3.9 Hyperbolic Functions

Hyperbolic functions are combinations of ex and e−x:

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, tanhx =

sinhx

coshx
,

cschx =
1

sinhx
, sechx =

1

coshx
, cothx =

1

tanhx
.

Recall that the points (x, y) = (cos t, sin t) generate a circle, as t is varied from 0
to 2π, since x2 + y2 cos2 t + sin2 t = 1. In contrast, the points (x, y) = (cosh t, sinh t)
generate a hyperbola, as t is varied over all real values, since x2 − y2 = cosh2 t −
sinh2 t = 1 (hence the name hyperbolic functions). That is,

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2 + e−2x

4
− e2x − 2 + e−2x

4
= 1.

Note that
d

dx
sinhx =

ex + e−x

2
= coshx,

but
d

dx
coshx =

ex − e−x
2

= sinhx

(without any minus sign). Also,

d

dx
tanhx =

cosh2 x− sinh2 x

cosh2 x
=

1

cosh2 x
.

Note that sinhx and tanh x are strictly monotonic, whereas cosh x is strictly
decreasing on (−∞, 0] and strictly increasing on [0,∞).

Just as the inverse of ex is log x, the inverse of sinhx also involves log x. Letting
y = sinh−1 x, we see that

x = sinh y =
ey − e−y

2
,
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sinhx

y

x

coshx

y

x

tanhx

so that ey − e−y − 2x = 0. To solve for y, it is convenient to make the substitution
z = ey:

z − 1

z
− 2x = 0

⇒ z2 − 2xz − 1 = 0.

Thus

z =
2x±

√
(2x)2 + 4

2
,

so that ey = x ±
√
x2 + 1. But since ey > 0 for all y ∈ R, only the positive square

root is relevant. That is, for all real x,

sinh−1 x = log(x+
√
x2 + 1).

Problem 3.28: Prove that the two solutions for cosh−1 x are given by log(x ±√
x2 − 1). Show directly that log(x+

√
x2 − 1) = − log(x−

√
x2 − 1).

Problem 3.29: Show that

tanh−1 x =
1

2
log

(
1 + x

1− x

)
.
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Problem 3.30: Show that

d

dx
sinh−1 x =

d

dx
log
(
x+
√
x2 + 1

)
=

1√
x2 + 1

.

Also verify this result directly from the fact that

d

dy
sinh y = cosh y.

• Thus
∫ 1

0

dx√
1 + x2

=
[
sinh−1 x

]1
0

=
[
log(x+

√
x2 + 1)

]1

0
= log

(
1 +
√

2
)
.

• To find d
dx

cosh−1 x, we can use the relation cosh2 y − sinh2 y = 1:

y = cosh−1 x

⇒ x = cosh y

⇒ dx

dy
= sinh y =

√
cosh2 y − 1 =

√
x2 − 1

⇒ dy

dx
=

1√
x2 − 1

.

y

x

sinh−1 x

y

x

cosh−1 x

Problem 3.31: Prove that

(a)

cosh2 t =
cosh 2t+ 1

2

(b)

sinh2 t =
cosh 2t− 1

2

(c)
2 sinh t cosh t = sinh 2t
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y

x

tanh−1 x



Chapter 4

Applications of Differentiation

4.1 Maxima and Minima

Definition: f has a global maximum (global minimum) at c if

f(x) ≤ f(c) (f(x) ≥ f(c))

for all x in the domain of f . A global maximum or global minimum is sometimes
called an absolute maximum or absolute minimum.

Definition: A function f has an interior local maximum (interior local minimum) at
an interior point c of its domain if for some δ > 0,

x ∈ (c− δ, c+ δ)⇒ f(x) ≤ f(c)

(f(x) ≥ f(c)).

Definition: An extremum is either a maximum or a minimum.

Remark: A global extremum is always a local extremum (but not necessarily an
interior local extremum).

Remark: The following theorem guarantees that a continuous function always has a
global maximum over a closed interval.

Theorem 4.1 (Extreme Value Theorem): If f is continuous on [a, b] then it achieves
both a global maximum and minimum value on [a, b]. That is, there exists numbers
c and d in [a, b] such that

f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].

75
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Theorem 4.2 (Fermat’s Theorem): Suppose

(i) f has an interior local extremum at c,

(ii) f ′(c) exists.

Then f ′(c) = 0.

Proof: Without loss of generality we can consider the case where f has an interior
local maximum, i.e. there exists δ > 0 such that

x ∈ (c− δ, c+ δ)⇒ f(x) ≤ f(c)

⇒ f(x)− f(c)

x− c

{
≥ 0 if x ∈ (c− δ, c),
≤ 0 if x ∈ (c, c+ δ)

⇒ f ′L(c)
.
= lim

x→c−
f(x)− f(c)

x− c ≥ 0,

f ′R(c)
.
= lim

x→c+
f(x)− f(c)

x− c ≤ 0

⇒ f ′(c) = lim
x→c

f(x)− f(c)

x− c = 0.

Remark: Theorem 4.2 establishes that the condition f ′(c) = 0 is necessary for a
differentiable function to have an interior local extremum. However, this condition
alone is not sufficient to ensure that a differentiable function has an extremum at c;
consider the behaviour of the function f(x) = x3 near the point c = 0.

Remark: If a function is continuous on a closed interval, we know from Theorem 4.1
that it must achieve global maximum and minimum values somewhere in the inter-
val. We know from Theorem 4.2 that if these extrema occur in the interior of the
interval, the derivative of the function must either vanish there or else not exist.
However, it is possible that the global maximum or minimum occurs at one of the
endpoints of the interval; at these points, it is not at all necessary that the deriva-
tive vanish, even if it exists. It is also possible that an extremum occurs at a point
where the derivative doesn’t exist. For example, consider the fact that f(x) = |x|
has a minimum at x = 0.

Extrema can occur either at

(i) an end point,

(ii) a point where f ′ does not exist,

(iii) a point where f ′ = 0.
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• Find the maxima and minima of

f(x) = 2x3 − x2 + 1 on [0, 1].

Since f is continuous on [0, 1] we know that it has a global maximum and minimum
value on [0, 1]. Note that f ′(x) = 6x2 − 2x = 2x(3x − 1) = 0 in (0, 1) only at the
point x = 1/3. Theorem 4.2 implies that the only possible global interior extremum
(which is of course also a local interior extremum) is at the point x = 1/3. By
comparing the function values f(1/3) = 26/27 with the endpoint function values
f(0) = 1 and f(1) = 2 we see that f has an (interior) global minimum value of
26/27 at x = 1/3 and an (endpoint) global maximum value of 2 at x = 1. Hence
26/27 ≤ f(x) ≤ 2 for all x ∈ [0, 1].

4.2 The Mean Value Theorem

Theorem 4.3 (Rolle’s Theorem): Suppose

(i) f is continuous on [a, b],

(ii) f ′ exists on (a, b),

(iii) f(a) = f(b).

Then there exists a number c ∈ (a, b) for which f ′(c) = 0.

Proof:

Case I: f(x) = f(a) = f(b) for all x ∈ [a, b] (i.e. f is constant on [a, b])
⇒ f ′(c) = 0 for all c ∈ (a, b).

Case II: f(x0) > f(a) = f(b) for some x0 ∈ (a, b). Theorem 4.1 ⇒ f achieves its
maximum value f(c) for some c ∈ [a, b]. But

f(c) ≥ f(x0) > f(a) = f(b)⇒ c ∈ (a, b).

∴ f has an interior local maximum at c.
Theorem 4.2 ⇒ f ′(c) = 0.

Case III (Exercise): f(x0) < f(a) = f(b) for some x0 ∈ (a, b).

• f(x) = x3 − x+ 1.

f(0) = 1, f(1) = 1 ⇒ there exists c ∈ (0, 1) such that f ′(c) = 0.
In this case we can actually find the point c. Since f ′(x) = 3x2 − 1, we can solve

the equation 0 = f ′(c) = 3c2 − 1 to deduce c =
1√
3
∈ (0, 1).
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• Recall that sinnπ = 0, for all n ∈ N. Rolle’s Theorem tells us that d
dx

sinx = cosx
must vanish (become zero) at some point x ∈ (nπ, (n+1)π). Indeed, we know that

cos

[(
n+

1

2

)
π

]
= cos

(
2n+ 1

2
π

)
= 0 for all n ∈ N.

• We can use Rolle’s Theorem to show that the equation

f(x) = x3 − 3x2 + k = 0

never has 2 distinct roots in [0, 1], no matter what value we choose for the real
number k. Suppose that there existed two numbers a and b in [0, 1], with a 6= b
and f(a) = f(b) = 0. Then Rolle’s Theorem ⇒ there exists c ∈ (a, b) ⊂ (0, 1) such
that f ′(c) = 0. But f ′(x) = 3x2 − 6x = 3x(x − 2) has no roots in (0, 1); this is a
contradiction.

Q. What happens when the condition f(a) = f(b) is dropped from Rolle’s Theorem?
Can we still deduce something similar?

A. Yes, the next theorem addresses precisely this situation.

Theorem 4.4 (Mean Value Theorem [MVT]): Suppose

(i) f is continuous on [a, b],

(ii) f ′ exists on (a, b).

Then there exists a number c ∈ (a, b) for which

f ′(c) =
f(b)− f(a)

b− a .

Remark: Notice that when f(a) = f(b), the Mean Value Theorem reduces to Rolle’s
Theorem.

Proof: Consider the function

ϕ(x) = f(x)−M(x− a),

where M is a constant. Notice that ϕ(a) = f(a). We choose M so that ϕ(b) = f(a)
as well:

M =
f(b)− f(a)

b− a .

Then ϕ satisfies all three conditions of Rolle’s Theorem:
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(i) ϕ is continuous on [a, b],

(ii) ϕ′ exists on (a, b),

(iii) ϕ(a) = ϕ(b).

Hence there exists c ∈ (a, b) such that

0 = ϕ′(c) = f ′(c)−M = f ′(c)− f(a)− f(b)

b− a .

Q. We know that when f(x) is constant that f ′(x) = 0. Does the converse hold?

A. No, a function may have zero slope somewhere without being constant (e.g. f(x) =
x2 at x = 0). However, if f ′(x) = 0 for all x ∈ [a, b], where a 6= b, we may then
make use of the following result.

Theorem 4.5 (Zero Derivative on an Interval): Suppose f ′(x) = 0 for every x in an
interval I (of nonzero length). Then f is constant on I.

Proof: Let x, y be any two elements of I, with x < y. Since f is differentiable at
each point of I, we know by Theorem 3.1 that f is continuous on I. From the MVT,
we see that

f(x)− f(y)

x− y = f ′(c) = 0

for some c ∈ (x, y) ⊂ I. Hence f(x) = f(y). Thus, f is constant on I.

Theorem 4.6 (Equal Derivatives): Suppose f ′(x) = g′(x) for every x in an interval
I (of nonzero length). Then f(x) = g(x) + k for all x ∈ I, where k is a constant.

Theorem 4.7 (Monotonic Test): Suppose f is differentiable on an interval I. Then

(i) f is increasing on I ⇐⇒ f ′(x) ≥ 0 on I;

(ii) f is decreasing on I ⇐⇒ f ′(x) ≤ 0 on I.

Proof:
“⇒” Without loss of generality let f be increasing on I. Then for each x ∈ I,

f ′(x) = lim
y→x

f(y)− f(x)

y − x ≥ 0.

“⇐” Suppose f ′ ≥ 0 on I. Let x, y ∈ I with x < y. The MVT ⇒ there exists
c ∈ (x, y) such that

f(y)− f(x)

y − x = f ′(c) ≥ 0

⇒ f(y)− f(x) ≥ 0.

Hence f is increasing on I.
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Remark: Theorem 4.7 only provides sufficient, not necessary, conditions for a func-
tion to be increasing (since it might not be differentiable).

• Consider the function f(x) = bxc, which returns the greatest integer less than or
equal to x. Note that f is increasing (on R) but f ′(x) does not exist at integer
values of x.

Q. If we replace “increasing” with “strictly increasing” in Theorem 4.7 (i), can we
then change “≥” to “>”?

A. No, consider the strictly increasing function f(x) = x3. We can only say f ′(x) =
3x2 ≥ 0 since f ′(0) = 0.

Problem 4.1: Prove that if f is continuous on [a, b] and f ′(x) > 0 for all x ∈ (a, b),
then f is strictly increasing on [a, b].

4.3 First Derivative Test

We have seen that points where the derivative of a function vanishes may or may
not be extrema. How do we decide which ones are extrema and, of those, which are
maxima and which are minima? One answer is provided by the First Derivative Test.

Definition: A point where the derivative of f is zero or does not exist is called a
critical point.

Theorem 4.2 ⇒ Local interior maxima and minima occur at critical points.

Remark: Not all critical points are extrema: consider f(x) = x3 at x = 0.

Q. How do we decide which critical points c correspond to maxima, to minima, or
neither?

A. If f is differentiable near c, look at the first derivative.

Theorem 4.8 (First Derivative Test): Let c be a critical point of a continuous func-
tion f . If

(i) f ′(x) changes from negative to positive at c, then f has a local minimum at c;

(ii) f ′(x) changes from positive to negative at c, then f has a local maximum at c;

(iii) f ′(x) is positive on both sides of c or negative on both sides of c then f does not
have a local extremum at c.

Proof: (i) This follows directly from the fact that f is then decreasing to the left
of c and increasing to the right of c.

(ii)-(iii) Exercises.
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Problem 4.2: Give examples of differentiable functions which have the behaviours
described in each of the cases above.

4.4 Second Derivative Test

In cases where the second derivative of f can be easily computed, the following test
provides simple conditions for classifying critical points.

Theorem 4.9 (Second Derivative Test): Suppose f is twice differentiable at a critical
point c (this implies f ′(c) = 0). If

(i) f ′′(c) > 0, then f has a local minimum at c;

(ii) f ′′(c) < 0, then f has a local maximum at c.

Proof:

(i) f ′′(c) > 0⇒ lim
x→c

f ′(x)− f ′(c)
x− c > 0⇒ lim

x→c
f ′(x)

x− c > 0

⇒ there exists δ > 0 such that f ′(x)

{
< 0 for all x ∈ (c− δ, c),
> 0 for all x ∈ (c, c+ δ)

⇒ f has a local minimum at c by the First Derivative Test.

(ii) Exercise.

Remark: If f ′′(c) = 0, then anything is possible.

• f(x) = x3,
f ′(x) = 3x2 = 0 at x = 0,
f ′′(x) = 6x = 0 at x = 0,
f has neither a maximum nor minimum at x = 0.

• f(x) = x4,
f ′(x) = 4x3 = 0 at x = 0,
f ′′(x) = 12x2 = 0 at x = 0,
f has a minimum at x = 0.

• f(x) = −x4 has a maximum at x = 0.

Remark: The First Derivative Test can sometimes be helpful in cases where the
Second Derivative Test fails, e.g. in showing that f(x) = x4 has a minimum at
x = 0.
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Remark: The Second Derivative Test establishes only the local behaviour of a func-
tion, whereas the First Derivative Test can sometimes be used to establish that an
extremum is global:

f(x) = x2, f ′(x) = 2x

{
< 0 for all x < 0,
> 0 for all x > 0.

Since f is decreasing for x < 0 and increasing for x > 0, we see that f has a global
minimum at x = 0.

4.5 Convex and Concave Functions

Definition: A function is convex (sometimes called concave up) on an interval I if
the secant line segment joining (a, f(a)) and (b, f(b)) lies on or above the graph
of f for all a, b ∈ I.

Definition: A function f is concave (sometimes called concave down) on an interval
I if −f is convex on I.

Definition: An inflection point is a point on the graph of a function f at which the
behaviour of f changes from convex to concave. For example, since f(x) = x3 is
concave on (−∞, 0] and convex on [0,∞), the point (0, 0) is an inflection point.

Remark: Since the equation of the line through (a, f(a)) and (b, f(b)) is

y = f(a) +
f(b)− f(a)

b− a (x− a),

the definition of convex says

f(x) ≤ f(a) +
f(b)− f(a)

b− a (x− a) for all x ∈ [a, b], for all a, b ∈ I. (4.1)

The linear interpolation of f between [a, b] on the right-hand side of Eq. (4.1) may
be rewritten as:

f(x) ≤
(
b− x
b− a

)
f(a)+

(
x− a
b− a

)
f(b) for all x ∈ [a, b], for all a, b ∈ I (4.2)

or as

f(x) ≤ f(b) +
f(b)− f(a)

b− a (x− b) for all x ∈ [a, b], for all a, b ∈ I. (4.3)
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The convexity condition may also be expressed directly in terms of the slope of a
secant:

f(x)− f(a)

x− a ≤ f(b)− f(a)

b− a ≤ f(b)− f(x)

b− x for all x ∈ (a, b), for all a, b ∈ I.
(4.4)

The left-hand inequality follows directly from Eq. (4.1) and the right-hand inequality
follows from Eq. (4.3).

Theorem 4.10 (First Convexity Test): Suppose f is differentiable on an interval I.
Then

(i) f is convex ⇐⇒ f ′ is increasing on I;

(ii) f is concave ⇐⇒ f ′ is decreasing on I.

Proof: Without loss of generality we only need to consider the case where f is
convex.

“⇒” Suppose f is convex. Let a, b ∈ I, with a < b, and define

m(x) =
f(x)− f(a)

x− a (x 6= a), M(x) =
f(b)− f(x)

b− x (x 6= b).

From Eq. (4.4) we know that

m(x) ≤ m(b) = M(a) ≤M(x)

whenever a < x < b. Hence

f ′(a) = lim
x→a

m(x) = lim
x→a+

m(x) ≤ m(b) = M(a) ≤ lim
x→b−

M(x) = lim
x→b

M(x) = f ′(b).

Thus f ′ is increasing on I.

“⇐” Suppose f ′ is increasing on I. Let a, b ∈ I, with a < b and x ∈ (a, b).
By the MVT,

f(x)− f(a)

x− a = f ′(c1),
f(b)− f(x)

b− x = f ′(c2)

for some c1 ∈ (a, x) and c2 ∈ (x, b). Since f ′ is increasing and c1 < c2, we
know that f ′(c1) ≤ f ′(c2). Hence

f(x)− f(a)

x− a ≤ f(b)− f(x)

b− x
⇒ f(x)

[
1

x− a +
1

b− x

]
≤ f(b)

b− x +
f(a)

x− a =
f(b)(x− a) + f(a)(b− x)

(b− x)(x− a)
,

which reduces to Eq. (4.2), so f is convex.
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Theorem 4.11 (Second Convexity Test): Suppose f ′′ exists on an interval I. Then

(i) f is convex on I ⇐⇒ f ′′(x) ≥ 0 for all x ∈ I;

(ii) f is concave on I ⇐⇒ f ′′(x) ≤ 0 for all x ∈ I.

Proof: Apply Theorem 4.7 to f ′.

Theorem 4.12 (Tangent to a Convex Function): If f is convex and differentiable on
an interval I, the graph of f lies above the tangent line to the graph of f at every
point of I.

Proof: Let a ∈ I. The equation of the tangent line to the graph of f at the
point (a, f(a)) is y = f(a) + f ′(a)(x − a). Given x ∈ I, the MVT implies that
f(x) − f(a) = f ′(c)(x − a), for some c between a and x. Since f is convex on I, we
also know, from Theorem 4.10, that f ′ is increasing on I:

x < a⇒ c < a⇒ f ′(c) ≤ f ′(a),

x > a⇒ c > a⇒ f ′(c) ≥ f ′(a).

In either case f(x)− f(a) = f ′(c)(x− a) ≥ f ′(a)(x− a). Hence

f(x) ≥ f(a) + f ′(a)(x− a) for all x ∈ I.

• Consider f(x) =
1

1 + x2
on R.

Observe that f(0) = 1 and f(x) > 0 for all x ∈ R and lim
x→±∞

f(x) = 0. Note

that f is even: f(−x) = f(x). Also, 1 + x2 ≥ 1 ⇒ f(x) ≤ 1 = f(0), so f has a
maximum at x = 0. Alternatively, we can use either the First Derivative Test or
the Second Derivative Test to establish this. We find

f ′(x) = − 2x

(1 + x2)2

and,

f ′′(x) =
−2

(1 + x2)2
+

2(2x)2x

(1 + x2)3
=
−2− 2x2 + 8x2

(1 + x2)3
=

2(3x2 − 1)

(1 + x2)3
.

First Derivative Test:

{
f ′(x) > 0 on (−∞, 0)⇒ f is increasing on (−∞, 0),
f ′(x) < 0 on (0,∞)⇒ f is decreasing on (0,∞)

⇒ f has a maximum at 0.

Second Derivative Test: f ′(0) = 0, f ′′(0) = −2 < 0 ⇒ f has a maximum at 0.
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Convexity:





f ′′(x) ≥ 0 for |x| ≥ 1√
3

, i.e. f is convex on

(
−∞,− 1√

3

]
∪
[

1√
3
,∞
)
,

f ′′(x) ≤ 0 for |x| ≤ 1√
3

, i.e. f is concave on

[
− 1√

3
,

1√
3

]
,

f ′′(x) = 0 at ± 1√
3

; these correspond to inflection points.

Problem 4.3: Consider the function f(x) = (x+ 1)x2/3 on [−1, 1].

(a) Find f ′(x).
On rewriting f(x) = x5/3 + x2/3, we find

f ′(x) =
5

3
x2/3 +

2

3
x−1/3 =

x−1/3

3
(5x+ 2) (x 6= 0).

(b) Determine on which intervals f is increasing and on which intervals f is de-
creasing.

Since

f ′(x)





> 0, −1 ≤ x < −2/5,
= 0, x = −2/5,
< 0, −2/5 < x < 0,
does not exist x = 0,
> 0, 0 < x ≤ 1,

we know that f is increasing on [−1,−2/5] and [0, 1]. It is decreasing on [−2/5, 0].

(c) Does f have any interior local extrema on [−1, 1]? If so, where do these occur?
Which are maxima and which are minima?

Note that f has two critical points: x = −2/5 and x = 0. By the First Derivative Test,

f has a local maximum at x = −2/5 and a local minimum at x = 0.

(d) What are the global minimum and maximum values of f and at what points
do these occur?

On comparing the endpoint function values to the function values at the critical points,

we conclude that f achieves its global minimum value of 0 at x = −1 and at x = 0. It has

a global maximum value of 2 at x = 1.

(e) Determine on which intervals f is convex and on which intervals f is concave.
Since f ′′(x) = 10

9 x
−1/3 − 2

9x
−4/3 = 2

9x
−4/3(5x− 1), we see that

f ′′(x)





< 0, −1 ≤ x < 0,
does not exist, x = 0,
< 0, 0 < x < 1/5,
= 0, x = 1/5,
> 0, 1/5 < x ≤ 1.

Thus, f is concave on [−1, 0] and [0, 1/5] and convex on [1/5, 1]. Note that f is not concave

on the interval [−1, 1/5].
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(f) Does f have any inflection points? If so, where?
Yes: f has an inflection point at x = 1/5.

(g) Sketch a graph of f using the above information.

0

1

2f(x)

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
x

4.6 L’Hôpital’s Rule

Theorem 4.13 (Cauchy Mean Value Theorem): Suppose

(i) f and g are continuous on [a, b],

(ii) f ′ and g′ exist on (a, b).

Then there exists a number c ∈ (a, b) for which

f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)].

Proof: Consider

φ(x) = [f(x)− f(a)][g(b)− g(a)]− [f(b)− f(a)][g(x)− g(a)].

Note that φ is continuous on [a, b] and differentiable on (a, b). Since φ(a) = φ(b) = 0,
we know from Rolle’s Theorem that φ′(c) = 0 for some c ∈ (a, b); from this we
immediately deduce the desired result.
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Theorem 4.14 (L’Hôpital’s Rule for 0
0
): Suppose f and g are differentiable on (a, b),

g′(x) 6= 0 for all x ∈ (a, b), lim
x→b−

f(x) = 0, and lim
x→b−

g(x) = 0. Then

lim
x→b−

f ′(x)

g′(x)
= L⇒ lim

x→b−
f(x)

g(x)
= L.

This result also holds if

(i) lim
x→b−

is replaced by lim
x→a+

;

(ii) lim
x→b−

is replaced by lim
x→∞

and b is replaced by ∞;

(iii) lim
x→b−

is replaced by lim
x→−∞

and a is replaced by −∞.

Proof: Theorem 3.1 ⇒ f and g are continuous on (a, b). Consider

F (x) =
{
f(x) a < x < b,
0 x = b.

G(x) =
{
g(x) a < x < b,
0 x = b.

Since limx→b− f(x) = 0, and limx→b− g(x) = 0, we know for any x ∈ (a, b) that F and
G are continuous on [x, b] and differentiable on (x, b). We can also be sure that G
is nonzero on (a, b): if G(x) = 0 = G(b) for some x ∈ (a, b), Rolle’s Theorem would
imply that G′, and hence g′, vanishes somewhere in (x, b).

Given ε > 0, we know there exists a number δ with 0 < δ < b− a such that

x ∈ (b− δ, b)⇒
∣∣∣∣
f ′(x)

g′(x)
− L

∣∣∣∣ < ε.

If x ∈ (b − δ, b), Theorem 4.13 then implies that there exists a point c ∈ (x, b) such
that

f(x)

g(x)
=
F (x)

G(x)
=
F (x)− F (b)

G(x)−G(b)
=
F ′(c)

G′(c)
=
f ′(c)

g′(c)
,

so that ∣∣∣∣
f(x)

g(x)
− L

∣∣∣∣ =

∣∣∣∣
f ′(c)

g′(c)
− L

∣∣∣∣ < ε.

That is, lim
x→b−

f(x)

g(x)
= L.

• Using L’Hôpital’s Rule, we find

lim
x→0

tanx

x
= 1⇐ lim

x→0

sec2 x

1
= 1,
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•
lim
x→1

xn − 1

x− 1
= n⇐ lim

x→1

nxn−1

1
= n.

Remark: L’Hôpital’s Rule should only be used where it applies. For example, it
should not be used for when the limit does not have the 0

0
form. For example,

0 = lim
x→1

x− 1

x
6= lim

x→1

1

1
= 1.

Theorem 4.15 (L’Hôpital’s Rule for ∞∞): Suppose f and g are differentiable on (a, b),
g′(x) 6= 0 for all x ∈ (a, b), and lim

x→b−
f(x) =∞, and lim

x→b−
g(x) =∞. Then

lim
x→b−

f ′(x)

g′(x)
= L⇒ lim

x→b−
f(x)

g(x)
= L.

This result also holds if

(i) lim
x→b−

is replaced by lim
x→a+

;

(ii) lim
x→b−

is replaced by lim
x→∞

and b is replaced by ∞;

(iii) lim
x→b−

is replaced by lim
x→−∞

and a is replaced by −∞.

Proof: We only need to make minor modifications to the proof used to establish
Theorem 4.14. Choose δ such that f(x) > 0 and g(x) > 0 on (b− δ, b) and redefine

F (x) =





1
f(x)

b− δ < x < b,

0 x = b,

G(x) =

{ 1
g(x)

b− δ < x < b,

0 x = b.

Problem 4.4: Determine which of the following limits exist as a finite number, which
are∞, which are −∞, and which do not exist at all. Where possible, compute the
limit.

(a)

lim
x→1

log x

x− 1

= lim
x→1

1/x

1
= 1.
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(b)

lim
x→1

ex − 1− x
x2

= lim
x→1

ex − 1

2x
= lim

x→1

ex

2
=

1

2
.

(c)

lim
x→∞

ex

x2

= lim
x→1

ex

2x
= lim

x→1

ex

2
=∞.

(d)

lim
x→0

xx

= lim
x→0

ex log x = elimx→0 x log x = elim
x→0

log x

1/x
= elim

x→0

1/x

−1/x2
= elim

x→0 − x = e0 = 1.

(e)

lim
x→1

sin(x99)− sin(1)

x− 1

One could use L’Hôpital’s Rule here, but it is even simpler to note that this is just the
definition of the derivative of the function f(x) = sin(x99) at x = 1. Since

f ′(x) = cos(x99)99x98,

the limit reduces to f ′(1) = 99 cos(1).

(f)

lim
x→π/4

tanx− 1

x− π/4
Letting f(x) = tanx, we see that this is just the definition of f ′(π/4) = sec2(π/4) = 2.

(g)

lim
x→0

tanx− x
x3

= lim
x→0

sec2 x− 1

3x2
= lim

x→0

2 sec3 x sinx

6x
= lim

x→0

−6 sec2 x sin2 x+ 2 sec2 x cosx

6
=

1

3
,

on applying the 0/0 form of L’Hôpital’s Rule three times. Alternatively, after the second

application of L’Hôpital’s Rule, one can use the fact that lim
x→0

sinx/x = 1.
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4.7 Slant Asymptotes

Definition: A function f is asymptotic to a slant asymptote y = mx+ b if

lim
x→∞

[f(x)− (mx+ b)] = 0.

or
lim

x→−∞
[f(x)− (mx+ b)] = 0

This means that the vertical distance between the function f and the line y = mx+b
approaches zero in the limit as x→∞ or x→ −∞, respectively.

Remark: If
lim
x→∞

[f(x)− (mx+ b)] = 0,

then

lim
x→∞

[
f(x)− (mx+ b)

x
] = 0.

We also know that limx→∞
b
x

= 0. On adding these equations we find that

lim
x→∞

[
f(x)

x
−m] = 0.

Hence

m = lim
x→∞

f(x)

x
.

Once we know m then we can find

b = lim
x→∞

[f(x)−mx].

If both of the limits for m and b exist, then f has a slant asymptote.

• The function f(x) = x3/(x2 + 1), has no vertical asymptotes (since the denomi-
nator is never zero) and no horizontal asymptotes since limx→−∞ f(x) = −∞ and
limx→∞ f(x) =∞. However, it does have a slant asymptote y = mx+ b where

m = lim
x→∞

f(x)

x
= lim

x→∞
x2

(x2 + 1)
= 1

and

b = lim
x→∞

x3

(x2 + 1)− x = lim
x→∞

x3 − x(x2 + 1)

(x2 + 1)
= lim

x→∞
x

(x2 + 1)
= 0.

So f has a slant asymptote of y = x as x → ∞. Note that f also has a slant
asymptote of y = x as x→ −∞.
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Problem 4.5: Show that the function f(x) = x+ sinx
x

has a slant asymptote of y = x
as x→ ±∞.

4.8 Optimization Problems

• Determine the rectangle having the largest area that can be inscribed inside a right-
angle triangle of side lengths a, b, and

√
a2 + b2, if the sides of the rectangle are

constrained to be parallel to the sides of length a and b.
Let the vertices of the triangle be (0, 0), (a, 0), (0, b) and those of the rectangle be

(0, 0), (0, x), (x, y), (0, y), where 0 ≤ x ≤ a. By similar triangles we see that

y

a− x =
b

a
.

The area A of the rectangle is given by

A(x) = xy =
b

a
x(a− x) = bx− b

a
x2,

so that

A′(x) = b− 2b

a
x =

b

a
(a− 2x).

Since A is continuous on the closed interval [0, a] we know that A must achieve
maximum and minimum values in [0, a]. Since A′(x) exists everywhere in (0, a),
the only points we need to check are x = a/2, where A′(x) = 0, and the endpoints
x = 0 and x = a; at least one of these must represent a maximum area and one
must represent a minimum area. Since A(a/2) = ab/4 and A(0) = A(a) = 0 we
see that the maximum area is ab/4 and the minimum area is 0. Thus, the largest
rectangle that can be inscribed has side lengths a/2 and b/2.

Problem 4.6: A canoeist is at the southwest corner of a square lake of side 1 km.
She would like to travel to the northeast corner of the lake by rowing to a point
on the north shore at a speed of 3 km/h in a straight line at an angle θ measured
relative to north. She then plans to walk east along the north shore at a speed of
6 km/h until she arrives at her destination.

At what angle θ should the canoeist row in order to arrive at her destination in
the shortest possible time? What is this minimum time? Prove that your answer
corresponds to a minimum.

The time to reach her destination is

T (θ) =
1

3 cos θ
+

1− tan θ

6
.
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The continuous function T must achieve global minimum and maximum values on [0, π4 ].
First, we look for critical points of this function on (0, π4 ):

0 = T ′(θ) =
sin θ

3 cos2 θ
− 1

6 cos2 θ
⇒ sin θ =

1

2
.

The only critical point in (0, π4 ) is at θ = π
6 . By simply comparing values, we see that the

endpoint value T (0) = 1/2 is an exterior global maximum, the endpoint value T (π4 ) =
√

2/3

is an endpoint local maxima, and T (π6 ) = 1+
√

3
6 is the global minimum value. Thus the

canoeist should row at an angle π
6 relative to north.

Problem 4.7: Maximize the total surface area (including the top and bottom) of a
can with volume 1000cm3 and the shape of a circular cylinder.

The total surface area of cylinderical can of radius r and height h is given by 2πr2+2πrh,
where the volume is constrained to be πr2h = 1000. We can use the volume constraint to
eliminate one variable, say h, from the problem:

h =
1000

πr2
,

allowing us to express the area A solely as a function of r:

A(r) = 2πr2 +
2000

r
.

We need to maximize A(r) on the interval (0,∞). On noting that A′(r) = 4πr− 2000/r2 =

4r(π− 500/r3), we see that the only critical point of A occurs at c = 3

√
500
π . Since (0,∞) is

not a closed interval, we cannot use the Extreme Value Theorem. Instead, we note that the

first derivative of A is negative for r < c and positive for c. This means that A is decreasing

on (0, c] and increasing on [c,∞). Thus A has a global minimum at r = c.

4.9 Newton’s Method

In 1823, Abel proved that no general algebraic solution (involving only arithmetic
operations and radicals) exists for finding roots of fifth-degree polynomials. This
result was generalized by Galois to all degrees above four.

If we need to find the roots to a polynomial of degree five or higher, or to a
transcendental (non-algebraic) equation like

cosx− x = 0,

then we must resort to a numerical method.
Newton’s method (also called the Newton-Raphson method for finding a root to

a function f(x) with a continuous derivative begins with an initial guess x1. The
equation for the tangent line to the graph of f at (x1, f(x1) is

y − f(x1) = f ′(x1)(x− x1).
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This line intersects the x axis when y = 0, at a point (x2, 0):

0− f(x1) = f ′(x1)(x2 − x1).

On solving for x2 we find

x2 = x1 −
f(x1)

f ′(x1)
.

Newton’s method doesn’t always work, but when it does, the point x2 will be closer
to the root of f than x1. On repeating this procedure using x2 as initial guess, we
obtain our next guess x3 for the root:

x3 = x2 −
f(x2)

f ′(x2)
.

Inductively, we define

xn+1 = xn −
f(xn)

f ′(xn)
.

If limn→∞ xn exists and equals c then we see that

0 = lim
n→∞

xn+1 − lim
n→∞

xn + lim
n→∞

f(xn)

f ′(xn)
= c− c+ lim

n→∞
f(xn)

limn→∞ f ′(xn)
=
f(c)

f ′(c)

since f and f ′ are continuous. Thus f(c) = 0 so we have determined that c is a root
of f f(c) = 0.

• To find a root of f(x) = cos x− x, first compute f ′(x) = − sinx− 1. The Newton
iteration appears as

xn+1 = xn +
cosx− x
sinx+ 1

.

Starting with an initial guess x1 = 1, we find

x2 = 0.750363867840,

x3 = 0.739112890911,

x4 = 0.739085133385,

x5 = 0.739085133215,

x6 = 0.739085133215,

from which it appears that there is a root of f very close to x = 0.739085133215.
Indeed we verify that cosx− x is about 2.7× 10−13.



Chapter 5

Integration

5.1 Areas

Suppose, given a function f(x) ≥ 0 on [a, b] that we wish to determine the area of
the region bounded by the graph of f(x), the x axis, and the lines x = a and x = b.
That is, we want to find the area of the region

S = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}.

We could approximate the area as a sum of areas of rectangles as in Figure 5.1
or as in Figure 5.2, determining the height of each rectangle by the function value at
the left or right endpoint of each subinterval, respectively.

a b

f(x)

Figure 5.1: Left-endpoint approximation.

a b

f(x)

Figure 5.2: Right-endpoint approximation.

Definition: Let f be a function on [a, b]. Divide the interval [a, b] into subintervals
[xi−1, xi] for i = 1, 2, . . . n. A Riemann sum of f is any sum of the form

n∑

i=1

f(x∗i )(xi − xi−1),

94
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where the sample points x∗i are arbitrarily chosen from [xi−1, xi]. Here f(x∗i ) refers to
the height of a rectangle of width xi−xi−1 that approximates the contribution to the
area coming from the ith subinterval [xi−1, xi]. On summing up these contributions
from all n subintervals, we obtain an approximation to the total area under the
function f from x = a to x = b.

Definition: The left Riemann sum

n∑

i=1

f(xi−1)(xi − xi−1)

is obtained by choosing x∗i = xi−1.

Definition: The right Riemann sum

n∑

i=1

f(xi)(xi − xi−1)

is obtained by choosing x∗i = xi.

Definition: A common choice for the subinterval endpoints is xi = a + i(b − a)/n,
which generates subintervals with a uniform width:

xi − xi−1 =
b− a
n

.

• The right Riemann sum corresponding to f(x) = x on [0, 1] partitioned into n
uniform subintervals [xi−1, xi], where xi = i/n, is

n∑

i=1

i

n
· 1

n
=

1

n2

n∑

i=1

i =
1

n2

n(n+ 1)

2
=
n+ 1

2n

since the subinterval widths xi − xi−1 =
1− 0

n
=

1

n
.

We now use the concept of a Riemann sum to obtain a precise definition for the
notion of the area under a function.
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Definition: The area of the region bounded by the graph of a positive function f(x),
the x axis, and the lines x = a and x = b is given by the Riemann Integral

lim
n→∞

n∑

i=1

f(x∗i )(xi − xi−1),

whenever this limit exists and is independent of the choice of sample points x∗i and
subintervals [xi−1, xi], provided the subinterval widths xi − xi−1 approach zero as
n → ∞. In this case we say that f is integrable on [a, b] and define the definite
integral of f on [a, b] as

∫ b

a

f = lim
n→∞

n∑

i=1

f(x∗i )(xi − xi−1).

The next theorem tells us that the Riemann integral of any continuous function
on a bounded interval [a, b] always exists.

Theorem 5.1 (Integrability of Continuous Functions): If f is continuous on [a, b]

then
∫ b
a
f exists.

Remark: By the definition of integrability, all uniform Riemann sums of a continuous
function f on [a, b] will converge to

∫ b
a
f as the width of the subintervals approaches

zero.

• The definite integral of the continous function f(x) = x on [0, 1] can be computed
as the limit of its right Riemann sum:

∫ b

a

f = lim
n→∞

n∑

i=1

i

n
· 1

n
= lim

n→∞
n+ 1

2n
=

1

2
.

Notice that this result agrees with the area of a right triangle with two sides of
length one.

• The definite integral of the continous function f(x) = x on [0, 1] can also be com-
puted as the limit of its left Riemann sum:

∫ b

a

f = lim
n→∞

n∑

i=1

i− 1

n
· 1

n
= lim

n→∞
1

n2

n∑

i=1

(i− 1) = lim
n→∞

1

n2

n−1∑

i=0

i

= lim
n→∞

1

n2

(
0 +

n−1∑

i=1

i

)
= lim

n→∞
1

n2

(
(n− 1)n

2

)
= lim

n→∞
n− 1

2n
=

1

2
.

This result agrees with the definite integral computed using the right Riemann
sum.
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Definition: If a ≤ b, define
∫ a
b
f = −

∫ b
a
f .

Remark: This implies that
∫ a
a
f = 0.

Theorem 5.2 (Piecewise Integration): Let c be a real number. If
∫ c
a
f and

∫ b
c
f exists

then
∫ b
a
f exists and equals

∫ c
a
f +

∫ b
c
f .

Remark: Using piecewise integration, we can integrate any function with a finite
number of jump discontinuities over a closed interval.

Theorem 5.3 (Linearity of Integral Operator): Suppose
∫ b
a
f and

∫ b
a
g exist. Then

(i)
∫ b
a
(f + g) exists and equals

∫ b
a
f +

∫ b
a
g,

(ii)
∫ b
a
(cf) exists and equals c

∫ b
a
f for any constant c ∈ R.

Theorem 5.4 (Integral Bounds): Suppose for a < b that

(i)
∫ b
a
f exists,

(ii) m ≤ f(x) ≤M for x ∈ [a, b].

Then

m(b− a) ≤
∫ b

a

f ≤M(b− a).

Theorem 5.5 (Preservation of Non-Negativity): If f(x) ≥ 0 for all x ∈ [a, b], where

a < b, and
∫ b
a
f exists then

∫ b
a
f ≥ 0.

Proof: Set m = 0 in Theorem 5.4.

Theorem 5.6 (Absolute Integral Bounds): If |f(x)| ≤ M for all x between a and b

and
∫ b
a
f exists then

∣∣∣
∫ b
a
f
∣∣∣ ≤M |b− a|.

Proof: Set m = −M in Theorem 5.4.

Theorem 5.7 (Triangle Inequality for Integrals): Let f be an integrable function on
[a, b]. Then ∣∣∣∣

∫ b

a

f

∣∣∣∣ ≤
∫ b

a

|f | .

Proof: Consider the integrable functions f(x), − |f(x)| and |f(x)|. For every
x ∈ [a, b],

− |f(x)| ≤ f(x) ≤ |f(x)| .
Thus

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f | .

This means that
∣∣∣
∫ b
a
f
∣∣∣ ≤

∫ b
a
|f |.
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Remark: When we write
∫
f we understand that f is a function of some variable.

Let’s call it x. We want to partition a portion of the x axis into {x0, x1, . . . , xn}
and compute Riemann sums based on function values f(x∗i ) and interval widths
xi − xi−1. Similarly, when we write f ′, it is clear that we mean the derivative
of f with respect to its argument, whatever that may be. However, if we want to
differentiate the function y = f(u), where u = x2, it is important to know whether
we are differentiating with respect to u or with respect to x. Likewise, suppose
we wish to calculate the integral of f . It is equally important to know whether
we are calculating the integral with respect to u or with respect to x, because the
area under the graph of y = f(u) with respect to u will in general differ from the
area under the graph of y = f(x2) with respect to x. Since we can differentiate
with respect to different variables, it is only reasonable that we should be able
to integrate with respect to different variables as well. It will often be helpful to
indicate explicitly with respect to which variable we are integrating, that is, which
variable do we use to construct the differences xi − xi−1 in the Riemann sums.

Definition: We can specify the integration variable by writing
∫ 1

0
f(x) dx instead of

just
∫ 1

0
f . The notation f(x) dx reminds us that the Riemann sums consists of

function values multiplied by interval widths, xi − xi−1.

5.2 Fundamental Theorem of Calculus

Definition: A differentiable function F is called an antiderivative of f at an interior
point x of its domain if F ′(x) = f(x).

Remark: If F (x) is an antiderivative of f , then so is F (x) + C for any constant C.

Theorem 5.8 (Families of Antiderivatives): Let F0(x) be an antiderivative of f on
an interval I. Then F is an antiderivative of f on I ⇐⇒ F (x) = F0(x) + C for
some constant C.

Proof:

“⇐” Let F (x) = F0(x) +C. Then F ′(x) = F ′0(x) = f(x); that is, F is an
antiderivative of f on I.

“⇒” Since

d

dx
[F (x)− F0(x)] = F ′(x)− F ′0(x) = f(x)− f(x) = 0,

we see by Theorem 4.5 that F (x)− F0(x) is constant on I.
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Theorem 5.9 (Antiderivatives at Points of Continuity): Suppose

(i)
∫ b
a
f exists;

(ii) f is continuous at c ∈ (a, b).

Then f has the antiderivative F (x) =
∫ x
a
f at x = c.

Proof: Given ε > 0, we know from the continuity of f at c that there exists a
δ > 0 such that

|x− c| < δ ⇒ |f(x)− f(c)| < ε.

We use this bound in Theorem 5.6 to conclude for |h| < δ that

∣∣∣∣
∫ c+h

c

[f(x)− f(c)] dx

∣∣∣∣ ≤ ε |c+ h− c| = ε |h| .

Consider F (x) =
∫ x
a
f for x ∈ [a, b]. Then for 0 < |h| < δ we see that

∣∣∣∣
F (c+ h)− F (c)

h
− f(c)

∣∣∣∣ =
1

|h|

∣∣∣∣
∫ c+h

a

f(x) dx−
∫ c

a

f(x) dx− f(c)h

∣∣∣∣

=
1

|h|

∣∣∣∣
∫ c+h

c

f(x) dx− f(c)

∫ c+h

c

1 dx

∣∣∣∣

=
1

|h|

∣∣∣∣
∫ c+h

c

[f(x)− f(c)] dx

∣∣∣∣ ≤ ε.

But this is just the statement that the limit

F ′(c) = lim
h→0

F (c+ h)− F (c)

h

exists and equals f(c).

Remark: In particular, Theorem 5.9 says that, at any point x ∈ (a, b) where an
integrable function f is continuous,

d

dx

∫ x

a

f = f(x).

Thus we see that differentiation and integration are in a sense opposite processes.
The actual situation is slightly complicated by the fact that antiderivatives are not
unique, as we saw in Theorem 5.8. However, note that the arbitrary constant C in
Theorem 5.8 disappears upon differentiation of the antiderivative.

Theorem 5.10 (Antiderivative of Continuous Functions): If f is continuous on [a, b]
then f has an antiderivative on [a, b].
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Proof: The antiderivative of f on [a, b] is just the antiderivative
∫ x
a
f of the

continuous extension f of f onto all of R:

f(x) =




f(a) if x < a,
f(x) if a ≤ x ≤ b,
f(b) if x > b.

Theorem 5.11 (Fundamental Theorem of Calculus [FTC]): Let f be integrable and
have an antiderivative F on [a, b]. Then

∫ b

a

f = F (b)− F (a).

Proof: Parition [a, b] into {x0, x1, . . . , xn}. Since F is differentiable on [a, b], the
MVT tells us that for each i = 1, . . . n there exists a ci ∈ (xi−1, xi) such that

F (xi)− F (xi−1) = F ′(ci)(xi − xi−1) = f(ci)(xi − xi−1).

Consider the Riemann sum
n∑

i=1

f(ci)(xi − xi−1) =
n∑

i=1

[F (xi)− F (xi−1)] = F (xn)− F (x0) = F (b)− F (a),

independent of n. Since f is integrable, the value of
∫ b
a
f must equal the limit of this

Riemann sum as n→∞. That is,
∫ b
a
f = F (b)− F (a).

Remark: It is possible for a function to be integrable, but have no antiderivative.
But by Theorem 5.9, we know that such a function cannot be continuous. An
example is the function

f(x) =

{−1 if −1 ≤ x < 0,

1 if 0 ≤ x ≤ 1.

Being piecewise continuous, f is integrable. However, the FTC implies that f
cannot be the derivative of another function F . For if f = F ′, then

∫ x
0
f =

F (x)− F (0), so that

F (x) = F (0) +

∫ x

0

f = F (0) +





∫ x
0

(−1) if −1 ≤ x < 0,

∫ x
0

1 if 0 ≤ x ≤ 1,

= F (0) +




−1(x− 0) if −1 ≤ x < 0,

1(x− 0) if 0 ≤ x ≤ 1,

= F (0) + |x| ,
which we know is not differentiable at x = 0, regardless of what F (0) is.
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Remark: It is also possible for an integrable function f to be discontinuous at a
point but still have an antiderivative F . Consider f = F ′, where

F (x) =

{
x2 sin 1

x
if x 6= 0,

0 if x = 0.

Although f is discontinuous at 0, is still integrable on any finite interval.

Theorem 5.12 (FTC for Continuous Functions): Let f be continuous on [a, b] and
let F be any antiderivative of f on [a, b]. Then

∫ b

a

f = F (b)− F (a).

Proof: This follows directly from Theorem 5.1 and the FTC.

Remark: The FTC says that a definite integral
∫ b
a
f is equal to the value of any

antiderivative F of f at b minus the value of the same function F at a. That is,∫ b
a
f = [F (x)]ba, where the notation [F (x)]ba or F (x)|ba is shorthand for the difference

F (b)− F (a).

• Let f(x) = x. Then

∫ 1

0

f =

[
x2

2
+ c

]1

0

=
1

2
+ c− (0 + c) =

1

2
.

Remark: We need a convenient notation for an antiderivative.

Definition: If an integrable function f has antiderivative F , we write F =
∫
f and

say F is the indefinite integral of f .

∫
f = F means f = F ′.

For example,

∫
x dx =

x2

2
+ C means x =

d

dx

(
x2

2
+ C

)
.

Remark: Remember that the definite integral
∫ b
a
f(x) dx is a number, whereas the

indefinite integral
∫
f(x) dx represents a family of functions that differ from each

other by a constant.
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• Since
d

dx

xp+1

p+ 1
= xp,

we know that
∫ b

a

xp dx =
xp+1

p+ 1

∣∣∣∣
b

a

=
bp+1 − ap+1

p+ 1
if p 6= −1.

• Also, ∫ π

0

sinx dx = [− cosx]π0 = −[cosx]π0 = −[−1− 1] = 2.

• But ∫ 2π

0

sinx dx = [− cosx]2π0 = [−1− (−1)] = 0.

• ∫ 1

0

ex dx = [ex]10 = e− 1.

• ∫ 2

1

1

x
dx = [log x]21 = log 2− log 1 = log 2.

• Consider

F (x) = log |x| =
{

log x x > 0,
log(−x) x < 0.

Then

F ′(x) =





1

x
x > 0,

1

−x(−1) x < 0

=
1

x
for all x 6= 0.

Therefore, we see that
∫

1

x
dx = log |x|+ C

(
not

x0

0

)
,

where C is an arbitrary constant. Thus

∫
xn dx =





xn+1

n+1
+ C if n 6= −1,

log |x|+ C if n = −1.
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• ∫ −1

−2

1

x
dx = [log |x|]−1

−2 = log 1− log 2 = − log 2.

• Consider the inverse trigonometric function y = sin−1 x for x ∈ [−1, 1]. Recall that

d

dx
sin−1 x =

1√
1− x2

for (−1, 1)

and
d

dx
tan−1 x =

1

1 + x2
for x ∈ (−∞,∞).

These results yield two important antiderivatives:

∫
1√

1− x2
dx = sin−1 x+ C

and ∫
1

1 + x2
dx = tan−1 x+ C.

• The function

F (x) =

∫ x

0

1

cos t
dt

is differentiable for x ∈ [0, π
2
).

We don’t yet know F , but we do know its derivative. Thm 5.9 ⇒

F ′(x) =
1

cosx
.

Furthermore, suppose

G(x) =

∫ x2

0

1

cos t
dt = F (x2)

for x ∈
[
0,
√

π
2

)
. Then

G′(x) = F ′(x2) 2x =
2x

cos(x2)
by the Chain Rule.
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Problem 5.1: Suppose f is a continuous function and g and b are differentiable
functions on [a, b]. Prove that

d

dx

∫ b(x)

a(x)

f(t) dt = f(b(x))b′(x)− f(a(x))a′(x).

Let F be an antiderivative for f . Theorem FTC states that
∫ b(x)

a(x)
f(t) dt = F (b(x))− F (a(x)).

Hence, using the Chain Rule,

d

dx

∫ b(x)

a(x)
f(t) dt = F ′(b(x))b′(x)− F ′(a(x))a′(x) = f(b(x))b′(x)− f(a(x))a′(x).

5.3 Substitution Rule

Q. What is
∫

tanx dx =

∫
sinx

cosx
dx?

A. On differentiating F (x) = − log |cosx|+ C, we see that
∫

tanx dx = F (x).

Q. Are there systematic ways of finding such antiderivatives?

A. Yes, the following theorem Substitution Rule) is often helpful.

Theorem 5.13 (Substitution Rule): Suppose g′ is continuous on [a, b] and f is con-
tinuous on g([a, b]). Then

∫ x=b

x=a

f(g(x)︸︷︷︸
u

) g′(x) dx︸ ︷︷ ︸
du

=

∫ u=g(b)

u=g(a)

f(u) du.

Proof: Theorem 5.9 ⇒ f has an antiderivative F :

F ′(u) = f(u) for all u ∈ g([a, b]).

Consider H(x) = F (g(x)). Then

H ′(x) = F ′(g(x))g′(x)

= f(g(x))g′(x),

that is, H is an antiderivative of (f ◦ g)g′. Letting u = g(x), we may then write∫
f(g(x))g′(x) dx = H(x) = F (g(x)) = F (u) =

∫
f(u) du

and, using the FTC,
∫ b

a

f(g(x))g′(x) = [H(x)]ba = [F (g(x))]ba = F (g(b))− F (g(a)) =

∫ u=g(b)

u=g(a)

f(u) du.
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• Suppose we wish to calculate
∫ 1

0
(x2 + 2)99 2x dx. One could expand out this poly-

nomial and integrate term by term, but a much easier way to evaluate this integral
is to make the substitution u = g(x) = x2 + 2. To help us remember the factor
du
dx

= g′(x) = 2x we formally write du = g′(x) dx = 2x dx,
∫ x=1

x=0

(x2 + 2)992x dx =

∫ u=3

u=2

u99 du =
u100

100

∣∣∣∣
3

2

=
3100 − 2100

100
.

• To compute
∫
x
√
x2 + 1 dx, it is helpful to substitute u = x2 + 1⇒ du = 2x dx.

∫
x
√
x2 + 1 dx =

∫
u1/2 du

2
=

1

62
62
3
u3/2 + C ←− (don’t leave in this form)

=
1

3
(x2 + 1)3/2 + C.

Check:

d

dx

[
1

3
(x2 + 1)3/2 + C

]
=

1

63
63
62(x2 + 1)1/2 62 x = x

√
x2 + 1.

• The subsitution u = 2x+ 1 reduces the integral
∫ 4

0

√
2x+ 1 dx to

∫ 9

1

√
u
du

2
=

[
1

3
u3/2

]9

1

=
1

3

(
33 − 1

)
=

26

3
.

• The subsitution u = log x reduces the integral
∫ e

1

log x

x
dx =

∫ 1

0

u du =

[
u2

2

]1

0

=
1

2
.

• The change of variables u = et ⇒ du = et dt allows us to evaluate
∫

et

et + 1
dt =

∫
du

u+ 1
= log |u+ 1|+ C = log(et + 1) + C.

• The substitution u = x
a
⇒ x = au⇒ dx = adu, where a is a constant, allows us to

evaluate any integral of the form∫
1

x2 + a2
dx =

∫
1

a2
(
x2

a2
+ 1
) dx

=
1

a2

∫
1

u2 + 1
a du

=
1

a

∫
1

u2 + 1
du

=
1

a
tan−1 u+ C

=
1

a
tan−1

(x
a

)
+ C.
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Problem 5.2: Find ∫
cos t
√

sin t dt.

=
2

3
sin3/2 t+ C.

Problem 5.3: Let α be a real number. Find
∫
x−αe−αx

(
1

x
+ 1

)
dx.

We use the substitution u = log x+ x to rewrite

∫
e−α(log x+x)

(
1

x
+ 1

)
dx =

∫
e−αu du =





−e−αu
α + C if α 6= 0,

u+ C if α = 0.

=




−x−αe−αx

α + C if α 6= 0,

log x+ x+ C if α = 0.

Problem 5.4: Let f : [0, 1]→ R be a continuous function. Prove that

∫ π/2

0

f(sinx) dx =

∫ π/2

0

f(cosx) dx.

This follows on using the substitution u = π/2− x:

∫ π/2

0
f(sinx) dx =

∫ π/2

0
f
(

cos
(π

2
− x
))

dx = −
∫ 0

π/2
f(cosu) du =

∫ π/2

0
f(cosu) du.

Problem 5.5:

(a) Show that any function f : R → R can be decomposed as a sum of an even
function fe and an odd function fo. Hint: Construct explicit expressions for fe and
fo in terms of f(x) and f(−x) and show that they are even and odd functions,
respectively.

Let

fe(x) =
f(x) + f(−x)

2
,

fo(x) =
f(x)− f(−x)

2
,

Then f(x) = fe(x) + fo(x).
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(b) Show using Theorem 5.2 and an appropriate substitution that if fe is an even
integrable function on [−a, a], then

∫ a

−a
fe = 2

∫ a

0

fe.

∫ a

−a
fe(x) dx =

∫ 0

−a
fe(x) dx+

∫ a

0
fe(x) dx = −

∫ 0

a
fe(−x) dx+

∫ a

0
fe(x) dx

=

∫ a

0
fe(x) dx+

∫ a

0
fe(x) dx = 2

∫ a

0
fe.

(c) Show that if fo is an odd integrable function on [−a, a] that
∫ a

−a
fo = 0.

∫ a

−a
fo(x) dx =

∫ 0

−a
fo(x) dx+

∫ a

0
fo(x) dx = −

∫ 0

a
fo(−x) dx+

∫ a

0
fo(x) dx

= −
∫ a

0
fo(x) dx+

∫ a

0
fo(x) dx = 0.

(d) Deduce that ∫ a

0

f +

∫ 0

−a
f = 2

∫ a

0

fe

and ∫ a

0

f −
∫ 0

−a
f = 2

∫ a

0

fo.

We find
∫ a

0
f +

∫ 0

−a
f =

∫ a

0
(fe + fo) +

∫ 0

−a
(fe + fo) =

∫ a

−a
fe +

∫ a

−a
fo = 2

∫ a

0
fe

and
∫ a

0
f −

∫ 0

−a
f =

∫ a

0
(fe + fo)−

∫ 0

−a
(fe + fo) =

∫ a

0
fe −

∫ a

0
fe +

∫ a

0
fo +

∫ a

0
fo = 2

∫ a

0
fo.

• Since the integrand is even, we can simplify

∫ 2

−2

(x4 + 1) dx = 2

∫ 2

0

(x4 + 1) dx = 2

[
x5

5
+ x

]2

0

= 2

(
25

5
+ 2

)
=

26

5
+ 4 =

84

5
.
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• Since the integrand is odd, we can simplify

∫ π/2

−π/2
cscx dx = 0.

Problem 5.6: (a) Let f be an odd function with antiderivative F . Prove that F is
an even function. Note: we do not assume that f is continuous or even integrable.

We are given that f(−x) = −f(x) and F ′(x) = f(x). Hence

d

dx
[F (x)− F (−x)] = f(x) + f(−x) = 0,

so that

F (x)− F (−x) = C

for some constant C. Evaluating this result at x = 0, we see that C = 0. Hence F (x) =

F (−x), that is, F is even.

(b) If f is an even function with antiderivative F , can one always find an an-
tiderivative G of f that is odd? Are all antiderivatives of f odd? Prove or provide a
counterexample for each of these statements.

We are given that f(−x) = f(x) and F ′(x) = f(x). Hence

d

dx
[F (x) + F (−x)] = f(x)− f(−x) = 0,

so that

F (x) + F (−x) = C,

where C is a constant. Let G(x) = F (x) − C/2. Then G is an antiderivative of f and

G(−x) = F (−x)−C/2 = −F (x) +C/2 = −G(x), so G is odd. However, not all antideriva-

tives of f are odd. Consider the even function f(x) = 1. The antiderivative x+ 1 is not an

odd function, although the antiderivative G(x) = x is.

5.4 Numerical Approximation of Integrals

There are many continuous functions such as

ex

x
,
sinx

x
, and ex

2

,

for which the antiderivative cannot be expressed in terms of the elementary functions
introduced so far. For applications where one needs only the value of a definite
integral, one possibility is to approximate the integral numerically.
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To illustrate the numerical evaluation of definite integrals, it is helpful to consider
an integral for which we know the exact answer, such as

∫ 1

0
f dx, where f(x) = x2.

For the partition {0, 1
2
, 1} of [0, 1] we can find a lower bound

L = 0

(
1

2

)
+

1

4

(
1

2

)
=

1

8
= 0.125

and an upper bound

U =
1

4

(
1

2

)
+ 1

(
1

2

)
=

5

8
= 0.625

on the integral.
That is,

L ≤
∫ 1

0

x2 dx ≤ U

but neither L nor U provides us with a very good approximation to the integral.
Notice that the average of L and U , namely (L+U)/2 = 3/8 = 0.375, is much closer
to the exact value (1/3) of the definite integral and that since f is increasing, L is
identical to the left Riemann sum SL =

∑n
i=1 f(xi−1)(xi − xi−1) and U is the right

Riemann sum SR =
∑n

i=1 f(xi)(xi − xi−1). This suggests that it may be better to
approximate the integral by using the Trapezoidal Rule

Tn
.
=
SL + SR

2
=

n∑

i=1

f(xi−1) + f(xi)

2
(xi − xi−1),

Remark: For a uniform partition with fixed a, b, and f , T depends only on the
number of subintervals.

Q. How accurately does Tn, for a uniform partition of [a, b] into n subintervals, ap-

proximate
∫ b
a
f? How does the error depend on n?

A. First, we look at a special case of this question where there is only one subinterval.

Theorem 5.14 (Linear Interpolation Error): Let f be a twice-differentiable function
on [0, h] satisfying |f ′′(x)| ≤M for all x ∈ [0, h]. Let

L(x) = f(0) +
f(h)− f(0)

h
x.

Then ∫ h

0

|L(x)− f(x)| dx ≤ Mh3

12
.
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Proof: Let x ∈ (0, h) and

ϕ(t) = L(t)− f(t)− Ct(t− h),

where C is chosen so that ϕ(x) = 0. Then

ϕ(0) = L(0)− f(0) = 0,

ϕ(h) = L(h)− f(h) = 0.

From Rolle’s Theorem, we then know that there exists x1 ∈ (0, x) and x2 ∈ (x, h)
such that

ϕ′(x1) = ϕ′(x2) = 0.

Again by Rolle’s Theorem, we know that there exists c ∈ (x1, x2) such that

0 = ϕ′′(c) = −f ′′(c)− 2C,

noting that L is linear. Therefore C = −f ′′(c)/2 and since ϕ(x) = 0,

L(x)− f(x) =
−1

2
f ′′(c)x(x− h),

where c ∈ (0, h) depends on x. That is, for every x ∈ [0, h] we have

|L(x)− f(x)| ≤ 1

2
Mx(h− x),

so
∫ h

0

|L(x)− f(x)| dx ≤ M

2

∫ h

0

x(h− x) dx =
M

2

[
x2h

2
− x3

3

]h

0

=
Mh3

12
.

Theorem 5.15 (Trapezoidal Rule Error): Consider a uniform partition of [a, b] into
n subintervals of width h = (b − a)/n, and f be a twice-differentiable function on

[a, b] satisfying |f ′′(x)| ≤ M for all x ∈ [a, b]. Then the error ET
n
.
= Tn −

∫ b
a
f of

the uniform Trapezoidal Rule

Tn = h

n∑

i=1

f(xi−1) + f(xi)

2

satisfies
∣∣ET

n

∣∣ ≤ nMh3

12
=
M(b− a)3

12n2
.

Proof: We need to add up the contribution to the error from each subinterval.
If we temporarily relabel the endpoints of each subinterval 0 and h, we may apply

Theorem 5.14 to obtain a contribution,
∣∣∣
∫ h

0
L−

∫ h
0
f
∣∣∣ ≤

∫ h
0
|L− f | ≤ Mh3/12, from

each of the n subintervals.
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Remark: We can rewrite the Trapezoidal Rule as

Tn =
h

2
[f(x0) + 2f(x1) + . . .+ 2f(xn−1) + f(xn)].

• We can use the Trapezoidal Rule to approximate
∫ 2

1
1
x
dx with n = 5 subintervals

of width h = 1/5:
∫ 2

1

1

x
dx ≈ Tn =

1

10

[
1

1
+

2

1.2
+

2

1.4
+

2

1.6
+

2

1.8
+

1

2

]

≈ 0.6956.

The exact value of the integral is log 2 = 0.6931 . . ..

Remark: Typically, a more accurate method than the Trapezoidal Rule is the Midpoint
Rule

Mn =
n∑

i=1

f

(
xi−1 + xi

2

)
(xi − xi−1),

which has the additional advantage of requiring one less function evaluation.

Problem 5.7: Show that the Midpoint Rule has an error EM
n

.
= Mn−

∫ b
a
f satisfying

∣∣EM
n

∣∣ ≤ M(b− a)3

24n2
.

Notice that this bound is a factor of 2 smaller than the error bound for the Trape-
zoidal Rule.

• Let us use the Midpoint Rule to approximate
∫ 2

1
1
x
dx with n = 5 subintervals of

width h = 1/5:
∫ 2

1

1

x
dx ≈Mn =

1

5

[
1

1.1
+

1

1.3
+

1

1.5
+

1

1.7
+

1

1.9

]

≈ 0.6919,

which is indeed closer than Tn to the exact value of log 2 (by roughly a factor of 2).

Remark: Even better are the higher-order methods, such as Simpson’s Rule, which
fits parabolas rather than line segments to the data values f(x0), f(x1), . . . , f(xn),
where n is even. This approximation is given by

Sn =
h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .+ 2f(xn−2) + 4f(xn−1) + f(xn)],

with an error ES
n
.
= Sn −

∫ b
a
f satisfying

∣∣ES
n

∣∣ ≤ K(b− a)5

180n4
if
∣∣f (4)(x)

∣∣ ≤ K for all x ∈ [a, b].
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Problem 5.8: Consider the function f(x) = 1/(1 +x2) on [0, 1]. Let P be a uniform
partition on [0, 1] with 2 subintervals of equal width.

(a) Compute the left Riemann sum SL.
Since the partition is uniform,

SL =
1

2

(
4

5
+

1

2

)
=

13

20
.

(b) Compute the right Riemann sum SR.

SR =
1

2

(
1 +

4

5

)
=

9

10
.

(c) Use your results in part (a) and (b) to find lower and upper bounds for π.
We see that

13

20
= SL ≤

π

4
=

∫ 1

0

1

1 + x2
dx ≤ SR =

9

10
.

Thus
13

5
≤ π ≤ 18

5
.

(d) Use the Trapezoidal Rule to find a numerical estimate for π.
We find that π is approximately

4

(
1

2

)(
1 + 4

5

2
+

4
5 + 1

2

2

)
= 2

(
9

10
+

13

20

)
=

31

10
.

(e) Obtain a better rational estimate for π by using the Midpoint Rule.
We find that π is approximately

4

(
1

2

)(
f

(
1

4

)
+ f

(
3

4

))
= 2

(
16

17
+

16

25

)
= 32

(
1

17
+

1

25

)
= 32

(
42

425

)
=

1344

425
.



Chapter 6

Areas and Volumes

6.1 Areas between curves

The area A between two continuous functions y = f(x) and y = g(x) on [a, b], where
f(x) ≥ g(x), is given by the difference of the respective areas between these functions
and the x axis:

A =

∫ b

a

f(x)−
∫ b

a

g(x) dx =

∫ b

a

[f(x)− g(x)] dx.

y

x

f

g

a b

1

2

A

• Find the area bounded by f(x) = x2 + 1 and g(x) = x between x = 0 and x = 1.

A =

∫ 1

0

[f(x)− g(x)] dx =

∫ 1

0

[x2 + 1− x] dx

=

[
x3

3
+ x− x2

2

]1

0

=
1

3
+ 1− 1

2
=

5

6
.

Sometimes we are not given a and b, but we can determine them from the points
of intersections of the two curves.

113
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• Find the area enclosed by the curves f(x) = 2x− x2 and g(x) = x2. Here a and b
are determined by the points of intersection of f(x) and g(x),

f(x) = g(x)

2x− x2 = x2

⇒ 2x = 2x2 ⇒ 0 = 2x2 − 2x = 2x(x− 1)

⇒ x = 0 or x = 1.

y

x

f(x) = 2x− x2

g(x) = x2

(0,0)

(1,1)

A

Thus

A =

∫ 1

0

[f(x)− g(x)] dx =

∫ 1

0

(2x− x2 − x2) dx =

∫ 1

0

(2x− 2x2) dx

= 2

∫ 1

0

(x− x2) dx = 2

[
x2

2
− x3

3

]1

0

= 2

(
1

2
− 1

3

)
=

1

3
.

Q. What happens when f(x) ≥ g(x) for some values of x but g(x) ≥ f(x) for other
values?

A. We simply take the absolute value of the integrand before integrating. That is,
the general formula for the area A of the region bounded by two continuous
functions f and g and the vertical lines x = a and x = b is

A =

∫ b

a

|f(x)− g(x)| dx,

where

|f(x)− g(x)| =
{
f(x)− g(x) when f(x) ≥ g(x),
g(x)− f(x) when f(x) < g(x).

For continuous functions f and g, the regions where f(x) > g(x) and f(x) <
g(x) are separated by the points where f(x) = g(x).
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• To find the area of the region bounded by f(x) = x and g(x) = x3, we first solve
for the intersection points:

y

x

f(x) = x

g(x) = x3

−1 1A

f(x) = g(x)

⇒ x = x3

⇒ 0 = x3 − x = x(x2 − 1) = x(x− 1)(x+ 1)

⇒ x = −1, 0, 1.

On [−1, 0] we see that f(x) ≤ g(x) and on [0, 1] we see that f(x) ≥ g(x). Thus

A =

∫ 1

−1

|f(x)− g(x)| dx =

∫ 0

−1

[g(x)− f(x)] dx+

∫ 1

0

[f(x)− g(x)] dx

=

∫ 0

−1

(x3 − x) dx+

∫ 1

0

(x− x3) dx =

[
x4

4
− x2

2

]0

−1

+

[
x2

2
− x4

4

]1

0

= 0−
(

1

4
− 1

2

)
+

(
1

2
− 1

4

)
− 0 =

1

4
+

1

4
=

1

2
.

Q. In the above example, what would happen if we tried to compute

∫ 1

−1

[f(x)− g(x)] dx

without first taking the absolute value of the integrand?

A. We would find

∫ 1

−1

[x− x3] dx =

[
x2

2
− x4

4

]1

−1

=

(
1

2
− 1

4

)
−
(

1

2
− 1

4

)
= 0.
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In general, whenever f(x)− g(x) is an odd function we will find

∫ 1

−1

[f(x)− g(x)] dx =

∫ 0

−1

[f(x)− g(x)] dx+

∫ 1

0

[f(x)− g(x)] dx = 0,

because the two contributions are of opposite sign, even though the geometric
area of the region bounded by the two functions will (normally) be positive.

• Find the area bounded by the curves y = sinx, y = cosx, x = 0 and x = π/2.

y

x

f(x) = sinx

g(x) = cos x

0 π/4 π/2

A

The intersection points occur when

sinx = cosx⇒ tanx = 1⇒ x =
π

4
.

We need to split the integration interval [0, π/2] into two parts:

A =

∫ π
2

0

|cosx− sinx| dx =

∫ π
4

0

(cosx− sinx) dx+

∫ π
2

π
4

(sinx− cosx) dx

= [sinx+ cosx]
π
4
0 + [− cosx− sinx]

π
2
π
4

=
1√
2

+
1√
2
− 0− 1− 0− 1 +

1√
2

+
1√
2

= 2
√

2− 2.

• If the function is defined piecewise, we can integrate it in two pieces. For example,
to find the area bounded by y = h(x) and y = 0 between x = 0 and x = 2, where

h(x) =

{
x if 0 ≤ x ≤ 1,
2− x if 1 < x ≤ 2,

we would perform the integral over [0, 1] and [1, 2] separately:

∫ 2

0

|h(x)| dx =

∫ 1

0

x dx+

∫ 2

1

(2− x) dx =

[
x2

2

]1

0

+

[
−(2− x)2

2

]2

1

=
1

2
+

1

2
= 1.
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y

x

x = g(y) x = f(y)

h(x)h(x)

0 1 2

A

However, it is even easier to determine the area of this region by finding the area
between the inverse functions x = f(y) = 2 − y and x = g(y) = y, where y varies
from 0 to 1:

∫ 1

0

|f(y)− g(y)| dy =

∫ 1

0

|(2− y)− y| dy = 2

∫ 1

0

(1− y) dy = 2

[
−(1− y)2

2

]1

0

= 1.

6.2 Volumes by Cross Sections

Single-variable calculus can sometimes be used to calculate more than just lengths
and areas. If an expression for the cross-sectional area of an object is known, it is
possible to compute its volume by the method of cross sections (also known as the
method of slabs or slices).

For example, we can of course easily compute the volume of a loaf of bread, where
each slice has same shape and size, using the definition

volume = area× length.

But what if the slices of bread don’t all have the same size (or even the same shape)?
Maybe we have a conical loaf!

Q. What is the volume of such a strange loaf of bread?

A. Slice up the loaf and sum up the area (height × width) × thickness (xi − xi−1)
of each slice to form the Riemann sum

n∑

i=1

A(x∗i )(xi − xi−1),

where A(x) is the area of a cross section at x obtaining by slicing perpendicular
to the x axis and x∗i is a point in [xi−1, xi] Assuming that A(x) is integrable on
[a, b], we can take the limit as n→∞ to find the volume:

V = lim
n→∞

n∑

i=1

A(x∗i )(xi − xi−1) =

∫ b

a

A(x) dx.
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• For a conical loaf of bread of length L, the middle slice, at x = L/2 has 1/2 the
height and 1/2 the width of the largest slice, so its area is 1/4 the area of the
largest slice. If we put the apex of the cone at x = 0 and the largest slice, with
area A, at x = L, we see by similar triangles that the slice located at x has area
A(x) = (x/L)2A. Thus

V =

∫ L

0

A(x) dx =

∫ L

0

x2

L2
Adx

=
A

L2

∫ L

0

x2 dx =
A

L2

[
x3

3

]L

0

=
A

L2

L3

3
=

1

3
AL.

We have thus established the formula:

Vcone =
1

3
base area× length.

• We can compute the volume enclosed by a sphere of radius R, described by the
equation x2 +y2 +z2 = R2, by partitioning the x axis. This produces circular cross
sections of radius r = r(x) > 0. The value of r is the maximum possible value of y,
which occurs when z = 0:

x2 + y2 = R2 ⇒ y = ±
√
R2 − x2.

That is, r(x) =
√
R2 − x2, so that A(x) = πr2 = π(R2 − x2). Thus

V =

∫ R

−R
π(R2 − x2) dx = 2π

∫ R

0

(R2 − x2) dx = 2π

[
R2x− x3

3

]R

0

=
4

3
πR3.

• Find the volume of the solid obtained by rotating the area bounded by the curves
y =
√
x and y = 0 from 0 to 1 about the x axis.

https://www.math.ualberta.ca/~bowman/m101/fig/sqrtx01.html
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Since the radius of revolution is given by r(x) = y =
√
x, the cross-sectional area

is given by

A(x) = πr2 = π
(√

x
)2

= πx.

Thus

V =

∫ 1

0

A(x) dx =

∫ 1

0

πx dx = π

[
x2

2

]1

0

=
π

2
.

• We could instead compute the volume of the funnel-shaped object generated by
rotating the region bounded by y =

√
x, x = 0, and y = 1 about the y axis. For

the method of cross sections, we always slice the rotation axis (in this case the y
axis) and express everything else in terms of the corresponding variable (y). We
see that the radius of each circular cross section is r(y) = x = y2, so that the
cross-sectional area is A(y) = πr2 = πy4. The resulting volume of revolution is
thus

V =

∫ 1

0

A(y) dy = π

∫ 1

0

y4 dy = π

[
y5

5

]1

0

=
π

5
.

• We could also rotate the region bounded by the curves y =
√
x, y = 0, and x = 1

about the y axis. If we slice the y axis, each cross section is just an annulus of
outer radius rout(y) = 1 and inner radius rin(y) = x = y2, with area A(y) =
πrout

2 − πrin
2 = π(1− y4). The volume of the resulting object is then

V =

∫ 1

0

A(y) dy = π

∫ 1

0

(1− y4) dy = π

[
y − y5

5

]1

0

=
4π

5
.

https://www.math.ualberta.ca/~bowman/m101/fig/sqrtx01y1.html
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Problem 6.1: Explain why the volumes calculated in the previous two examples add
up to π, the volume of a cylinder of unit radius and unit height.

• If we rotate the region bounded by f(x) = x and g(x) = x2 between x = 0 and
x = 1 about the x axis,

we need to find the area of the annular region with outer radius rout(x) = f(x) = x
and inner radius rin(x) = g(x) = x2:

A(x) = πrout
2 − πrin

2 = π
[
x2 − (x2)2

]
= π(x2 − x4).

Thus

V =

∫ 1

0

[π(x2 − x4)] dx = π

[
x3

3
− x5

5

]1

0

= π

(
1

3
− 1

5

)
=

2π

15
.

https://www.math.ualberta.ca/~bowman/m101/fig/sqrtx01y.html
https://www.math.ualberta.ca/~bowman/m101/fig/xxsq01.html
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• We could also rotate the same area about the line y = 2 instead of y = 0.

Now

A(x) = πrout
2 − πrin

2 = π
(
2− x2

)2 − π(2− x)2 = π(x4 − 5x2 + 4x).

The generated volume is then

V =

∫ 1

0

A(x) dx = π

∫ 1

0

(x4 − 5x2 + 4x) dx = π

[
x5

5
− 5x3

3
+

4x2

2

]1

0

= π

(
1

5
− 5

3
+ 2

)
=

8π

15
.

Problem 6.2: Find the volume generated by rotating the region bounded by f(x) = x
and g(x) = x2 between x = 0 and x = 1 about the line x = −1.

https://www.math.ualberta.ca/~bowman/m101/fig/xxsq01y2.html
https://www.math.ualberta.ca/~bowman/m101/fig/xxsq01x-1.html
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• Consider the three-dimensional object formed by erecting an equilateral triangle,
with altitude perpendicular to the xy plane, on every chord x = const of the circle
x2 + y2 = 1.

To find the volume of this object, we only need to find the cross-sectional area A(x)
of each equilateral triangle obtained by slicing the object along the planes x = const.
The length of the base of this triangle, which has endpoints (x,−y) and (x, y), where
x2 + y2 = 1, is 2y. Pythagoras’ Theorem tell us that the altitude h of this equilateral
triangle is

√
(2y)2 − y2 =

√
3y. Hence

A(x) =
1

2
(2y)h =

√
3y2 =

√
3(1− x2).

The volume of the object is then easily computed:

V =

∫ 1

−1

A(x) dx =

∫ 1

−1

√
3(1−x2) dx = 2

∫ 1

0

√
3(1−x2) dx = 2

√
3

[
x− x3

3

]1

0

=
4
√

3

3
.

• Consider the volume of one of the two wedge-shaped regions bounded by the cylinder
x2 + y2 = 16 and the plane containing the x axis and oriented at an angle of
30◦ = π/6 to the xy plane. If we slice this object in the x direction, we obtain
triangular cross sections with base length y and altitude y tan(π/6) = y/

√
3. Thus

https://www.math.ualberta.ca/~bowman/m101/fig/equilchord.html
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A(x) =
1

2
y

(
y√
3

)
=

16− x2

2
√

3
,

so that

V =

∫ 4

−4

16− x2

2
√

3
dx = 2

∫ 4

0

16− x2

2
√

3
dx =

1√
3

[
16x− x3

3

]4

0

=
128

3
√

3
.

6.3 Volumes by Shells

Suppose we wish to rotate the area under the curve y = f(x) = 2x2− x3 about the y
axis. The method of cross sections requires that we slice the y axis and express all
quantities as functions of y. Finding the radii rin and rout amounts to inverting the
equation y = 2x2 − x3 to find two distinct values of x for every y within the limits of
integration.

In general, performing this kind of inversion can be a difficult problem. In this
example, f has roots only at x = 0 and x = 2 and f(x) > 0 on (0, 2). We can easily
see that the maximum value of f must occur at 4/3 since f ′(x) = 4x−3x2 = x(4−3x).

https://www.math.ualberta.ca/~bowman/m101/fig/wedge.html
https://www.math.ualberta.ca/~bowman/m101/fig/washermethod.html
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However, it is much more difficult (although in this case not impossible) to find for
each y the two values rin and rout such that f(rin) = f(rout) = y.

For such cases, there is an easier alternative, the method of cylindrical shells, where
one computes the volume using Riemann sums of volumes of cylindrical shells:

1. Partition an axis that is perpendicular to the rotation axis. Then compute the
volume of the cylindrical shells generated by revolving the area within each
subinterval around the rotation axis.

2. To find the total volume, add up the volumes of all shells and take the limit as
the width of the subintervals goes to 0.

We readily see that the volume of a cylindrical shell of inner radius r1 and outer
radius r2 and height h is given by

πr2
2h− πr2

1h = πh(r2
2 − r2

1) = πh(r2 + r1)(r2 − r1) = (2πr)h∆r,

where r
.
= (r1 + r2)/2 is the mean radius and ∆r

.
= r2 − r1 is the width of the

subinterval. (We use the symbol
.
= to emphasize a definition, although the notation

:= is more common.)
When the area under the curve y = f(x) is rotated about the y axis, we can

use a uniform partition to form a Riemann sum for the volume by approximating
the height h of the cylindrical shell on each subinterval [xi−1, xi] by the value of the
function f at the mean radius x∗i = (xi−1 + xi)/2. Then

V = lim
n→∞

n∑

i=1

2πx∗i f(x∗i )(xi − xi−1) = 2π

∫ b

a

xf(x) dx.

Note here that 0 ≤ a ≤ b.

• We can compute the volume formed by rotating the region under y = f(x) =
2x2 − x3 about the y axis very easily now, using the method of cylindrical shells:

https://www.math.ualberta.ca/~bowman/m101/fig/shellmethod.html
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V =

∫ 2

0

2πx(2x2 − x3) dx = 2π

∫ 2

0

(2x3 − x4) dx

= 2π

[
2x4

4
− x5

5

]2

0

= 2π

(
8− 32

5

)
=

16π

5
.

In general, the volume of the object generated by rotating the region bounded by
the functions f(x) and g(x) between x = a and x = b about the y axis is given by

V =

∫ b

a

2πx︸︷︷︸
circumference

|f(x)− g(x)|︸ ︷︷ ︸
height

dx︸︷︷︸
width

,

where we have given a geometric interpretation for each factor.

• When the region bounded by the functions f(x) = x and g(x) = x2 and the lines
x = 0 and x = 1 is rotated about the y axis,

the volume generated is

V = 2π

∫ 1

0

x(x− x2) dx = 2π

[
x3

3
− x4

4

]1

0

= 2π

(
1

3
− 1

4

)
=
π

6
.

Alternatively, we could have obtained the same answer with the method of cross sections
by slicing the y axis. Since rout =

√
y and rin = y, we see that

V = π

∫ 1

0

(rout
2 − rin

2) dy = π

∫ 1

0

[
(
√
y)2 − y2

]
dy = π

[
y2

2
− y3

3

]1

0

=
π

6
.

https://www.math.ualberta.ca/~bowman/m101/fig/xxsq01y.html
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• We can of course also rotate a region about the x axis. The region bounded by
y =
√
x, y = 0, x = 0, and x = 1

would generate the volume

V =

∫
2πy︸︷︷︸

circumference

(1− x)︸ ︷︷ ︸
height

dy︸︷︷︸
width

= 2π

∫ 1

0

y(1− y2) dy

= 2π

[
y2

2
− y4

4

]1

0

= 2π

(
1

2
− 1

4

)
=
π

2
,

in agreement with the result we previously obtained using the method of cross sections.

Problem 6.3: The region bounded by the curve (x−R)2 + y2 = a2 is rotated about
the y axis, where R > a to obtain a torus of minor radius a and major radius R.

(a) Use the method of washers to find the volume of the torus.
Slice the torus in the y direction, creating washers of outer radius R +

√
a2 − y2 and

inner radius R−
√
a2 − y2. The area of each washer is

A(y) = π

[(
R+

√
a2 − y2

)2
−
(
R−

√
a2 − y2

)2
]

= 4πR
√
a2 − y2,

https://www.math.ualberta.ca/~bowman/m101/fig/shellsqrtx01.html
https://www.math.ualberta.ca/~bowman/m101/fig/torus.html
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so that the volume V of the torus is given by

V = 4πR

∫ a

−a

√
a2 − y2 dy.

We recognize that
∫ a
−a
√
a2 − y2 dy is just half the area of a circle of radius a.

V = 4πR
πa2

2
= 2π2Ra2.

(b) Use the method of shells to find the volume of the torus.
Slice the torus in the x direction, creating cylindrical shells of radius x and height

2
√
a2 − (x−R)2.
The volume V of the object is thus, on letting u = x−R,

V = 4π

∫ R+a

R−a
x
√
a2 − (x−R)2 dx = 4π

∫ +a

−a
(u+R)

√
a2 − u2 du = 4πR

πa2

2
= 2π2Ra2,

on exploiting the fact that u
√
a2 − u2 is an odd function of u.



Chapter 7

Techniques of Integration

7.1 Integration by parts

Recall that the substitution rule is really just an integral version of the chain rule.
Another important and frequently used rule in differential calculus is the product
rule.

Q. Does the product rule also have an integral version?

A. Yes, it is called integration by parts, as illustrated in Table 7.1.

d

dx

∫
dx

Chain rule Substitution rule

Product rule Integration by parts

Table 7.1: Techniques of Integration.

Theorem 7.1 (integration by parts): Suppose f ′ and g′ are continuous functions.
Then ∫

fg′ = fg −
∫
f ′g.

Proof: Then (fg)′ = f ′g + fg′, so fg is an antiderivative of f ′g + fg′. That is,
∫

(f ′g + fg′) = fg to with a constant.

128



7.1. INTEGRATION BY PARTS 129

In other words,
∫
fg′ dx = fg −

∫
f ′g dx.

Remark: Letting u = f(x), so that du = f ′(x) dx, and v = g(x), so that dv =
g′(x) dx, we may rewrite the integration by parts formula as

∫
u dv = uv −

∫
v du.

Remark: For definite integrals we have, by the Fundamental Theorem of Calculus,

∫ b

a

fg′ dx =

[
fg

]b

a

−
∫ b

a

f ′g dx.

• We can integrate
∫
x sinx dx using integration by parts:

∫
x︸︷︷︸
f

sinx︸︷︷︸
g′

dx = x︸︷︷︸
f

(− cosx)︸ ︷︷ ︸
g

−
∫

1︸︷︷︸
f ′

(− cosx)︸ ︷︷ ︸
g

dx

∴
∫
x sinx dx = −x cosx+ sinx+ C

Try to pick f so that f ′ is simple and g′ has a known antiderivative. If instead we
had picked

f = sinx (⇒ f ′ = cosx)

and

g′ = x

(
⇒ g =

x2

2

)

then the integration by parts formula leads to an even more complicated integral:

∫
sinx x dx = sinx

(
x2

2

)
−
∫

cosx

(
x2

2

)
= . . . .

So this choice of f and g′ was not fruitful.
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• Noting that ∫
log x dx =

∫
1 · log x dx,

we might be tempted to try integration by parts, setting f = 1 and g′ = log x:
∫

log x dx = 1

∫
log x dx−

∫
0

[∫
log x dx

]
dx

=

∫
log x dx.

This doesn’t help! Instead, we could try f = log x and g′ = 1:
∫

log x︸︷︷︸
f

· 1︸︷︷︸
g′

dx = log x︸︷︷︸
f

· x︸︷︷︸
g

−
∫

1

x︸︷︷︸
f ′

x︸︷︷︸
g

dx

= x log x− x+ C.

• Similarly we can integrate tan−1 by parts and use the substitution u = x2 to find

∫ 1

0

tan−1 x︸ ︷︷ ︸
f

· 1︸︷︷︸
g′

dx =

[
x tan−1 x

]1

0

−
∫ 1

0

x

1 + x2
dx

= 1 tan−1 1− 0−
∫ 12

02

1

1 + u

du

2

=
π

4
− 1

2
[log |1 + u|]10

=
π

4
− 1

2
log 2.

• In order to find ∫
x2
︸︷︷︸
f

ex︸︷︷︸
g′

dx = x2ex −
∫

2xex dx,

we need to know
∫

2xex dx. But that integral is just twice
∫
xex dx, which we can

find by applying integration by parts again:
∫
xex dx = xex −

∫
ex dx = xex − ex + C.

Thus
∫
x2ex dx = x2ex − 2(xex − ex + C)

= x2ex − 2xex + 2ex + C2, where C2 = −2C.
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• We can even find integrals of the form

I =

∫
sinx︸︷︷︸
f

ex︸︷︷︸
g′

dx = sinx ex −
∫

cosx ex dx.

What is
∫

cosx ex dx?
∫

cosx︸︷︷︸
f

ex︸︷︷︸
g′

dx = cosx ex −
∫

(− sinx) ex dx

= cosx ex + I.

Thus I = sinx ex− (cosx ex+ I), from which we find I = 1
2

sinx ex− 1
2

cosx ex+C.

• For nonzero real numbers a and b find

I =

∫
eax cos bx dx,

J =

∫
eax sin bx dx.

On integrating by parts, we obtain

I =

∫
eax︸︷︷︸
g′

cos bx︸ ︷︷ ︸
f

dx =
1

a
eax cos bx+

b

a

∫
eax sin bx dx

︸ ︷︷ ︸
J

,

J =

∫
eax sin bx dx =

1

a
eax sin bx− b

a

∫
eax cos bx dx

︸ ︷︷ ︸
I

.

We thus need to solve the system of equations

I =
1

a
eax cos bx+

b

a
J,

J =
1

a
eax sin bx− b

a
I.

⇒ I =
1

a
eax cos bx+

b

a2
eax sin bx− b2

a2
I

(
1 +

b2

a2

)
I =

(
1

a
cos bx+

b

a2
sin bx

)
eax.

⇒ I =
a cos bx+ b sin bx

a2 + b2
eax + C1,

J =
a sin bx− b cos bx

a2 + b2
eax + C2.
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• We now compute, for n ≥ 2,

In =

∫
sinn x dx

=

∫
sinn−1 x︸ ︷︷ ︸

f

sinx︸︷︷︸
g′

dx

= sinn−1 x(− cosx)−
∫

(n− 1) sinn−2 x(cosx)︸ ︷︷ ︸
f ′

(− cosx) dx

Now ∫
sinn−2 x cos2 x︸ ︷︷ ︸

1−sin2 x

dx =

∫
(sinn−2 x− sinn x) dx = In−2 − In.

Thus

In = − sinn−1 x cosx+ (n− 1)(In−2 − In)

⇒ In = − sinn−1 x cosx+ (n− 1)In−2 − nIn + In

⇒ nIn = − sinn−1 x cosx+ (n− 1)In−2.

That is, ∫
sinn x dx = − 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 x dx.

This is known as a reduction formula.

• For n = 2, the reduction formula states that
∫

sin2 x dx = −1

2
sinx cosx+

1

2

∫
1 dx

= −1

2
sinx cosx+

1

2
x+ C.

Alternatively, one can evaluate this integral using trigonometric identities:
∫

sin2 x dx =

∫
1− cos 2x

2
dx =

1

2
x− 1

4
sin 2x+ C

=
1

2
x− 1

2
sinx cosx+ C.

• For n = 3,
∫

sin3 x dx = −1

3
sin2 x cosx+

2

3

∫
sinx dx

= −1

3
sin2 x cosx− 2

3
cosx+ C.
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• An important integral that will soon need is, for n ≥ 1 and a 6= 0,

Jn,a(x) =

∫
1

(x2 + a2)n
· 1 dx

=
x

(x2 + a2)n
+ 2n

∫
x2

(x2 + a2)n+1
dx

=
x

(x2 + a2)n
+ 2n

∫
(x2 + a2)− a2

(x2 + a2)n+1
dx

=
x

(x2 + a2)n
+ 2n

(∫
1

(x2 + a2)n
dx−

∫
a2

(x2 + a2)n+1
dx

)

=
x

(x2 + a2)n
+ 2n(Jn,a(x)− a2Jn+1,a(x))

⇒ (1− 2n)Jn,a(x) =
x

(x2 + a2)n
− 2na2Jn+1,a(x).

The resulting reduction formula,

Jn+1,a(x) =
1

2na2

x

(x2 + a2)n
+

2n− 1

2na2
Jn,a(x) (n ≥ 1, a 6= 0),

together with the result (for a 6= 0)

J1,a(x) =

∫
1

x2 + a2
dx =

1

a
arctan

x

a
+ C,

allows us to compute Jn,a(x) for any n ≥ 1.

Problem 7.1: Find ∫ 1

0

arcsinx dx.

∫ 1

0
1 · arcsinx dx = [x arcsinx]10 −

∫ 1

0

x√
1− x2

dx = arcsin 1 +
[
(1− x2)1/2

]1

0
=
π

2
− 1.

Problem 7.2: Let P (x) be a polynomial of degree n. Prove that

∫
P (x)ex dx = ex

n∑

k=0

(−1)kP (k)(x) + C,

where P (k) denotes the kth derivative of P . Give an explicit reason why the sum
terminates at k = n.
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This follows immediately on integrating by parts n times, using f(x) = P (x) and g(x) =
ex. Alternatively, we can verify the result by noting that the derivative of the right-hand
side is

ex
n∑

k=0

(−1)kP (k)(x) + ex
n∑

k=0

(−1)kP (k+1)(x) = ex
n∑

k=0

(−1)kP (k)(x)− ex
n+1∑

k=1

(−1)kP (k)(x)

= exP (0)(x)− ex(−1)n+1P (n+1)(x) = exP (x)

since P (n+1)(x) = 0.

7.2 Integrals of Trigonometric Functions

Often we encounter integrals of the form

∫
sinm x cosn x dx,

where m and n are integers. Here is an integration strategy:

Case I. If either of the integers m or n is odd, separate out one factor of sinx or
cosx so that the rest of the integrand may be written entirely as a polynomial in
cosx or a polynomial in sinx, as the case may be. Then make the appropriate
substitution. (Note: if both m and n are odd there will be two possible ways of
doing this.)

Case II. If m and n are both even use the addition formulae

sin2 x =
1− cos 2x

2
, cos2 x =

1 + cos 2x

2
, 2 sinx cosx = sin 2x,

possibly repeatedly, to reduce the problem to the form of Case I.

• Find
∫

sin3 x cos2 x dx, using the substitution u = cosx (du = − sinx dx),

∫
sin3 x cos2 x dx =

∫
sinx(1− cos2 x) cos2 x dx

= −
∫

(1− u2)u2 du = −
∫

(u2 − u4) du

= −
(
u3

3
− u5

5

)
+ C =

1

5
cos5 x− 1

3
cos3 x+ C.
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• Find
∫

sin2 x cos3 x dx, using the substitution u = sinx (du = cosx dx),
∫

sin2 x cos3 x dx =

∫
sin2 x(1− sin2 x) cosx dx

=

∫
u2(1− u2) du

=
u3

3
− u5

5
+ C =

1

3
sin3 x− 1

5
sin5 x+ C.

• We can use the fact that sin2 2x = (1− cos 4x)/2 to compute

∫
sin2 x cos2 x dx =

∫ (
1

2
sin 2x

)2

dx

=
1

4

∫
1− cos 4x

2
dx

=
1

8

[
x− sin 4x

4

]
+ C.

Problem 7.3: Find ∫
cos7 x sin2 x dx

Let u = sinx. The integral then evaluates to
∫

(1− u2)3u2 du =

∫
(1− 3u2 + 3u4 − u6)u2 du =

∫
(u2 − 3u4 + 3u6 − u8) du

=
u3

3
− 3u5

5
+

3u7

7
− u9

9
+ C =

sin3 x

3
− 3 sin5 x

5
+

3 sin7 x

7
− sin9 x

9
+ C.

Problem 7.4: Prove that

(a)

cosh2 x =
cosh 2x+ 1

2
;

(b)

sinh2 x =
cosh 2x− 1

2
;

(c)
2 sinhx coshx = sinh 2x.

Remark: In view of Problem 7.4, the same technique can be used to compute∫
coshm x sinhn x dx for integer values of m and n.
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Remark: The technique of extracting out an odd factor of cosx or sinx can even be
applied if one or both of the integers m and n are negative. For example, we can
compute the indefinite integral of secx by rewriting the integrand and using the
substitution u = sinx,

∫
secx dx =

∫
cosx

cos2 x
dx =

∫
cosx

1− sin2 x
dx

=

∫
1

1− u2
du =

∫ ( 1
2

1 + u
+

1
2

1− u

)
dx

=
1

2
log |1 + u| − 1

2
log |1− u|+ C

=
1

2
log

∣∣∣∣
1 + sin x

1− sinx

∣∣∣∣+ C

=
1

2
log

∣∣∣∣
(1 + sin x)2

1− sin2 x

∣∣∣∣+ C

= log

∣∣∣∣∣∣

√
(1 + sin x)2

1− sin2 x

∣∣∣∣∣∣
+ C

= log

∣∣∣∣
1 + sin x

cosx

∣∣∣∣+ C

= log |secx+ tanx|+ C.

Remark: One can use a similar technique to compute certain integrals of the form

∫
tanm x secn x dx,

by exploiting the Pythagorean relation tan2 x+1 = sec2 x, along with the derivatives

d

dx
tanx = sec2 x

and
d

dx
secx =

d

dx

(
1

cosx

)
=

+ sinx

cos2 x
= secx tanx.

For example, if m is an odd natural number, the substitution u = secx will reduce
the integrand to a polynomial. If n is an even natural number, the substitution
u = tanx will work.
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• Letting u = secx, we find

∫
tan3 x sec3 x dx

=

∫
tan2 x sec2 x secx tanx dx︸ ︷︷ ︸

du

=

∫
(u2 − 1)u2 du =

u5

5
− u3

3
+ C

=
sec5 x

5
− sec3 x

3
+ C.

• Letting u = tanx, we find

∫
tan4 x sec4 x dx

=

∫
tan4 x(1 + tan2 x) sec2 x dx︸ ︷︷ ︸

du

=

∫
u4(1 + u2) du =

u5

5
+
u7

7
+ C =

tan5 x

5
+

tan7 x

7
+ C.

• An alternative method for computing the integral of secx relies on the following
trick:

∫
secx dx =

∫
secx

(
secx+ tanx

secx+ tanx

)
dx

=

∫
secx tanx+ sec2 x

secx+ tanx
dx

= log |secx+ tanx|+ C.

• Compute ∫
sec3 x dx =

∫
secx︸︷︷︸
f

sec2 x︸ ︷︷ ︸
g′

dx.

On integrating by parts, we find that

∫
sec3 x dx = secx tanx−

∫
(secx tanx) tanx dx

= secx tanx−
∫

secx(sec2 x− 1) dx

= secx tanx−
∫

sec3 x dx+

∫
secx dx.
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Thus

2

∫
sec3 x dx = secx tanx+ log |secx+ tanx|+ C

⇒
∫

sec3 x dx =
1

2
(secx tanx+ log |secx+ tanx|) + C.

7.3 Trigonometric Substitutions

Trigonometric substitutions are often useful for evaluating integrals containing square
roots of quadratic expressions. Several common trigonometric substitutions for fre-
quently appearing quadratic expressions are listed in Table 7.2. Note that it may be
necessary to complete the square of the quadratic and shift the variable of integration
to put the expression into one of these forms.

Expression x Domain Substitution θ or t Domain Identity

√
a2 − x2 [−a, a] x = a sin θ

[
−π

2
, π

2

]
1− sin2 θ = cos2 θ

√
a2 + x2 (−∞,∞) x = a tan θ

(
−π

2
, π

2

)
1 + tan2 θ = sec2 θ

x = a sinh t (−∞,∞) 1 + sinh2 t = cosh2 t

√
x2 − a2 (−∞,−a] ∪ [a,∞] x = a sec θ

[
0, π

2

)
∪
[
π, 3π

2

)
sec2 θ − 1 = tan2 θ

x = a cosh t [0,∞) cosh2 t− 1 = sinh2 t

Table 7.2: Useful trigonometric substitutions.

• We can use the trigonometric substitution x = a sin θ to find the area between the
half-circle y =

√
a2 − x2 and y = 0:

∫ a

−a

√
a2 − x2 dx =

∫ π
2

−π
2

a cos θ a cos θ dθ = a2

∫ π
2

−π
2

1 + cos 2θ

2
dθ =

π

2
a2.

• We can find the indefinite integral

∫ √
u2 + a2 du
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with the substitution u = a tan θ (du = a sec2 θ dθ). Without loss of generality, we
assume that a > 0. Since

u2 + a2 = a2(tan2 θ + 1) = a2 sec2 θ,

we may write
∫ √

u2 + a2 du =

∫
a sec θ a sec2 θ dθ = a2

∫
sec3 θ dθ

=
a2

2
(sec θ tan θ + log |sec θ + tan θ|) + C,

=
a2

2

(√
u2 + a2

a
· u
a

+ log

∣∣∣∣∣

√
u2 + a2

a
+
u

a

∣∣∣∣∣

)
+ C,

=
1

2

(
u
√
u2 + a2 + a2 log

∣∣∣
√
u2 + a2 + u

∣∣∣− a2 log a
)

+ C,

on making use of an integral computed previously on 137.

• For 0 < x ≤ 3, the substitution x = 3 sin θ (dx = 3 cos θ) and the fact that√
9− x2 = 3 cos θ can be used to evaluate the integral

∫ √
9− x2

x2
dx =

∫
3 cos θ

9 sin2 θ
3 cos θ dθ =

∫
1− sin2 θ

sin2 θ
dθ =

∫ (
1

sin2 θ
− 1

)
dθ

= − cot θ − θ + C = −
√

9− x2

x
− sin−1 x

3
+ C.

In the last line one simplifies cot θ = cot(sin−1(x/3)) to
√

9− x2/x with the aid of
the triangle below.

3x

√
9− x2

θ

Problem 7.5: Find the antiderivative

∫ √
9− x2

x2
dx

for −3 ≤ x < 0.
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Problem 7.6: For a > 0, show that the substitution x = a sec θ can be used to find

∫
dx√
x2 − a2

.

∫
dx√
x2 − a2

=

∫
a sec θ tan θ√
a2 sec2 θ − a2

dθ =

∫
sec θ tan θ√
sec2 θ − 1

dθ =

∫
sec θ tan θ

tan θ
dθ =

∫
sec θ dθ

= log(sec θ + tan θ) + C = log

(
x

a
+

√
x2

a2
− 1

)
+ C.

Remark: Alternatively, the hyperbolic substitution x = a cosh t, with dx = a sinh t dt,
and the fact that x2 − a2 = a2 sinh2 t can be used for a > 0 to evaluate

∫
dx√
x2 − a2

=

∫
1

a sinh t
a sinh t dt =

∫
dt = t+ C = cosh−1 x

a
+ C.

Show that the answer agrees with the result found in Prob. 7.6.

• An integral of the form ∫
x3

(4x2 + 9)
3
2

dx

can first be put in the form of the expressions listed in Table 7.2 with the substi-
tution u = 2x, so that 4x2 + 9 = u2 + 9. One could then apply the substitution
u = 3 sinh t. In fact, both substitutions can be done in a single step by defining
x = 3

2
sinh t:

∫ (( 63
2

)3
sinh3 t

633 cosh3 t

)
3

2
cosh t dt =

3

16

∫
sinh3 t

cosh2 t
dt =

3

16

∫
(cosh2 t− 1) sinh t

cosh2 t
dt

=
3

16

∫ (
sinh t− sinh t

cosh2 t

)
dt =

3

16

(
cosh t+

1

cosh t

)
+ C =

1

16

(√
4x2 + 9 +

9√
4x2 + 9

)
+ C,

on noting that

cosh t =
√

1 + sinh2 t =

√
1 +

4x2

9
=

√
4x2 + 9

3
.

The integral could have also been evaluated with the substitution x = 3
2

tan θ.
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Q. How about integrals of the form
∫ √

x2 + x+ 1 dx?

A. We can first simplify the integrand somewhat by completing the square and mak-
ing the substitution u = x+ 1/2:

∫ √(
x+

1

2

)2

− 1

4
+ 1 dx =

∫ √
u2 +

3

4
du.

The resulting integral is of the form
∫ √

u2 + a2 du, which we computed in
section 7.3.

• The integral
∫

x√
3− 2x− x2

dx =

∫
x√

−(x2 + 2x− 3)
dx

=

∫
x√

−((x+ 1)2 − 1− 3)
dx

=

∫
x√

4− (x+ 1)2
dx

may be evaluated with the substitution u = x+1, followed by u = 2 sin θ, to obtain
∫

2 sin θ − 1√
4− 4 sin2 θ

2 cos θ dθ =

∫
(2 sin θ − 1) dθ = −2 cos θ − θ + C

= −
√

4− (x+ 1)2 − sin−1

(
x+ 1

2

)
+ C.

Problem 7.7: Evaluate ∫
u3 + 3u2 + 3u+ 1

(4u2 + 8u+ 13)3/2
du.

7.4 Partial Fraction Decomposition

Recall that a Rational functions is a function of the form f(x) =
P (x)

Q(x)
, where P (x)

and Q(x) are polynomials. Consider the following techniques for integrating rational
functions.

• Find ∫
x+ 1

x
dx =

∫ (
1 +

1

x

)
dx = x+ log |x|+ C.
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• Similarly,

∫
x

x+ 1
dx =

∫ (
x+ 1

x+ 1
− 1

x+ 1

)
dx = x− log |x+ 1|+ C.

Q. Can these techniques be generalized for integrating any rational function?

A. Yes, using the general method of partial fraction decomposition:

Suppose we wish to evaluate the integral

∫
P (x)

Q(x)
dx,

where P and Q are polynomials functions of x.

Step 1: If the degree of P ≥ degree of Q, we rewrite the integrand in proper form:

P (x)

Q(x)
= S(x) +

R(x)

Q(x)
,

such that the degree of R is less than the degree of Q.

• Suppose that P (x) = x3 +x and Q(x) = x−1. We see that degP = 3 ≥ degQ = 1,
so we put P (x)/Q(x) in proper form, using long division:

P (x)

Q(x)
=
x3 + x

x− 1
= x2 + x+ 2︸ ︷︷ ︸

S(x)

+
2

x− 1︸ ︷︷ ︸
R(x)
Q(x)

.

We can now go ahead and integrate S(x) and, in this case, also R(x)/Q(x) without
doing any further work:

∫
x3 + x

x− 1
dx =

∫ (
x2 + x+ 2 +

2

x− 1

)
dx

=
x3

3
+
x2

2
+ 2x+ 2 log |x− 1|+ C.

Remark: At this stage, we will always be able to find an antiderivative for S(x)
since it is just a polynomial. The following steps may be needed to integrate the
remaining term R(x)/Q(x).
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Step 2: Factor Q(x) as far as possible, into products of linear factors and irreducible
quadratic factors.

• Q(x) = x4 − 16 = (x2 − 4)(x2 + 4) = (x− 2)(x+ 2)(x2 + 4).

• Q(x) = (x+ 1)(x+ 2)2(x2 + x+ 3)(x2 + x+ 4)2.

Step 3: Suppose Q(x) has the form

Q(x) = A(x− a)n . . . (x2 + γx+ λ)m . . . ,

where the discriminant γ2−4λ < 0, so that x2 +γx+λ cannot be factorized into
linear factors with real coefficients. It is then possible to express R(x)/Q(x),
where degR < degQ in the form

R(x)

Q(x)
=

[
A1

(x− a)
+

A2

(x− a)2
+ . . .+

An
(x− a)n

]
+ . . .

+

[
Γ1x+ Λ1

x2 + γx+ λ
+ . . .+

Γmx+ Λm

(x2 + γx+ λ)m

]
+ . . . .

Step 4: Solve for the coefficients in the numerator by equating like powers of x.

• We can solve
1

x(x+ 1)
=
A

x
+

B

x+ 1
=
A(x+ 1) +Bx

x(x+ 1)

for the coefficients A and B by equating like polynomial coefficients in the numer-
ator. On setting

1 = A(x+ 1) +Bx = (A+B)x+ A,

we see that the coefficients of x0 and x1 are

x0 : 1 = A,
x1 : 0 = A+B.

The unique solution to these equations is A = 1 and B = −1.

Step 5: Integrate each term separately.
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• Find ∫
x

(x+ a)(x+ b)
dx.

Try to write

x

(x+ a)(x+ b)
=

A

x+ a
+

B

x+ b
=
A(x+ b) +B(x+ a)

(x+ a)(x+ b)
.

Thus
x1 : 1 = A+B ⇒ B = 1− A,
x0 : 0 = Ab+Ba.

Solving for A and B, we find for a 6= b that

0 = Ab+ (1− A)a,

⇒ A =
a

a− b,

B = 1− a

a− b =
−b
a− b.

∴ If a 6= b then
∫

x

(x+ a)(x+ b)
dx =

a

a− b

∫
1

x+ a
dx− b

a− b

∫
1

x+ b
dx

=
a

a− b log |x+ a| − b

a− b log |x+ b|+ C.

Problem: But what if b = a? Then

1 = A+B

0 = Aa+Ba = (A+B)a,

which is consistent only if a = b = 0.

Remedy: Write
x

(x+ a)2
=

A

x+ a
+

B

(x+ a)2
=
A(x+ a) +B

(x+ a)2
.

Then
x1 : 1 = A
x0 : 0 = Aa+B ⇒ B = −a.

∴
∫

x

(x+ a)2
dx =

∫ [
1

x+ a
− a

(x+ a)2

]
dx

= log |x+ a|+ a

x+ a
+ C.
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• Evaluate ∫
x2

(x+ 1)2
dx.

Since deg x2 = 2 ≥ deg(x+ 1)2 = 2, we need to rewrite

x2

(x+ 1)2
= 1− (2x+ 1)

(x+ 1)2
.

Express
2x+ 1

(x+ 1)2
=

A

x+ 1
+

B

(x+ 1)2
;

this requires that 2x+ 1 = A(x+ 1) +B. On equating like powers of x, we find

x1 : 2 = A,
x0 : 1 = A+B ⇒ B = −1,

so that
∫

x2

(x+ 1)2
dx =

∫ (
1−

[
A

x+ 1
+

B

(x+ 1)2

])
dx

=

∫ (
1−

[
2

x+ 1
+

−1

(x+ 1)2

])
dx

= x− 2 log |x+ 1| − 1

x+ 1
+ C.

Remark: Show that the substitution u = x + 1 makes the previous problem much
easier!

• To find ∫
1− x+ 2x2 − x3

x(x2 + 1)2
dx

we write
1− x+ 2x2 − x3

x(x2 + 1)2
=
A

x
+
Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
.

This requires that

−x3 + 2x2 − x+ 1 = A(x2 + 1)2 + (Bx+ C)x(x2 + 1) + (Dx+ E)x

= A(x4 + 2x2 + 1) +B(x4 + x2) + C(x3 + x) +Dx2 + Ex

Thus
x4 : 0 = A+B,
x3 : −1 = C,
x2 : 2 = 2A+B +D,
x1 : −1 = C + E ⇒ E = 0,
x0 : 1 = A⇒ B = −1 and D = 1,
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so that

∫
1− x+ 2x2 − x3

x(x2 + 1)2
dx =

∫ (
1

x
− x+ 1

x2 + 1
+

x

(x2 + 1)2

)
dx

=

∫ (
1

x
− x

x2 + 1
− 1

x2 + 1
+

x

(x2 + 1)2

)
dx

= log |x| − 1

2
log(x2 + 1)− tan−1 x− 1

2(x2 + 1)
+K.

• Find ∫
1

x3 − 1
dx.

Step 1: We already have degP < degQ.

Step 2: Noting that Q(x) = x3 − 1 has a root at x = 1, we factor

Q(x) = x3 − 1 = (x− 1)(x2 + x+ 1).

The quadratic factor x2 + x+ 1 cannot be factored into linear factors with real
coefficients since it has no real roots (the discriminant 12− 4 = −3 is negative).

Step 3: Write
1

x3 − 1
=

A

x− 1
+

Bx+ C

x2 + x+ 1
.

Step 4: Then

1 = A(x2 + x+ 1) + (Bx+ C)(x− 1)

= Ax2 + Ax+ A+Bx2 −Bx+ Cx− C.

We find
x2 : 0 = A+B ⇒ B = −A,
x1 : 0 = A−B + C,
x0 : 1 = A− C ⇒ C = A− 1.

The x1 equation then yields 0 = A+A+(A−1), which implies A = 1
3
, B = −1

3
,

and C = −2
3
, so that

∫
1

x3 − 1
dx =

∫ 1
3

x− 1
dx+

∫ −1
3
x− 2

3

x2 + x+ 1
dx.
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Step 5: On completing the square and letting u = x+ 1
2
, we evaluate

∫
x+ 2

x2 + x+ 1
dx =

∫
x+ 2

(x+ 1
2
)2 − 1

4
+ 1

dx

=

∫
u+ 3

2

u2 + 3
4

du

=

∫
u

u2 + 3
4

du+
3

2

∫
1

u2 + 3
4

du

=
1

2
log

∣∣∣∣u2 +
3

4

∣∣∣∣+
3

2

1√
3
4

arctan


 u√

3
4




=
1

2
log
∣∣x2 + x+ 1

∣∣+
√

3 arctan

(
2x+ 1√

3

)
+K.

Thus
∫

1

x3 − 1
dx =

1

3
log |x− 1| − 1

6
log
∣∣x2 + x+ 1

∣∣− 1√
3

arctan

(
2x+ 1√

3

)
+K.

Problem 7.8: Evaluate

∫
1

1− u2
du.

∫
1

(1 + u)(1− u)
du =

∫ ( 1
2

1 + u
+

1
2

1− u

)
du =

1

2
log

∣∣∣∣
1 + u

1− u

∣∣∣∣+ C

Note: in the complex plane, the antiderivative may also be written as tanh−1 u+C. However,

in R, the latter solution does not exist outside of (−1, 1).

Problem 7.9: Compute ∫
1

(u2 + 1)(u+ 1)
du.

Express
1

(u2 + 1)(u+ 1)
=

A

u+ 1
+
Bu+ C

u2 + 1
.

By equating coefficients of like powers in 1 = A(u2 + 1) +B(u2 + u) +C(u+ 1), we obtain
the system of equations

u0 : 1 = A+ C,
u1 : 0 = B + C,
u2 : 0 = A+B,
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which has the unique solution A = C = 1/2, B = −1/2. Hence the integral becomes

1

2

∫ (
1

u+ 1
− u

u2 + 1
+

1

u2 + 1

)
du =

1

2
log |u+ 1| − 1

4
log(u2 + 1) +

1

2
arctanu+K,

where K is a constant.

Problem 7.10: Find ∫
x3 + 4x2 + 7x+ 5

(x+ 1)2(x+ 2)
dx.

First, note that (x+ 1)2(x+ 2) = x3 + 4x2 + 5x+ 2. The integral thus becomes
∫

1 +
2x+ 3

(x+ 1)2(x+ 2)
du

On expressing
2x+ 3

(x+ 1)2(x+ 2)
=

A

x+ 1
+

B

(x+ 1)2
+

C

x+ 2

and equating coefficients of like powers in 2x+ 3 = A(x+ 1)(x+ 2) +B(x+ 2) +C(x+ 1)2,
we obtain the system of equations

x0 : 3 = 2A+ 2B + C,
x1 : 2 = 3A+B + 2C,
x2 : 0 = A+ C,

which has the unique solution A = B = 1, C = −1.
The integral thus evaluates to

x+ log

∣∣∣∣
x+ 1

x+ 2

∣∣∣∣−
1

x+ 1
+K,

where K is an arbitrary constant.

Problem 7.11: Here is a more challenging example. Find
∫

1

x2(1 + x2)2
dx.

∫
1

x2(1 + x2)2
dx =

∫
(1 + x2)− x2

x2(1 + x2)2
dx =

∫ [
1

x2(1 + x2)
− 1

(1 + x2)2

]
dx

=

∫ [
(1 + x2)− x2

x2(1 + x2)
− 1

(1 + x2)2

]
dx

=

∫ [
1

x2
− 1

1 + x2
− 1

(1 + x2)2

]
dx = −1

x
− arctanx− J2,1(x),

where

J2,a(x) =

∫
dx

(x2 + a2)2
.
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Recall that the indefinite integral

Jn,a(x) =

∫
dx

(x2 + a2)n

can be evaluated using the reduction formula

Jn+1,a(x) =
1

2na2

x

(x2 + a2)n
+

2n− 1

2na2
Jn,a(x).

Setting n = 1 and a = 1 yields

J2,1(x) =
1

2

(
x

x2 + 1

)
+

1

2
J1,1(x),

where J1,1(x) = arctanx+ C. Hence,
∫

1

x2(1 + x2)2
dx = −1

x
− arctanx− 1

2

(
x

x2 + 1

)
− 1

2
arctanx+ C

= −1

x
− 3

2
arctanx− 1

2

(
x

x2 + 1

)
+ C.

7.5 Integration of Certain Irrational Expressions

Q. How do we find integrals like ∫ √
x+ 4

x
dx?

A. Substitute t =
√
x+ 4. Then t2 = x+ 4⇒ 2t dt = dx and

∫ √
x+ 4

x
dx =

∫ (
t

t2 − 4

)
2t dt

= 2

∫
t2

t2 − 4
dt = 2

∫ [
t2 − 4

t2 − 4
+

4

t2 − 4

]
dt

= 2t+ 8

∫
1

t2 − 4
dt

= 2t+ 8

∫ [
A

t− 2
+

B

t+ 2

]
dt





1 = A(t+ 2) +B(t− 2),
0 = A+B ⇒ B = −A,
1 = 2A− 2B = 4A⇒ A = 1

4
.

= 2t+ 8

∫ [ 1
4

t− 2
−

1
4

t+ 2

]
dt

= 2t+ 2 log

∣∣∣∣
t− 2

t+ 2

∣∣∣∣+ C.

Thus ∫ √
x+ 4

x
dx = 2

√
x+ 4 + 2 log

∣∣∣∣
√
x+ 4− 2√
x+ 4 + 2

∣∣∣∣+ C.
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In general, one can reduce any integral of the form

∫
R

(
x,

m

√
ax+ b

cx+ d

)
dx,

where R is a birational function

R(x, y) =

∑

ij

aijx
iyj

∑

kl

bk`x
ky`

,

of its arguments, to the integral of a rational function by using the substitution

t =
m

√
ax+ b

cx+ d
.

• We can evaluate ∫
1

x−
√
x+ 2

dx

with the substitution t =
√
x+ 2⇒ t2 = x+ 2⇒ 2t dt = dx,

∫
1

x−
√
x+ 2

dx =

∫ (
1

t2 − 2− t

)
2t dt = 2

∫
t

t2 − t− 2
dt

= 2

∫
t

(t− 2)(t+ 1)
dt,

which can then be decomposed into partial fractions.

Remark: When more than one radical appears, it is often helpful to take m to be
the least common multiple of the radical indices.

Problem 7.12: Find ∫
1

2
√
x− 3
√
x
dx

using the substitution t = x
1
2·3 = x

1
6 .

Problem 7.13: Find ∫
1

6
√
x+ 4
√
x
dx.

using the substitution t = x
1
12 .
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7.6 Strategy for Integration

1. Simplify the integrand.

2. Look for an obvious substitution: see if you can write the integral in the form
∫
f(g(x))g′(x) dx.

If so, try the substitution u = g(x).

3. Classify the integrand.

(a) Trigonometric functions: exploit trigonometric identities to find integrals
of the form 




∫
sinn x cosm x dx∫
tann x secm x dx∫
cotn x cscm x dx



 .

As a last resort, use the universal substitution t = tan x
2
.

(b) Rational functions: use the Method of Partial Fractions.

(c) Polynomials (including 1) × transcendental functions (e.g. Trigonometric,
exponential, logarithmic, and inverse functions): use integration by parts.

(d) Radicals:

(i)
√
±x2 ± a2 : use a trigonometric substitution

(ii) n

√
ax+b
cx+d

: t = n

√
ax+b
cx+d

For n
√
g(x) : t = n

√
g(x) sometimes helps.

4. Try again (maybe use several methods combined).

Problem 7.14: Find ∫
x√

1 + x2/3
dx.

Substituting first y = x2/3 and then t = y + 1 we find
∫

x√
1 + x2/3

dx =

∫
y3/2

√
1 + y

3

2
y1/2 dy =

3

2

∫
y2

√
1 + y

dy =
3

2

∫
(t− 1)2

√
t

dt

=
3

2

∫
t3/2 − 2t1/2 + t−1/2 dt =

3

2

(
2

5
t5/2 − 4

3
t3/2 + 2t1/2

)
+ C

=
3

5

(
1 + x2/3

)5/2
− 2
(

1 + x2/3
)3/2

+ 3
(

1 + x2/3
)1/2

+ C

=
1

5

(
1 + x2/3

)1/2
[
3
(

1 + x2/3
)2
− 10

(
1 + x2/3

)
+ 15

]
+ C

=
1

5

(
1 + x2/3

)1/2(
8− 4x2/3 + 3x4/3

)
+ C.
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Alternatively, substituting y = x1/3, then sinh t = y, and finally u = cosh t =
√

1 + y2 =√
1 + x2/3 (which could be used as a more direct substitution), we find

∫
x√

1 + x2/3
dx =

∫
y3

√
1 + y2

3y2 dy = 3

∫
y5

√
1 + y2

dy = 3

∫
sinh5 t

cosh t
cosh t dt

= 3

∫
(u2 − 1)2 du = 3

∫
(u4 − 2u2 + 1) du

= 3

(
u5

5
− 2

u3

3
+ u

)
+ C

=
u

5

(
3u4 − 10u2 + 15

)
+ C

=
1

5

(
1 + x2/3

)1/2(
8− 4x2/3 + 3x4/3

)
+ C.

7.7 Improper Integrals

Until now, we have only defined the Riemann integral for bounded functions on closed
intervals. Let us now discuss situations where these restrictions may be somewhat
relaxed.

First, we extend the notion of integration to certain bounded functions on infinite
intervals.

Definition: Let f be a function that is integrable on every closed subinterval [a, T ]
of [a,∞). We define the improper integral

∫ ∞

a

f(x) dx
.
= lim

T→∞

∫ T

a

f(x) dx.

If this limit exists and is finite we say that
∫∞
a
f(x) dx converges; otherwise we say

that
∫∞
a
f(x) dx diverges.

y

x

f(x) =
1

x2

1 T
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• For which values of p does

∫ ∞

1

x−p dx exist? To answer this question, we first

compute the definite integral

∫ T

1

dx

xp
=





[
x1−p

1− p

]T

1

if p 6= 1,

[log |x|]T1 if p = 1.

But lim
T→∞

T 1−p exists only when p ≥ 1. Also, lim
T→∞

log T =∞. Thus

∫ ∞

1

dx

xp
= lim

T→∞

∫ T

1

dx

xp
=





1

p− 1
if p > 1,

∞ if p ≤ 1.

Definition: Let f be a function that is integrable on every closed subinterval [T, a]
of (−∞, a]. Define ∫ a

−∞
f(x) dx

.
= lim

T→−∞

∫ a

T

f(x) dx.

Q. Sometimes an explicit form for the antiderivative of an integrable function f is
unavailable. Are there other ways to determine whether the improper integral∫∞
a
f(x) dx converges?

A. Yes. The following theorem provides a test for improper integrals.

Theorem 7.2 (Comparison Test): Suppose 0 ≤ f(x) ≤ g(x) and
∫ T
a
f and

∫ T
a
g exist

for all T ≥ a. Then

(i)
∫∞
a
g converges ⇒

∫∞
a
f converges;

(ii)
∫∞
a
f diverges ⇒

∫∞
a
g diverges.

Proof: Note that 0 ≤
∫ T
a
f ≤

∫ T
a
g and both integrals are monotonic increasing

functions of T . Since
∫∞
a
g converges,

∫ T
a
g must be bounded on [a,∞) and hence so

is
∫ T
a
f . This means that

∫∞
a
f converges.

• To decide on whether ∫ ∞

1

1

1 + x3
dx

converges, we could first find
∫ T

1
dx/(1+x3) and then check that the limit as T →∞

exists. However, it is much easier to use Theorem 7.2 (i), noting that

0 ≤ 1

1 + x3
≤ 1

x2
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for all x ≥ 1. That is,
∫ ∞

1

1

x2
dx converges ⇒

∫ ∞

1

1

1 + x3
dx converges.

• We may use the previous result to establish that
∫ ∞

0

1

1 + x3
dx

exists, even though 1/x2 is not bounded (and hence
∫∞

0
x−2 dx does not exist).

This is seen by writing
∫ ∞

0

1

1 + x3
dx = lim

T→∞

∫ T

0

1

1 + x3
dx = lim

T→∞

(∫ 1

0

1

1 + x3
dx+

∫ T

1

1

1 + x3
dx

)

=

∫ 1

0

1

1 + x3
dx+

∫ ∞

1

1

1 + x3
dx.

Remark: When f is an integrable function,
∫ ∞

a

f(x) dx converges ⇒
∫ ∞

b

f(x) dx converges

for any real a and b.

• To decide on whether ∫ ∞

1

e−x
2

dx

converges we note on [1,∞) that x ≤ x2 so that −x2 ≤ −x and hence

0 ≤ e−x
2 ≤ e−x.

But ∫ ∞

1

e−x dx = lim
T→∞

[
−e−x

]T
1

= lim
T→∞

(
e−1 − e−T

)
=

1

e
.

Thus ∫ ∞

1

e−x dx converges ⇒
∫ ∞

1

e−x
2

dx converges.

• We may use the previous result to establish that
∫ ∞

0

e−x
2

dx

converges. This is seen by writing
∫ ∞

0

e−x
2

dx = lim
T→∞

∫ T

0

e−x
2

dx = lim
T→∞

(∫ 1

0

e−x
2

dx+

∫ T

1

e−x
2

dx

)

=

∫ 1

0

e−x
2

dx+

∫ ∞

1

e−x
2

dx.
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Problem 7.15: Use the fact that

∫ ∞

1

1

ex
dx converges to show that

∫ ∞

1

1

x+ ex
dx

converges.

Remark: Integration may thus be extended to bounded functions of x that converge
to zero sufficiently fast as x → ∞. We now see that it is even possible to extend
our notion of improper Riemann integration to certain unbounded functions.

Definition: If f is integrable on [a, t] for all t ∈ (a, b) we define

∫ b−

a

f = lim
t→b−

∫ t

a

f.

We say that
∫ b−
a
f converges if the limit exists; otherwise it diverges. Similarly, we

define ∫ b

a+
f = lim

t→a+

∫ b

t

f

if f is integrable on [t, b] for all t ∈ (a, b).

y

x

f(x) =
1√
x

δ 1

• Let

f(x) =





1√
x

if 0 < x ≤ 1,

0 if x = 0.

According to the strict definition of the Riemann integral,
∫ 1

0
f does not exist since

f is not bounded. However, the improper integral
∫ 1

0+
f does exist:

∫ 1

0+
f = lim

t→0+

∫ 1

t

f = lim
t→0+

∫ 1

t

1√
x
dx = lim

t→0+

[
2x

1
2

]1

t
= lim

t→0+

(
2− 2t

1
2

)
= 2.
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Remark: If f is Riemann integrable on [a, b], then
∫ b−

a

f =

∫ b

a

f =

∫ b

a+
f.

• For which values of p does

∫ ∞

0+
x−p dx exist? Consider

∫ 1

0+

dx

xp
= lim

t→0+





[
x1−p

1− p

]1

t

if p 6= 1,

[log |x|]1t if p = 1.

But lim
t→0+

t1−p exists only when p ≤ 1. Also, lim
t→0+

log t = −∞. Thus

∫ ∞

0+

dx

xp
=





1

1− p if p < 1,

∞ if p ≥ 1.

• For which values of p is

∫ ∞

0+

1

xp
dx convergent?

Since ∫ 1

0+

1

xp
dx diverges for p ≥ 1,

∫ ∞

1

1

xp
dx diverges for p ≤ 1,

we see that ∫ ∞

0+

1

xp
dx diverges for all p.

Problem 7.16: Use the fact that

∫ 1

0+

1

x
dx diverges to show that

∫ 1

0+

1

x sin2 x
dx

diverges.

Problem 7.17: Use the fact that

∫ 1

0+

1√
x
dx converges to show that

∫ 1

0+

e−x
2

√
x
dx

converges.

Definition: Let f be a function that is integrable on every finite interval [c, d] of R.
If the improper integrals

∫ a

−∞
f(x) dx and

∫ ∞

a

f(x) dx

both converge for some a ∈ R, then we say that the improper interval
∫ ∞

−∞
f(x) dx

.
=

∫ a

−∞
f(x) dx+

∫ ∞

a

f(x) dx

converges.
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Problem 7.18: Show that if
∫∞
−∞ f(x) dx exists for one a ∈ R, it will exist for all

a ∈ R and its value will not depend on the choice of a.

Remark: We cannot simplify the previous definition to

∫ ∞

−∞
f(x) dx = lim

T→∞

∫ T

−T
f(x) dx.

For example, while

lim
T→∞

∫ T

−T
x dx = lim

T→∞
0 = 0,

the improper integrals

∫ a

−∞
x dx and

∫ ∞

a

x dx

do not converge for any a ∈ R. That is,
∫∞
−∞ x diverges.

Remark: However, if
∫∞
−∞ f exists then

lim
T→∞

∫ T

−T
f =

∫ ∞

−∞
f

since, by the properties of limits,

∫ ∞

−∞
f = lim

T→∞

∫ a

−T
f + lim

T→∞

∫ T

a

f = lim
T→∞

[∫ a

−T
f +

∫ T

a

f

]
= lim

T→∞

∫ T

−T
f.

• We thus see that

∫ ∞

−∞
e−x

2

dx =

∫ 0

−∞
e−x

2

dx+

∫ ∞

0

e−x
2

dx = 2

∫ ∞

0

e−x
2

dx

converges.

Problem 7.19: Evaluate

∫ ∞

−∞

1

1 + x2
dx.

Problem 7.20: Evaluate

∫ 0

−∞
xex dx.
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Convergent Divergent

∫ ∞

1

1

xp
dx (p > 1)

∫ ∞

1

1

xp
dx (p ≤ 1)

∫ ∞

0

e−αx dx (α > 0)

∫ ∞

0

e−αx dx (α ≤ 0)

∫ 1

0+

1

xp
dx (p < 1)

∫ 1

0+

1

xp
dx (p ≥ 1)

∫ 1

0+
log x dx

∫ π/2−

0

tanx dx

Table 7.3: Useful integrals for Comparison Test.

Definition: Let f be defined and continuous everywhere on an interval [a, b] except
possibly at a point c ∈ [a, b]. If f is unbounded on [a, b] we know that the Riemann
integral of f on [a, b] does not exist. Nevertheless, it is sometimes convenient to
define the improper integral

∫ b

a

f
.
= lim

t→c−

∫ t

a

f + lim
t→c+

∫ b

t

f.

If both limits exist, we say that the improper Riemann integral
∫ b
a
f converges.

Remark: Before blindly applying the Fundamental Theorem of Calculus to an in-
tegral, it is important to check first whether the integrand is bounded. If the
integrand is unbounded at some point within the interval of integration, one must
split the integral up into two improper integrals and check that both pieces con-
vergence. For example, the integral

∫ 3

0

1

x− 1
dx

does not evaluate to [log |x− 1|]30 = log 2 − log 1 = log 2 because the improper

integrals
∫ 1−

0
1

x−1
dx and

∫ 3

1+
1

x−1
dx do not converge.

Problem 7.21: Do the following improper integrals converge or diverge? Evaluate
those that converge.

(a) ∫ 2

−2

1

(x− 1)2/3
dx.
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(b) ∫ 2

−2

1

(x− 1)4/3
dx.

Problem 7.22: Show that
∫∞

0
sinx dx diverges.

Problem 7.23: Use the Comparison Test to show that

∫ ∞

0+

2 + sin x√
x

dx

diverges.



Chapter 8

Differential Equations

Definition: A differential equation is an equation that contains an unknown function
and one or more of its derivatives.

8.1 Modeling with Differential Equations

• A simple model for the growth of a population of y individuals is the first-order
linear differential equation

y′ = ay.

Here y = y(t) is a function of time t, a is the growth rate, and y′ denotes the
derivative of y with respect to t. One can solve this equation as follows. On
rearranging dy

dt
= ay and integrating both sides we find

∫
dy

y
=

∫
a dt.

On noting that the population y is always non-negative, we see that

log y = at+ C.

Thus

y = eat+C = Aeat,

represents a family of solutions to the differential equation for any constant A = eC .
The particular solution with initial condition y(0) = y0 corresponds to the choice
A = y0.

• A better model that takes into account finite resources is the logistic equation

y′ = ay
(

1− y

M

)
.

160
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The additional term causes the population to decrease if it ever exceeds the carrying
capacity M . Again, we can solve this differential equation by writing

∫
dy

y(1− 1
M
y)

=

∫
a dt

and integrating the left-hand-side using the method of partial fractions.

• Higher-order differential equations arise frequently in science and engineering. One
example is the equation for the position x of a mass m attached to a spring with
spring constant k:

m
d2x

dt2
= −kx.

Definition: An initial-value problem is an nth-order differential equation together
with given initial conditions for y, y′, . . . , y(n−1).

Remark: There is unfortunately no systematic technique that enables us to solve a
general first-order nonlinear differential equation of the form

dy

dt
= f(t, y)

or a higher-order differential equation of the form

dny

dtn
= f(t, y, y′, . . . , y(n−1)).

Remark: Differential equations may also be formulated using derivatives with respect
to space instead of time.

8.2 Direction Fields and Euler’s Method

When an analytic solution to a differential equation is not available, it is still often
possible to find use graphical or numerical techniques to understand the qualitative
behaviour of the solution.

Suppose we wish to sketch the solution to the initial-value problem

dy

dx
= x+ y y(0) = 1.

This states that the slope of the solution at a point (x, y) on the curve is given by the
sum of the coordinates x + y. One point on the solution curve is (0, 1) and it must
have slope 1 there. Since y is differentiable, with a continuous derivative, the slope of
the curve will be approximately 1 near (0, 1) as well. That is, near (0, 1) the solution
looks like a line segment with slope 1.
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Definition: The direction field for a first-order differential equation is a sketch show-
ing line segments drawn with the slope of the corresponding solution curve at many
points (x, y).

Problem 8.1: Plot the direction field for the differential equation

dy

dx
= 15− 3y.

Remark: The solution of a first-order differential equation through a particular initial
condition will locally follow the slopes indicated in the direction field.
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Remark: The direction field forms the basis of Euler’s Method for obtaining an
approximate solution (xn, yn) to a first-order differential equation dy/dx = f(x, y):

yn = yn−1 + hf(xn−1, yn−1),

where h is the step size and xn = x0 + nh.

8.3 Separable Differential Equations

A separable equation is a first-order differential equation where the expression for dy/dx
can be factored as a product of a functions of x and y:

dy

dx
= f(x)g(y).

Separable equations are easily solved by isolating each variable to a separate side
of the equation and integrating:

∫
dy

g(y)
=

∫
f(x) dx.

• To solve the separable initial value problem

dy

dx
=
x2

y
, y(0) = 1,

we integrate both sides of the re-arranged equation:

∫
y dy =

∫
x2 dx.

Thus
y2

2
=
x3

3
+ C,

so that

y(x) =

√
2

3
x3 +K,

for some constant K = 2C. Here we take the positive square root since y is initially

positive and hence dy/dx ≥ 0 for all x ≥ 0. On setting 1 = y(0) =
√

2
3
x3 +K we

see that K = 1. Thus, the solution to the given initial value problem is y(x) =√
2
3
x3 + 1.
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8.4 Linear Differential Equations

A first-order linear differential equation on an interval I can be expressed in the form

dy

dx
+ P (x)y = Q(x), (8.1)

where the given functions P and Q are continuous on I.

• The differential equation
xy′ + y = 2x

is linear on (0,∞) since it can be expressed as

y′ +
1

x
y = 2.

Although it is not separable, we can still solve it by rewriting it as

d

dx
(xy) = 2x,

so that
xy = x2 + C.

The solution is then y = x+ C/x for some arbitrary constant C.

• The general first-order linear differential equation Eq. (8.1) may be solved in a
similar manner. We need to express it in the form

I

(
dy

dx
+ Py

)
= IQ,

where the integrating factor I(x) is chosen so that

I

(
dy

dx
+ Py

)
=

d

dx
(Iy) =

dI

dx
y + I

dy

dx
.

This requires that

IP =
dI

dx
.

Although the original differential equation is not in general separable, the equation
for I is: ∫

dI

I
=

∫
P dx,

from which we see that

log|I|+C =

∫
P (x) dx,



8.4. LINEAR DIFFERENTIAL EQUATIONS 165

so that I = Ae
∫
P (x) dx, where A = e−C is an arbitary real constant. For simplicity

we choose A = 1. The integrating factor I allows the original equation to be
expressed as

d

dx
(Iy) = IQ,

which has the solution

y =
1

I

∫
IQ.

Problem 8.2: Solve
dy

dx
+ 3x2y = 6x2.

Problem 8.3: Solve

x2 dy

dx
+ xy = 1.

• In the special case where P and Q in Eq. (8.1) are constant, the integrating factor

becomes e
∫
P dx = ePx. On multiplying each side of

dy

dx
+ Py = Q by ePx, we find

d

dx

(
ePxy

)
= ePx

dy

dx
+ ePxPy = QePx.

Thus

ePxy = Q

∫
ePx dx =

Q

P
ePx + C,

so that

y =
Q

P
+ Ce−Px.

Given the initial condition y(0) = 0 we then find that

0 =
Q

P
+ C,

so that C = −Q/P . The particular solution of the differential equation correspond-
ing to this initial condition is then

y(x) =
Q

P

(
1− e−Px

)
.

It is useful to check that this solution exhibits behaviours that we can see from
the initial equation. For example, for P > 0 we see that as lim

x→∞
y(x) = Q/P . That

is, y(x) has a horizontal asymptote of Q/P ; with limiting slope lim
x→∞

dy/dx = 0.
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This is consistent with the steady-state solution y = Q/P deduced from the original
differential equation

dy

dx
+ Py = Q.

For small x one can also check, on expanding e−Px = 1− Px + 1
2
(−Px)2 + . . . ≈

1− Px, that the behaviour of the solution is

y(x) =
Q

P

(
1− e−Px

)
≈ Q

P
(1− (1− Px)) = Qx.

That, the solution for small x is approximately linear, with slope Q. To see that
this is consistent with the differential equation, first note since y(0) = 0 and y is
continuous that y is small when x is small, so that the term Py in the differential
equation may be neglected:

dy

dx
≈ Q.
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Infinite Sequences and Series

9.1 Infinite Series

Definition: Consider the infinite sequence {Sn}∞n=1 with elements Sn =
∑n

k=1 ak. If
lim
n→∞

Sn exists and equals a real number S, we say that the infinite series

∞∑

k=1

ak

converges, with sum S. Otherwise, we say
∑∞

k=1 ak is divergent.

Definition: The finite sum Sn =
∑n

k=1 ak is a partial sum of the series
∑∞

k=1 ak.

Problem 9.1: Prove that the geometric series
∑∞

k=0 r
k converges if and only if |r| <

1, with sum 1/(1− r). Hint: Show that

Sn =
n∑

k=0

rk =
1− rn+1

1− r
by considering the telescoping sum rSn − Sn.

• The sequence {Sn}∞n=0 of partial sums

Sn =
n∑

k=0

(
1

2

)k

= 1 +
1

2
+

1

4
+ . . .+

1

2n

=
1− 1

2n+1

1− 1
2

= 2

(
1− 1

2n+1

)

= 2− 1

2n

167
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is thus seen to converge to the limit 2 as n→∞. We write

• Consider

0.4 = 0.444 . . . = lim
n→∞

n∑

k=1

4

(
1

10k

)
=

(
4

10

)
lim
n→∞

n∑

k=0

(
1

10

)k
=

(
4

10

)
1

1− 1
10

=
4

9
.

Problem 9.2: Find all x such that
∞∑

k=1

xk

2k
converges and evaluate the sum.

This is just a geometric series with ratio x/2, so we expect convergence for |x/2| < 1 or
in other words for x ∈ (−2, 2). For such x, the series converges to

∞∑

k=1

(x
2

)k
=
∞∑

k=0

(x
2

)k+1
=
(x

2

) ∞∑

k=0

(x
2

)k
=

x/2

1− x/2 =
x

2− x.

Remark: It is sometimes not immediately obvious whether a series converges or

diverges, but very slowly. A good example is the harmonic series
∞∑

k=1

1

k
. On

examing successive partial sums S100 = 5.19, S200 = 5.87, S300 = 6.28, . . . it may
at first that the series converges. In fact, the harmonic series diverges. An easy
way to see this is to note for n ≥ 1 that

S2n − Sn =
1

n+ 1
+

1

n+ 2
+ . . .+

1

2n− 1
+

1

2n

≥ 1

2n
+

1

2n
+ . . .+

1

2n
+

1

2n︸ ︷︷ ︸
n terms

=
n

2n
=

1

2
.

Thus, if we take n = 2m for some integer m then S2m+1−S2m ≥ 1/2. So every time
we multiply n by 2, the corresponding partial sum grows by at least 1/2. That is,
S2m ≥ m

2
. This means that lim

m→∞
S2m =∞.

• However,
∞∑

k=1

1

k(k + 1)

converges to the value 1 since

Sn =
n∑

k=1

1

k(k + 1)
=

n∑

k=1

(
1

k
− 1

k + 1

)
=

n∑

k=1

1

k
−

n+1∑

k=2

1

k
= 1− 1

n+ 1
.
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Problem 9.3: Let a > 0. Evaluate

∞∑

k=0

1

(a+ k)(a+ k + 1)
.

We can compute the partial sums using partial fraction decomposition:

n∑

k=0

1

(a+ k)(a+ k + 1)
=

n∑

k=0

1

a+ k
−

n∑

k=0

1

a+ k + 1

=
n∑

k=0

1

a+ k
−
n+1∑

k=1

1

a+ k

=
1

a
− 1

a+ n+ 1
.

As n→∞, the sum converges to 1/a.

The following test is sometimes useful for showing that a sequence cannot possibly
converge.

Theorem 9.1 (Divergence Test): If
∞∑

k=1

ak converges then lim
n→∞

an = 0.

Proof: In terms of the convergent sequence of partial sums {Sn}∞n=1 we may express

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn−1 − lim
n→∞

Sn = 0.

• The Divergence Test shows that
∞∑

k=1

k

k + 1
and

∞∑

k=1

k

log k
diverge.

Remark: The contrapositive of Theorem 9.1 states

lim
n→∞

an 6= 0⇒
∞∑

k=1

ak diverges.

However,

lim
n→∞

an = 0 6⇒
∞∑

k=1

ak converges.

For example,
∞∑

k=1

1

k
diverges even though lim

k→∞

1

k
= 0.
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9.2 The Integral Test

The next theorem, illustrated in Fig. 9.1, sheds some light on why
∞∑

k=1

1

k
and

∫ ∞

1

dx

x

both diverge and on why
∞∑

k=1

1

k(k + 1)
and

∫ ∞

1

dx

x(x+ 1)
both converge.

y

x1 2 . . . k k + 1 . . .

f(x)

Figure 9.1: The Integral Test.

Theorem 9.2 (Integral Test): Let f be integrable on any closed interval and decreas-
ing and non-negative on [1,∞).

∞∑

k=1

f(k) converges ⇐⇒
∫ ∞

1

f converges.

Proof: For x ∈ [k, k + 1] we have f(k) ≥ f(x) ≥ f(k + 1). On integrating both
sides of these two inequalities we find

f(k) · 1 ≥
∫ k+1

k

f(x) dx ≥ f(k + 1) · 1.

We then sum this result k = 1 to k = n to obtain

Sn
.
=

n∑

k=1

f(k) ≥
∫ n+1

1

f ≥
n∑

k=1

f(k + 1) =
n+1∑

k=2

f(k) = Sn+1 − f(1).

“⇒” Since f is non-negative we know that
∫ T

1
f is an increasing function

of T . Thus

lim
n→∞

Sn exists ⇒ lim
n→∞

∫ n+1

1

f exists ⇒ lim
T→∞

∫ T

1

f exists.
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“⇐”

lim
T→∞

∫ T

1

f exists ⇒ lim
n→∞

∫ n+1

1

f exists ⇒ {Sn+1}∞n=1 bounded⇒ {Sn}∞n=1 bounded.

But f(x) ≥ 0 ⇒ {Sn}∞n=1 is increasing. The partial sums Sn =
n∑

k=1

f(k)

thus form a bounded increasing (and therefore convergent) sequence. That

is,
∞∑

k=1

f(k) converges.

Problem 9.4: Use the Integral Test to show that

∞∑

k=1

1

kp

converges if p > 1.

For p > 1, the integrable function f(x) = 1/xp is decreasing and non-negative. More-
over, we have seen that the improper integral

∫ ∞

1

1

xp
dx,

converges when p > 1.
By the Integral Test, we therefore know that

∞∑

k=1

1

kp

converges only when p > 1.

Problem 9.5: Use the Integral Test to show that

∞∑

k=2

1

k log k

diverges.

We first consider the improper integral
∫ ∞

2

1

x log x
dx.

On letting u = log x, the integral becomes
∫ ∞

log 2

1

u
du,
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which diverges. Noting that the Riemann-integrable function f(u) = 1/u is decreasing and
non-negative, the Integral Test tells us that

∞∑

k=1

1

k log k

diverges as well.

Remark: While the Integral Test is useful for establishing the convergence of a series,

it does not tell us anything about its value. For example,

∫ ∞

1

1

x2
dx = 1 but it

can be shown that
∞∑

k=1

1

k2
= π2/6. Often a closed-form expression for a series is

unavailable and one must resort to numerical computation of the partial sums up
to a certain value of n. The following related theorem can be used to estimate the
error in such approximations.

Theorem 9.3 (Remainder Estimate): Let f be integrable on any closed interval and

decreasing and non-negative on [1,∞). Then the remainder
∞∑

k=n+1

f(k) of
∞∑

k=1

f(k)

that results on truncating the series after n terms satisfies

∫ ∞

n+1

f ≤
∞∑

k=n+1

f(k) ≤
∫ ∞

n

f.

Proof: In the proof of the Integral Test we saw that

f(k + 1) ≤
∫ k+1

k

f

On summing from k = n to ∞ we thus find that

∞∑

k=n+1

f(k) =
∞∑

k=n

f(k + 1) ≤
∞∑

k=n

∫ k+1

k

f =

∫ ∞

n

f.

We also saw that ∫ k+1

k

f ≤ f(k).

On summing from k = n+ 1 to ∞ we obtain

∫ ∞

n+1

f =
∞∑

k=n+1

∫ k+1

k

f ≤
∞∑

k=n+1

f(k).
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• The partial sum S10 =
10∑

k=1

1

k2
≈ 1.5498 underestimates

∞∑

k=1

1

k2
by a remainder that

lies between ∫ ∞

11

1

x2
dx =

1

11

and ∫ ∞

10

1

x2
dx =

1

10
.

Indeed, we see that the difference between the exact value
∑∞

k=1
1
k2

= π2/6 and S10

is approximately 0.095, which indeed lies between 1/11 and 1/10.

9.3 Comparison Tests

We have seen that
∞∑

k=1

1

2k
is convergent. What about

∞∑

k=1

1

2k + 1
? Since 0 ≤ 1

2k + 1
<

1

2k
,

the partial sums of
∞∑

k=1

1

2k + 1
form a bounded increasing sequence and hence must

converge. The following theorem formalizes this idea.

Theorem 9.4 (Comparison Test): If 0 ≤ ak ≤ bk for all k ∈ N then

(i)
∞∑

k=1

bk converges ⇒
∞∑

k=1

ak converges;

(ii)
∞∑

k=1

ak diverges ⇒
∞∑

k=1

bk diverges.

Proof:

(i) Let Sn =
∑n

k=1 ak and Tn =
∑n

k=1 bk. Since 0 ≤ Sn ≤ Tn,

∞∑

k=1

bk converges ⇒ {Tn}∞n=1 bounded ⇒ {Sn}∞n=1 bounded ⇒
∞∑

k=1

ak converges.

(ii) This is just the contrapositive of (i).

Remark: The condition “0 ≤ ak” in Theorem 9.4 cannot be dropped. Consider the
counterexample given by ak = −1, bk = 0.
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• We have seen from the Integral Test that
∞∑

k=1

1

k2
converges. Use this result to show

that
∞∑

k=1

1

k2 + 3k + 1
converges.

Remark: In applying the Comparison Test, we may replace the condition k ∈ N
with k ≥ N for any given natural number N (only the long-term behaviour affects
convergence).

• Show that
∞∑

k=1

log k

k
diverges by using the fact that log k > 1 for k ≥ 3.

Problem 9.6: Use the Comparison Test to deduce directly from the convergence of
∞∑

k=1

2

k(k + 1)
that

∞∑

k=1

1

k2
converges.

We note for k ≥ 1 that 2k2 ≥ k2 + k = k(k + 1). Thus

1

k2
≤ 2

k(k + 1)
.

The following test provides a more convenient way to establish the previous result.

Theorem 9.5 (Limit Comparison Test): Suppose ak ≥ 0 and bk > 0 for all k ∈ N
and lim

k→∞
ak/bk = L. Then

(i) if 0 < L <∞:
∞∑

k=1

ak converges ⇐⇒
∞∑

k=1

bk converges;

(ii) if L = 0:
∞∑

k=1

bk converges ⇒
∞∑

k=1

ak converges.

Proof:

(i) This follows from Theorem 9.4 since for all sufficiently large k,

0 <
L

2
<
ak
bk
<

3L

2
⇒ 0 <

(
L

2

)
bk < ak <

(
3L

2

)
bk.

(ii) If L = 0 then for sufficiently large k, 0 ≤ ak/bk < ε = 1⇒ 0 ≤ ak < bk. Apply
Theorem 9.4.
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• Since

lim
k→∞

k2

k(k + 1)
= 1,

we see immediately (without using the Integral Test) that

∞∑

k=1

1

k(k + 1)
converges ⇒

∞∑

k=1

1

k2
converges.

Remark: When lim
k→∞

ak/bk = 0, it is possible that
∑∞

k=1 ak converges but
∑∞

k=1 bk diverges.

Consider

ak =
1

k(k + 1)
, bk =

1

k
, lim

k→∞

ak
bk

= lim
k→∞

1

k + 1
= 0.

• Use the Limit Comparison Test to show that
∞∑

k=1

1

2k − 1
converges.

9.4 Alternating Series

So far we have only considered series with positive terms. Let us now discuss an
important class of series consisting of terms that alternate in sign.

Definition: An alternating series is of the form

∞∑

k=1

(−1)kak,

where ak ≥ 0 for k ∈ N .

• The sum
∞∑

k=1

(−1)k

k
is an alternating series that, in contrast to the harmonic series

∞∑

k=1

1

k
, converges. The changes in sign prevent the slow accumulation exhibited

by the nonalternating version and instead leads to oscillation of the partial sums.
Because the magnitude of each term tends to zero, these oscillations are eventually
damped out. The following theorem formalizes this notion.

Theorem 9.6 (Leibniz Alternating Series Test): The alternating series
∞∑

k=1

(−1)kak

is convergent if the sequence {ak}∞k=1 decreases monotonically to 0.
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Proof: Consider the even partial sums

S2n = −a1 + (a2 − a3) + . . .+ (a2n−2 − a2n−1) + a2n ≥ −a1,

noting that an − an+1 ≥ 0 for all n ∈ N. Notice also that

S2n+2 − S2n = a2n+2 − a2n+1 ≤ 0.

Hence {S2n}∞n=1 is a bounded decreasing, and therefore convergent, sequence. In
contrast, {S2n−1}∞n=1 is a bounded increasing sequence since

S2n+1 − S2n−1 = −a2n+1 + a2n ≥ 0.

Finally,

lim
n→∞

S2n = lim
n→∞

(S2n−1 + a2n) = lim
n→∞

S2n−1 + lim
n→∞

a2n = lim
n→∞

S2n−1;

that is, the subsequences of even and odd partial sums converge to the same limit.
The full sequence of partial sums {Sn}∞n=1 therefore converges to this limit.

• The alternating series
∞∑

k=1

(−1)k
k2

k3 + 1
converges since the function f(x) =

x2

x3 + 1

decreases monotonically to zero on [2,∞).

• The alternating series
∞∑

k=1

(−1)k
3k

4k − 1
does not converge by the Divergence Test

since lim
k→∞

(−1)k3k

4k − 1
=

3

4
6= 0.

Remark: The next theorem establishes that if the magnitude of the terms of an
alternating series decreases monotonically to zero, the truncation error is no greater
than the magnitude of the very next term!

Theorem 9.7 (Alternating Series Remainder Estimate): Let {ak}∞k=1 be a monoton-
ically decreasing sequence that converges to 0. Then

∣∣∣∣∣
∞∑

k=n+1

(−1)kak

∣∣∣∣∣ ≤ an+1.

Proof: Let Sn =
∑n

k=1(−1)kak and S =
∑∞

k=1(−1)kak. Since {S2n−1}∞n=1 is
increasing and {S2n}∞n=1 is decreasing, we see that S2n−1 ≤ S ≤ S2n for all n ≥ 1.
Since an − an+1 ≥ 0, we then find that

0 ≤ S − S2n−1 =
∞∑

k=2n

(−1)kak = a2n − (a2n+1 − a2n+2) + . . . ≤ a2n
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and

0 ≤ S2n − S = −
∞∑

k=2n+1

(−1)kak = a2n+1 − (a2n+2 − a2n+3) + . . . ≤ a2n+1.

For either odd or even n the error in approximating S by Sn is seen to be less than
the magnitude of the first neglected term:

∣∣∣∣∣
∞∑

k=n+1

(−1)kak

∣∣∣∣∣ = |S − Sn| ≤ an+1.

Problem 9.7: Evaluate
∞∑

k=1

(−1)k

k!
to within 0.001.

If we sum up the first 6 terms we obtain the estimate

−1 + 1/2− 1/6 + 1/24− 1/120 + 1/720 = −0.63194,

which overestimates the sum by at most 1/5040 < 0.0002 (since the next term can only

reduce the sum). So the infinite sum evaluates to approximately −0.632.

9.5 Absolute Convergence

Q. What happens when some of the terms ak are negative but the series isn’t in the
form of an alternating series?

A. In these situations, the following concept is sometimes helpful.

Definition: A series
∑∞

k=1 ak is absolutely convergent if
∑∞

k=1 |ak| is convergent.

• The sequence
∞∑

k=1

sin k

k2
is absolutely convergent by the Comparison Test since

|sin k| ≤ 1 and
∞∑

k=1

1

k2
is convergent. That is,

∞∑

k=1

|sin k|
k2

is convergent. The follow-

ing theorem establishes that the original series
∞∑

k=1

sin k

k2
is itself convergent.

Theorem 9.8 (Absolute Convergence): An absolutely convergent series is convergent.
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Proof: Suppose
∞∑

k=1

|ak| is convergent. Since each term ak in the series
∞∑

k=1

ak is

either |ak| or − |ak|, we find

0 ≤ ak + |ak| ≤ 2 |ak|

On applying the Comparison Test we then see that
∞∑

k=1

(ak + |ak|) is convergent.

The difference
∞∑

k=1

ak between the two convergent series
∞∑

k=1

(ak + |ak|) and
∞∑

k=1

|ak| is

therefore also convergent.

Remark: The converse of Theorem 9.8 need not be true: the alternating harmonic

series
∞∑

k=1

(−1)k

k
is convergent but not absolutely convergent: the harmonic series

∞∑

k=1

1

k
diverges.

Definition: A series is conditionally convergent if is convergent but not absolutely
convergent.

• The alternating harmonic series
∞∑

k=1

(−1)k

k
is conditionally convergent.

Problem 9.8: Show that the alternating series
∞∑

k=1

(−1)k√
k

is conditionally convergent.

Problem 9.9: Show that the alternating series
∞∑

k=1

(−1)k log k√
k

is conditionally con-

vergent.

The following three tests are often useful for establishing absolute convergence.

Theorem 9.9 (Ratio Comparison Test): If ak > 0 and bk > 0 and

ak+1

ak
≤ bk+1

bk

for all k ∈ N, then
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(i)
∞∑

k=1

bk converges ⇒
∞∑

k=1

ak converges;

(ii)
∞∑

k=1

ak diverges ⇒
∞∑

k=1

bk diverges.

Proof: For k ∈ N we have

ak+1

ak
≤ bk+1

bk
⇒ ak+1

bk+1

≤ ak
bk
⇒ ak

bk
≤ a1

b1

.
= M.

Thus 0 < ak ≤Mbk for all k ∈ N and the result follows from Theorem 9.4.

Theorem 9.10 (Ratio Test): Suppose ak > 0.

(i) If there exists a number r < 1 such that ak+1

ak
≤ r for all k, then

∑∞
k=1 ak converges;

(ii) If ak+1

ak
≥ 1 for all k, then

∑∞
k=1 ak diverges.

Proof: Let bk = rk. Then bk+1

bk
= r and





∞∑

k=1

bk converges if |r| < 1,

∞∑

k=1

bk diverges if |r| ≥ 1.

Apply Theorem 9.9.

Theorem 9.11 (Limit Ratio Test): Suppose ak > 0 for all k ∈ N and

lim
k→∞

ak+1

ak
= r.

Then

(i) r < 1⇒
∞∑

k=1

ak converges;

(ii) r > 1⇒
∞∑

k=1

ak diverges;

(iii) r = 1⇒ ?

Proof: Choose ε = (1− r)/2. Then for sufficiently large k, we know that

ak+1

ak
< r + ε =

1 + r

2
< 1.

Apply the Ratio Test.
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Problem 9.10: Find examples corresponding to each of the three cases in Theo-
rem 9.11.

Theorem 9.12 (Root Test): Suppose ak ≥ 0 for all k ∈ N. Then

(i) If there exists a number r < 1 such that k
√
ak ≤ r for all k, then

∑∞
k=1 ak converges;

(ii) If k
√
ak ≥ 1 for all k, then

∑∞
k=1 akdiverges.

Proof: Let bk = rk. Then





∞∑

k=1

bk converges if |r| < 1,

∞∑

k=1

bk diverges if |r| ≥ 1.

Note that k
√
ak ≤ r implies ak ≤ rk = bk and apply Theorem 9.4.

Theorem 9.13 (Limit Root Test): Suppose ak ≥ 0 for all k ∈ N and

lim
k→∞

k
√
ak = r.

Then

(i) r < 1⇒
∞∑

k=1

ak converges;

(ii) r > 1⇒
∞∑

k=1

ak diverges;

(iii) r = 1⇒ ?

Proof:

(i) Choose ε = (1− r)/2. Then for sufficiently large k, we know that

k
√
ak < r + ε =

1 + r

2
< 1.

Apply the Root Test.

(ii) If lim
k→∞

k
√
ak > 1 then for sufficiently large k we know that ak > 1. The

Divergence Test then implies that the series diverges.
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Problem 9.11: Find examples corresponding to each of the three cases in Theo-
rem 9.13.

(i) The series

∞∑

k=1

1

2k
converges.

(ii) The series
∞∑

k=1

2k diverges.

(iii) For the series
∞∑

k=1

kp we see with the help of L’Hôpital’s Rule that

lim
k→∞

k
√
kp = lim

k→∞
kp/k = lim

k→∞
kp/k = lim

k→∞
e
p
k

log k = exp

(
p lim
k→∞

log k

k

)
= exp

(
p lim
k→∞

1
k

1

)
= exp 0 = 1.

We recall that this series converges for p = −2 but diverges p = −1.

Problem 9.12: Does
∞∑

k=2

1

(log k)k
converge or diverge?

Since lim
k→∞

1

log k
= 0 < 1, we know from the Root Test that the series converges.

9.6 Strategy

To determine which test to use for a given series, it sometimes helps to consider the
behaviour of the terms ak for large k.

9.7 Power Series

Definition: A power series about the expansion point a is an infinite series of the
form

∑∞
k=0 ck(x− a)k, where the coefficients ck are independent of x.

Remark: By definition, (x− a)0 = 1 for all x, even at x = a.

Remark: When dealing with power series, it is often convenient to shift the variable
x so that the expansion point a = 0. The power series then simplifies to

∑∞
k=0 ckx

k.

Remark: A power series always converges at its expansion point.
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• We have seen that the geometric series

∞∑

k=0

xk

converges for any x ∈ (−1, 1) to the function
1

1− x .

• If we apply the Limit Ratio Test to the series

∞∑

k=0

k!xk,

we see for x 6= 0 that

lim
k→∞

∣∣(k + 1)!xk+1
∣∣

|k!xk| = lim
k→∞

(k + 1) |x| =∞.

Thus, the series converges absolutely only at x = 0.

• In contrast, the Limit Ratio Test tells us that the series

∞∑

k=0

xk

k!

converges absolutely for all real x:

lim
k→∞

|x|k+1

(k + 1)!
· k!

|x|k
= lim

k→∞

|x|
(k + 1)

= 0 < 1.

Remark: The following theorem tells us that every power series converges absolutely
strictly inside some closed interval (which could be a point or all of R) and diverges
strictly outside that closed interval. It does not say anything about what happens
at the endpoints themselves.

Theorem 9.14 (Radius of Convergence): For each power series
∑∞

k=0 ckx
k there

exists a number R, called the radius of convergence, with 0 ≤ R ≤ ∞, such that

∞∑

k=0

ckx
k





converges absolutely if |x| < R,
? if |x| = R,
diverges if |x| > R.
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• We have seen that the series
∑∞

k=0 x
k/k! has an infinite radius of convergence

(R =∞).

Problem 9.13: For what values of x does the series
∑∞

k=1
(x−1)k

k
converge?

The Limit Ratio Test tells us that the series converges absolutely if

lim
k→∞

|x− 1|k+1

(k + 1)
· k

|x− 1|k
= lim

k→∞
k

(k + 1)
|x− 1| = |x− 1| < 1,

that is, when −1 < x − 1 < 1 or in other words, 0 < x < 2. Furthermore, we see that the

series converges at x = 0 (where it reduces to the alternating harmonic series and diverges

at x = 2 (where it reduces to the harmonic series). The Limit Ratio Test tell us that the

series does not converge absolutely for |x− 1| > 1; that is, when x > 2 or x < 0. The

interval of convergence is thus [0, 2) and the radius of convergence is 1.

• Find the radius of convergence R of

∞∑

k=2

xk

log k
.

The ratio of consecutive terms has limit

lim
k→∞

∣∣∣∣
xk+1

log(k + 1)
· log k

xk

∣∣∣∣ = |x| lim
k→∞

log k

log(k + 1)
= |x| lim

u→∞

1
u
1

u+1

= |x| ,

using L’Hôpital’s Rule, where u ∈ R. The Limit Ratio Test then implies that
R = 1.

Remark: To determine the actual interval of convergence, we need to determine R
and then test for convergence at x = a+R and x = a−R by other means.

Problem 9.14: Determine the radius of convergence, interval of convergence, and
expansion point for the power series

∞∑

k=0

(3x+ 4)k

5k
.

From the ratio test we see that the series converges whenever
∣∣3x+4

5

∣∣ < 1; that is, when

−5 < 3x+ 4 < 5. This corresponds to the interval (−3, 1/3), a radius of convergence of

5/3, and an expansion point of −4/3. Note that the series diverges at both x = −3 and

x = 1/3.
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Problem 9.15: Consider the power series
∑∞

k=0 ckx
k.

(a) Suppose that lim
k→∞

∣∣∣∣
ck+1

ck

∣∣∣∣ exists. Use the Limit Ratio Test to show that the

radius of convergence of the power series is given by

R =
1

lim
k→∞

∣∣∣∣
ck+1

ck

∣∣∣∣
.

If the limit of the ratio of successive terms
∣∣∣ ck+1

ck
x
∣∣∣ is less than 1 (i.e. if |x| < R) the

series
∑∞

k=0

∣∣ckxk
∣∣ converges and if it is bigger than 1 (i.e. if |x| > R) the series diverges.

Hence R is indeed the radius of convergence.

(b) Suppose that lim
k→∞

k
√
|ck| exists. Use the Root Test to show that

R =
1

lim
k→∞

k
√
|ck|

is another expression for the radius of convergence.

If lim
k→∞

k

√
|ckxk| is less than 1 (i.e. if |x| < R), the series

∑∞
k=0

∣∣ckxk
∣∣ converges, and

if it is bigger than 1 (i.e. if |x| > R), the series diverges. Hence R is indeed the radius of

convergence.

9.8 Representation of Functions as Power Series

The closed form sum of a geometric series

1

1− x =
∞∑

k=0

xk, |x| < 1

can be used to sum up other power series.

• On substituting −x2 for x, we find

1

1 + x2
=
∞∑

k=0

(−x2)k =
∞∑

k=0

(−1)kx2k, |x| < 1.

• On substituting −x/2 for x, we find

1

2 + x
=

1

2

(
1

1 + x
2

)
=

1

2

∞∑

k=0

(
−x

2

)k
=
∞∑

k=0

(−1)k

2k+1
xk, |x| < 2.
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• On multiplying
1

2 + x
by x2 we find

x2

2 + x
=
∞∑

k=0

(−1)k

2k+1
xk+2, |x| < 2.

Theorem 9.15 (Derivative and Integral of a Power Series): The power series

(i)
∞∑

k=0

ckx
k,

(ii)
∞∑

k=0

kckx
k−1,

(iii)
∞∑

k=0

ck
xk+1

k + 1

all have the same radius of convergence.

Proof: For k ≥ |x|, note that

∣∣ckxk
∣∣ = |x|

∣∣ckxk−1
∣∣ ≤

∣∣kckxk−1
∣∣ .

We thus see from the Comparison Test that if (ii) converges absolutely, so does (i). On
the other hand, suppose (i) converges absolutely at some x0 6= 0. The Divergence Test
implies that

∣∣ckxk0
∣∣ is bounded by some positive number M for all k. Thus

∣∣kckxk−1
∣∣ =

∣∣ckxk0
∣∣ k

|x0|

∣∣∣∣
x

x0

∣∣∣∣
k−1

≤ M

|x0|
k

∣∣∣∣
x

x0

∣∣∣∣
k−1

.

We know from the Limit Ratio Test that
∞∑

k=0

k

∣∣∣∣
x

x0

∣∣∣∣
k−1

is convergent for |x| < |x0|.

The absolute convergence of (ii) then follows from the Comparison Test. On noting
that (i) is just the result of formally differentiating (iii), we see that (i) and (iii) also
have the same radius of convergence.

9.9 Taylor Series

Let us now discuss a general method for developing power series for any infinitely
differentiable function. We first recall the following special case of the Mean Value
Theorem:

Theorem 9.16 (Rolle’s Theorem): Suppose
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(i) f is continuous on [a, b],

(ii) f ′ exists on (a, b),

(iii) f(a) = f(b).

Then there exists a number c ∈ (a, b) for which f ′(c) = 0.

We now use this theorem to prove a key result.

Theorem 9.17 (Taylor’s Theorem): Let n ∈ N. Suppose

(i) f (n−1) exists and is continuous on [a, b],

(ii) f (n) exists on (a, b).

Then there exists a number c ∈ (a, b) such that

f(b) =
n−1∑

k=0

(b− a)k

k!
f (k)(a)

︸ ︷︷ ︸
Taylor polynomial

+
(b− a)n

n!
f (n)(c)

︸ ︷︷ ︸
Rn

.

That is,

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2
f ′′(a) + . . .+

(b− a)n−1

(n− 1)!
f (n−1)(a) +Rn.

Remark: This is known as the Taylor expansion of f at b about a to n terms. The
term Rn is known as the remainder after n terms.

• For n = 1:

f(b) =
(b− a)0

0!
f(a) +

(b− a)1

1!
f ′(c)

i.e. f(b) = f(a) + (b− a)f ′(c) (MVT).

• For n = 2:

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2
f ′′(c).

Proof (of Taylor’s Theorem): We will apply Rolle’s Theorem to

ϕ(x) = f(x) +
n−1∑

k=1

(b− x)k

k!
f (k)(x) +M(b− x)n,
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where M is a constant. Noting that ϕ(b) = f(b), we choose M so that ϕ(a) = f(b)
also:

f(b) = ϕ(a) = f(a) +
n−1∑

k=1

(b− a)k

k!
f (k)(a) +M(b− a)n. (9.1)

That is, we choose

M =
1

(b− a)n

[
f(b)− f(a)−

n−1∑

k=1

(b− a)k

k!
f (k)(a)

]
.

Note that ϕ(x) is continuous on [a, b]. Using the Chain Rule, we find that

ϕ′(x) = f ′(x) +
n−1∑

k=1

[
−(b− x)k−1

(k − 1)!
f (k)(x) +

(b− x)k

k!
f (k+1)(x)

]
− n(b− x)n−1M

= f ′(x)−
n−1∑

k= 1

(b− x)k−1

(k − 1)!
f (k)(x) +

n∑

k=2

(b− x)k−1

(k − 1)!
f (k)(x)− n(b− x)n−1M

= f ′(x)− f ′(x) +
(b− x)n−1

(n− 1)!
f (n)(x)− n(b− x)n−1M

exists for all x ∈ (a, b). We then apply Rolle’s Theorem to deduce that there exists a
number c ∈ (a, b) such that

0 = ϕ′(c) =
(b− c)n−1

(n− 1)!
f (n)(c)− n(b− c)n−1M

⇒M =
1

n!
f (n)(c).

Upon substituting this result into Eq. (9.1), we obtain Taylor’s Theorem:

f(b) = f(a) +
n−1∑

k=1

(b− a)k

k!
f (k)(a) +

(b− a)n

n!
f (n)(c).

Remark: If
∣∣f (n)(c)

∣∣ ≤M for all c between b and a, then |Rn| ≤M |b− a|n /n! on this

same interval. This is sometimes called Taylor’s inequality. For example, if |f (n)| is
an increasing function on [a, b], then Taylor’s inequality holds with M = |f (n)(b)|,
whereas if |f (n)| is a decreasing function on [a, b] one can choose M = |f (n)(a)|.

• Compute the first three digits of sin 1 after the decimal point and determine its
value correctly rounded to two digits.
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Step 1: Let f(x) = sinx. Choose a value a reasonably close to 1 at which the value
of f and its derivatives are known, such as a = 0.

Step 2: Write down the Taylor expansion to enough terms so that |Rn| is less than
or equal to the allowed error. Set b = x.

sinx = sin 0 + (x− 0) cos 0− (x− 0)2

2!
sin 0− (x− 0)3

3!
cos 0 +

(x− 0)4

4!
sin 0

+
(x− 0)5

5!
cos 0− (x− 0)6

6!
sin 0 +R7,

= x− x3

3!
+
x5

5!
+R7,

where R7 = − 1
7!

(x − 0)7 cos c for some c ∈ (0, x). For x = 1 we know that
|cos c| < 1, so

|R7| <
1

7!
=

1

5040
< 0.0002

and

sin 1 ≈ 1− 1

6
+

1

120
=

101

120
= 0.8416.

Hence sin 1 ≈ 0.8416± 0.0002, so the first three digits of sin 1 are 0.841. If we round
this result to two digits after the decimal place, we obtain sin 1 ≈ 0.84.

Remark: If the magnitude of the terms of an alternating Taylor series decreases
monotonically to zero, it is much easier to use the Alternating Series Remainder Estimate
rather than explicitly estimating the remainder using Taylor’s Theorem: the error
is simply less than the magnitude of the very next term!

Definition: If lim
n→∞

Rn = 0 in the Taylor expansion of f at b about a then

f(b) =
∞∑

k=0

(b− a)k

k!
f (k)(a)

This is known as the Taylor Series of f at b about a.

Definition: The special case of a Taylor Series about a = 0 is sometimes called a
Maclaurin Series.

Problem 9.16: Suppose that a function f is differentiable on R and f ′(x) = f(x)
for all x ∈ R.

(a) Use induction to prove that the n-th derivative f (n)(x) = f(x) for all n ∈ N.
We are told that the desired result holds for n = 1. Assume that it holds for n. Then

f (n+1)(x) = (fn(x))′ = f ′(x) = f(x).

Hence the result holds for all n ∈ N.
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(b) Let x ∈ R. Show for any n ∈ N that the value of f at a point x 6= 0 can be
expressed in terms of f(0) and a remainder term Rn,

f(x) = f(0)

(
1 + x+

x2

2!
+
x3

3!
+ . . .+

xn−1

(n− 1)!

)
+Rn,

where

Rn =
f (n)(cn)

n!
xn

for some point cn ∈ (0, x). (If x < 0 then by (0, x) we mean the interval (x, 0). Note
that cn depends on n.)

This is just the Taylor expansion of f at x about the point a = 0.

(c) Show that f is bounded on [0, x].
Since f is differentiable on R, it must be continuous on R. Hence f is bounded on any

closed interval (and in particular on [0, x]).

(d) Using part (c) and the fact that the infinite sum
∞∑

k=0

xk

k!
converges for all x to

establish that lim
n→∞

Rn = 0.

The convergence of

∞∑

k=0

xk

k!
for any fixed x, which follows from the Limit Ratio Test,

implies that lim
n→0

xn

n!
= 0. From part (c) we know that there exists a number M such that

|f(x)| ≤M for all x ∈ R. From part (a) we have that

|Rn| ≤
∣∣∣∣
f(cn)

n!
xn
∣∣∣∣ ≤M

|x|n
n!
→

n→∞
0.

(e) If f(0) = 1 show that

f(x) =
∞∑

k=0

xk

k!
.

This is the power series for the exponential function exp(x).

lim
n→∞

n∑

k=0

xk

k!
= lim

n→∞

n−1∑

k=0

xk

k!
= lim

n→∞
f(x)− lim

n→∞
Rn = f(x).

Problem 9.17: Let f(x) = 3
√

1 + x. (a) Determine the first three terms of the Taylor
expansion of f(x) about the point a = 0,

f(x) =
2∑

k=0

f (k)(0)

k!
xk +R3.

When a = 0, the remainder term R3 is simply

R3 =
f (3)(c)

3!
x3.
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We find

f (1)(x) =

(
1

3

)
(1 + x)−2/3,

f (2)(x) =

(
1

3

)(
−2

3

)
(1 + x)−5/3,

and

f (3)(c) =

(
1

3

)(
−2

3

)(
−5

3

)
(1 + c)−8/3.

Hence

f(x) = 1 +

(
1

3

)
x

1!
−
(

2

9

)
x2

2!
+R3 = 1 +

x

3
− x2

9
+R3.

(b) Use part (a) to find a lower bound for 3

√
3
2

and show that your result approx-

imates the exact value to within 1%. (You may leave your answer as a fraction.)

3

√
3

2
= f

(
1

2

)
= 1 +

(
1

3

)
(1

2)

1!
−
(

2

9

)
(1

2)2

2!
+R3 = 1 +

1

6
− 1

36
+R3 =

41

36
+R3,

where

R3 =
(1

2)3

3!
f (3)(c).

for some number c ∈ (0, 1
2). The third derivative of f at c can be easily bounded:

0 ≤ f (3)(c) ≤
(

1

3

)(
2

3

)(
5

3

)
=

10

27
,

so

0 ≤ R3 ≤
(1

2)3

3!

(
10

27

)
=

5

24× 27
<

1

24× 5
<

1

100
<

1

100
3

√
3

2
.

Thus 3

√
3
2 lies in the interval

[
41

36
,
41

36
+

1

100

]
.

Problem 9.18: Find the Taylor series for f(x) = sin2 x about x = 0. Hint: after
computing the first derivative, simplify the result before proceeding to take further
derivatives.
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Remark: Suppose that the Taylor series
∞∑

k=0

f (k)(0)

k!
xk converges to f(x) for |x| < R.

Theorem 9.15 tells us that the term-by-term differentiated series

∞∑

k=0

f (k)(0)

k!
kxk−1 =

∞∑

k=1

f (k)(0)

(k − 1)!
xk−1 =

∞∑

k=0

f (k+1)(0)

k!
xk,

which we note is just the Taylor series for f ′, has the same radius of convergence
as the Taylor series for f . This means that we may differentiate (or integrate) a
power series term by term within its radius of convergence: if

∑∞
k=0 ckx

k converges
to f(x) for |x| < R, then

∑∞
k=1 kckx

k−1 converges to f ′(x) for |x| < R.

• For |x| < 1, we may differentiate the geometric series

1

1− x =
∞∑

k=0

xk

term by term to find that

1

(1− x)2
=
∞∑

k=1

kxk−1 = 1 + 2x+ 3x2 + 4x3 + . . . , |x| < 1.

• For |x| < 1, we may integrate the geometric series

1

1 + x
=
∞∑

k=0

(−x)k = 1− x+ x2 − x3 + . . .

term by term to find

log(1 + x) =
∞∑

k=0

(−1)k
xk+1

k + 1
= x− x2

2
+
x3

3
− x4

4
+ . . . , |x| < 1,

where we see that the constant of integration vanishes since both sides evaluate
to zero when x = 0. While both series converge for |x| < 1, notice that the
Leibniz Alternating Series Test guarantees that the differentiated series also con-
verges at x = 1. That is, the interval of convergence of the differentiated series is
(−1, 1]. On taking the limit as x→ 1, we see from the above closed-form expression
that the alternating harmonic series converges to − log 2.
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• For |x| < 1, we may integrate the geometric series

1

1 + x2
=
∞∑

k=0

(−x2)k = 1− x2 + x4 − x6 . . .

term by term to find

tan−1 x =
∞∑

k=0

(−1)k
x2k+1

2k + 1
= x− x3

3
+
x5

5
− x7

7
+ . . . .

Again, the constant of integration is seen to vanish (for the principal branch of the
arctangent).

• We can use power series to integrate functions that we cannot integrate by elemen-
tary means:

∫ t

0

e−x
2

dx =

∫ t

0

∞∑

k=0

(−x2)k

k!
dx =

∞∑

k=0

(−1)kt2k+1

(2k + 1)k!
= t− t3

3
+
t5

10
+ . . . ,

where we see the constant of integration is seen to be zero.

Remark: If
∑∞

k=0 akx
k =

∑∞
k=0 bkx

k whenever |x| < R, on setting x = 0 we see that
a0 = b0, so that

∑∞
k=1 akx

k =
∑∞

k=1 bkx
k. On differentiating each side with respect

to x and again setting x = 0, we see that a1 = b1. On repeating this procedure, we
deduce that ak = bk for k = 0, 1, 2, . . .. That is, the coefficients of a power series
are unique, just like the coefficients of a polynomial.

Remark: If
∑∞

k=0 ckx
k converges to f(x) for |x| < R, the uniqueness of power series

guarantees that
∑∞

k=0 ckx
k is the Taylor series for f ; that is ck = f (k)(0)/k!.

Remark: Within their radii of convergence, power series can be added, subtracted,
multiplied, divided, differentiated, and integrated just like polynomials.

• For |x| < 1 we may expand

f(x) =
ex

1 + x

=

(
1 + x+

x2

2
+ . . .

)(
1− x+ x2 + . . .

)

=
(
1− x+ x2 + . . .

)
+ x
(
1− x+ x2 + . . .

)
+
x2

2

(
1− x+ x2 + . . .

)

=
(
1− x+ x2 + . . .

)
+
(
x− x2 + . . .

)
+
x2

2
+ . . .

= 1 +
x2

2
+ . . . .

From Taylor’s theorem, we immediately see that f(0) = 1, f ′(0) = 0, and f ′′(0) = 1.
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Problem 9.19: Using long division, show that

tanx = x+
x3

3
+

2

15
x5 + . . . .

Problem 9.20: Consider the Taylor series for the function

f(x) =

{
e−1/x2 if x 6= 0,
0 if x = 0,

about the point a = 0. Show using L’Hôpital’s Rule, that f (k)(0) = 0 for all k ∈ N.
That is, the Taylor series converges to zero for all x ∈ R (it has an infinite radius
of convergence), even though f(x) 6= 0 for nonzero x. This example emphasizes
that the Taylor series for an infinitely differentiable function f does not necessarily
converge to f , even within its radius of convergence!

• Another important series is the Binomial Series: for |x| < 1 and any real number n,
the Taylor Series for the function f(x) = (1 + x)n evaluates to (see Problem 9.17)

∞∑

k=0

(
n

k

)
xk,

where
(
n

k

)
=





1 if k = 0,

n(n− 1) . . . (n− k + 1)

k!
if k ≥ 1.

The Limit Ratio Test tell us that the series converges when

lim
k→∞

|n− k|
k + 1

|x| = |x| < 1.

To see that the series actually converges to f(x) define

g(x) =
∞∑

k=0

(
n

k

)
xk

and consider

h(x) = (1 + x)−ng(x).

Note that

h′(x) = −n(1 + x)−n−1g(x) + (1 + x)−ng′(x) = (1 + x)−n−1[−ng(x) + (1 + x)g′(x)].
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On using the identity

k

(
n

k

)
= k

n(n− 1) . . . (n− k + 1)

k!
= n

(n− 1) . . . (n− k + 1)

(k − 1)!
= n

(
n− 1

k − 1

)
,

along with Pascal’s Triangle Law,(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
,

we find that

(1 + x)g′(x) = (1 + x)
∞∑

k=1

(
n

k

)
kxk−1

= (1 + x)n
∞∑

k=1

(
n− 1

k − 1

)
xk−1

= n
∞∑

k=0

(
n− 1

k

)
xk + n

∞∑

k=1

(
n− 1

k − 1

)
xk

= n+ n
∞∑

k=1

[(
n− 1

k

)
+

(
n− 1

k − 1

)]
xk

= n+ n
∞∑

k=1

(
n

k

)
xk

= ng(x).

Thus h′(x) = 0 and since h(0) = g(0) = 1, we see that h(x) = 1 for all x ∈ (−1, 1).
Thus for |x| < 1 we find

(1 + x)n =
∞∑

k=0

(
n

k

)
xk = 1 + nx+

n(n− 1)

2
x2 +

n(n− 1)(n− 2)

3!
x3 + . . . .

• For n = 1/2 and |x| < 1, we find that

√
1 + x =

∞∑

k=0

(
1/2

k

)
xk

= 1 +
∞∑

k=1

1/2(1/2− 1)(1/2− 2) . . . (1/2− k + 1)

k!
xk

= 1 +
∞∑

k=1

1(1− 2)(1− 4) . . . (1− 2k + 2)

2kk!
xk

= 1 +
x

2
+
∞∑

k=2

(−1)(−3) . . . (3− 2k)

2kk!
xk

= 1 +
x

2
+
∞∑

k=2

(−1)k−1 1 · 3 · . . . · (2k − 3)

2kk!
xk.



Chapter 10

Parametrization

10.1 Parametric Equations

Parametric equations provide a convenient way of describing general relations that
cannot be represented as functions.

• The relation that exists between the ordered pairs (x, y) on the unit circle cannot
be expressed as a function y = f(x) since this curve fails to satisfy the vertical
line test. However, we can parametrize each point (x, y) on the unit circle by the
angle θ that the line from the origin to (x, y) makes with the positive x axis:

x(θ) = cos θ,

y(θ) = sin θ.

Here the parameter θ lies in the interval [0, 2π].

• The functional representation y = mx+ b of a line segment, with x ∈ (x1, x2), fails
for vertical lines. However, the parametric form

x(t) = (1− t)px + tqx

y(t) = (1− t)py + tqy,

where the parameter t ∈ [0, 1], remains valid for the line segment between any two
points (px, py) and (qx, qy) in the plane.

• A cubic Bézier curve between the node z0 = (x0, y0), with postcontrol point c0 =
(px, py), and the node z1 = (x1, y1), with precontrol point c1 = (qx, qy), is defined
by the parametric equations

x(t) = (1− t)3x0 + 3t(1− t)2px + 3t2(1− t)qx + t3x1,

y(t) = (1− t)3y0 + 3t(1− t)2py + 3t2(1− t)qy + t3y1, 0 ≤ t ≤ 1.

Bézier curves are widely used in computer graphics for drawing smooth curves
between a given set of nodes.

195
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z0

c0 c1

z1

10.2 Polar Coordinates

Polar coordinates (r, θ) are related to the usual Cartesian coordinates (x, y) by

x = r cos θ,

y = r sin θ.

Remark: Polar coordinates are not unique:

x = r cos(θ + 2mπ),

y = r sin(θ + 2mπ),

specify the same point for all integers m. Also, the points (r, θ+π) and (−r, θ) are
identical and (0, θ) denotes the origin for all θ.

• Describe the circle (x− a)2 + y2 = a2 in polar coordinates.

x2 + y2 − 2ax = 0

⇒ r2 − 2ra cos θ = 0

⇒ r(r − 2a cos θ) = 0

⇒ r = 0 or r = 2a cos θ.

Remark: Thus, a point on the circle (x−a)2 + y2 = a2 is either the origin (r = 0) or
else it lies on the curve r = 2a cos θ. In fact, since the origin is already contained
in the second solution r = 2a cos θ (at θ = π/2), this equation alone generates the
entire curve.
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y

x

θ

r cos θ

r sin θ

(x, y)

r

(a, 0) (2a, 0)

Remark: Notice that θ varies from 0 to 2π, the point (r, θ) moves twice around
the circle (this corresponds to an elementary result from geometry that the angle
subtended by an arc measured at the center of a circle is twice that measured on
the circumference).

Q. Can we compute the area of a region bounded by a continuous curve, say r =
f(θ) ≥ 0 for θ ∈ [a, b], in polar coordinates?

A. Yes. Let P be a partition of [a, b]. If f is continuous, there exists points θ∗
and θ∗ where f takes on its minimum and maximum values, respectively, in
each subinterval of P .

y

x

θ∗ θ∗

The area contribution ∆A from each subinterval of width ∆θ must lie between
the areas r2∆θ/2 bounded by the circular arcs r = f(θ∗) and r = f(θ∗):

f 2(θ∗)
∆θ

2
≤ ∆A ≤ f 2(θ∗)

∆θ

2

⇒ lim
∆θ→0

f 2(θ∗)

2
≤ lim

∆θ→0

∆A

∆θ

≤ lim
∆θ→0

f 2(θ∗)

2
.
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Since lim
∆θ→0

f 2(θ∗) = lim
∆θ→0

f 2(θ∗) = f 2(θ), we see from the squeeze principle that

dA

dθ
=

1

2
f 2(θ)⇒ A =

1

2

∫
f 2(θ) dθ.

• The area enclosed by the circle r = a is

1

2

∫ 2π

0

a2 dθ = πa2.

• To find the area enclosed by the circle r = 2a cos θ, we must be careful to restrict θ
to [0, π] (one loop around the curve):

1

2

∫ π

0

4a2 cos2 θ dθ = 2a2

∫ π

0

cos2 θ dθ = 2a2

∫ π

0

1 + cos 2θ

2
dθ = a2

[
θ +

sin 2θ

2

]π

0

= πa2;

this is consistent with our earlier observation that r = 2a cos θ describes a circle of
radius a.

• The area enclosed by the cardioid r = a(1 + cos θ)

x

y

(a, 0) (2a, 0)

is given by

1

2

∫ 2π

0

a2(1 + cos θ)2 dθ =
a2

2

∫ 2π

0

(1 + 2 cos θ + cos2 θ) dθ =
a2

2
(2π + π) =

3πa2

2
.

Problem 10.1: Find the area enclosed by the circle r = 3a cos θ that lies outside the
cardioid r = a(1 + cos θ).

The two curves intersect when 3 cos θ = 1+cos θ; that is when cos θ = 1/2. This happens
at the angles θ = π/3 and θ = −π/3. The desired area is thus

1

2

∫ π/3

−π/3

[
9a2 cos2 θ − a2(1 + cos θ)2

]
dθ = a2

∫ π/3

0

[
9 cos2 θ − (1 + 2 cos θ + cos2 θ)

]
dθ

= a2

∫ π/3

0

(
8 cos2 θ − 1− 2 cos θ

)
dθ = a2

∫ π/3

0
[4(1 + cos 2θ)− 1− 2 cos θ] dθ

= a2

∫ π/3

0
(3 + 4 cos 2θ − 2 cos θ) dθ = a2[3θ + 2 sin 2θ − 2 sin θ]

π/3
0 = πa2.
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Remark: To compute the first derivative of a curve parametrized by t, one needs to
use the Chain Rule to convert the derivative with respect to t to a derivative with
respect to x:

dy

dx
=

dy

dt
dx

dt

.

Problem 10.2: Find the slope of the tangent to the cardioid r(θ) = 1 + sin θ at
θ = π/3.

Since x(θ) = r(θ) cos θ and y(θ) = r(θ) sin θ we find at θ = π/3 that

dy

dx
=

dy

dθ
dx

dθ

=
r′(θ) sin θ + r(θ) cos θ

r′(θ) cos θ − r(θ) sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− sin2 θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

(1− 2 sin θ)(1 + sin θ)

∣∣∣∣
π/3

= −1.

Problem 10.3: A plane curve is given by the polar equation

r(θ) =
√

7 + 4 sin θ.

(a) Find a Cartesian equation for the tangent line to the curve at the point r(π/6).
The slope of the tangent is equal to

dy

dx
=
dy/dθ

dx/dθ
=
r′ sin θ + r cos θ

r′ cos θ − r sin θ
.

Here, if θ = π/6,
r(π/6) =

√
7 + 4 sin(π/6) = 3

and

r′(π/6) =
4 cos θ

2
√

7 + 4 sin θ

∣∣∣∣
θ=π/6

=

√
3

3
.
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So the slope of the tangent when θ = π/6 is

dy

dx

∣∣∣∣
θ=π/6

=

√
3

3 · 1
2 + 3 ·

√
3

2√
3

3 ·
√

3
2 − 3 · 1

2

= −5
√

3

3

and the point on the curve at θ = π/6 is (r cos θ, r sin θ) =
(

3
√

3
2 , 3

2

)
. Therefore the tangent

line is

y − 3

2
= −5

√
3

3

(
x− 3

√
3

2

)
, i.e. y = −5

√
3

3
x+ 9.

(b) Find the area A of the region that lies outside the above curve and inside the
cardioid r(θ) = 2(1 + sin θ).

First, we need to find the interval for θ satisfying

2(1 + sin θ) ≥
√

7 + 4 sin θ.

On squaring this inequality, we find

4(1 + sin θ)2 ≥ 7 + 4 sin θ ⇒ 0 ≤ 4 sin2 θ + 4 sin θ − 3 = (2 sin θ − 1)(2 sin θ + 3),

which implies that sin θ ≥ 1/2, i.e., π/6 ≤ θ ≤ 5π/6. Thus, the area of the region is

A =

∫ 5π/6

π/6

1

2
[2(1 + sin θ)]2 dθ −

∫ 5π/6

π/6

1

2
(7 + 4 sin θ) dθ

=
1

2

∫ 5π/6

π/6
(4 sin2 θ + 4 sin θ − 3) dθ =

1

2

∫ 5π/6

π/6
(−2 cos(2θ) + 4 sin θ − 1) dθ

=
1

2

[
− sin(2θ)− 4 cos θ − θ

]5π/6

π/6
=

5
√

3

2
− π

3

Remark: To compute the second derivative of a curve parametrized by t, we need
to use the Chain Rule twice:

d2y

dx2
=

d

dx

dy

dx
=
dt

dx
· d
dt



dy

dt
dx

dt


.

Remark: To find the area between the curve (x(t), y(t)) and the x axis, we can use
the fact that dx = x′(t) dt to express the area as an integral over t:

∫
y dx =

∫
y(t)x′(t) dt.
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• For example, for x(t) = et and y(t) = t2, the area between the curve (x(t), y(t))
and the x axis from t = 0 to t = 1 is
∫
y dx =

∫ 1

0

y(t)x′(t) dt =

∫ 1

0

2tet dt =
[
2tet

]1
0
−
∫ 1

0

2et dt = 2e−2
[
et
]1

0
= 2e−2(e−1) = 2.

10.3 Cylindrical Coordinates

Objects that are symmetric about an axis (aligned with the z axis) can be conve-
niently described using polar coordinates on the xy plane with an added z coordinate
that describes height above the xy plane. In ISO standard 31–11, these cylindrical
coordinates are written (ρ, ϕ, z), using

x = ρ cosϕ,

y = ρ sinϕ,

z = z,

where ϕ ∈ [0, 2π].

• The right circular cylinder x2 + y2 = a2 can be simply described in cylindrical
coordinates as ρ = a.

https://www.math.ualberta.ca/~bowman/m101/fig/cylindricalcoord.html
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• The right circular cone x2 + y2 = z2 can be simply described in cylindrical coordi-
nates as ρ = z.

10.4 Spherical Polar Coordinates

Objects that exhibit spherical symmetry are more conveniently described with spher-
ical polar coordinates, written in ISO standard 31–11 as (r, θ, ϕ). Here r is the length
of the vector r = (x, y, z) and the co-latitude θ is the angle between r and the z axis,
so that z = r cos θ. The angle ϕ is the angle in the xy plane relative to the positive x
axis of the projection, of length ρ = r sin θ, of r onto the xy plane. Since x = ρ cosϕ
and y = ρ sinϕ, we find that

x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ,

where θ ∈ [0, π] and ϕ ∈ [0, 2π].

https://www.math.ualberta.ca/~bowman/m101/fig/sphericalcoord.html
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Problem 10.4: Find the Cartesian coordinates (x, y, z) for the point described by
the spherical coordinates (r, θ, ϕ) = (2, π/3, π/4).

(
√

3/2,
√

3/2, 1).

Problem 10.5: Find the spherical coordinates (r, θ, ϕ) for the point described by the
Cartesian coordinates (x, y, z) = (0, 2

√
3,−2).

(4, 2π/3, π/2).

Problem 10.6: Find the spherical coordinates (r, θ, ϕ) of the point with cylindrical
coordinates (ρ, ϕ, z) =

(
3, 5π

6
,
√

3
)
.

Since x2 + y2 = ρ2 = 9, we see that r =
√
x2 + y2 + z2 = 2

√
3. Then z = r cos θ implies

that cos θ = z/r = 1
2 , so that θ = π/3. Thus (r, θ, ϕ) =

(
2
√

3,
π

3
,
5π

6

)
.

Surfaces in spherical coordinates can be described by a function r = r(θ, ϕ), just
as curves in plane polar coordinates can be described by a function r = r(θ).

• The surface r(θ, ϕ) = sin θ cosϕ can be expressed in Cartesian coordinates by
considering

r = sin θ cosϕ =
x

r
,

so that
x2 + y2 + z2 = r2 = x.

On completing the square, we obtain a sphere of radius 1
2

centered at (1
2
, 0, 0):

(
x− 1

2

)2

+ y2 + z2 =
1

4
.

10.5 Vector Functions and Space Curves

While parametric equations in three dimensions can be expressed in component form,
in terms of three functions x = x(t), y = y(t), z = z(t), it is often more convenient
at each t to bundle all three components into a vector (x(t), y(t), z(t)).

Definition: A vector-valued function or vector function is a function from a domain
to a set of vectors.
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Definition: The special case of a vector function that maps values from R to R3 is
called a space curve.

• The vector function r(t) = (x(t), y(t), z(t)) maps each real value t to a point in
(x(t), y(t), z(t)) in R3.

• The vector function r(t) = (t, 2 + 3t, 4 + 5t) for t ∈ R describes the line in three
dimensions that passes through (0, 2, 4) and is parallel to the vector (1, 3, 5).

• The vector function (cos 2πt, sin 2πt, t) for t ∈ [0, 1] describes a helix:

• The vector function that describes the curve of intersection of the circular cylinder
x2 + y2 = 1 and the plane y + z = 2 can be easily found using cylindrical polar
coordinates (ρ cosϕ, ρ sinϕ, z), with ρ = 1 and ϕ ∈ [0, 2π]. The equation of the
plane becomes z = 2 − y = 2 − sinϕ, so the parametric equation for the curve of
intersection is the ellipse (cosϕ, sinϕ, 2− sinϕ) for ϕ ∈ [0, 2π].

Remark: To do calculus on vector functions, we first need to extend the notion of a
limit to vector values.

Definition: If r(t) = (x(t), y(t), z(t)), then lim
t→a

r(t) = (lim
t→a

x(t), lim
t→a

y(t), lim
t→a

z(t)).

Definition: If r(t) = (x(t), y(t), z(t)), then r′(t) = (x′(t), y′(t), z′(t)).

https://www.math.ualberta.ca/~bowman/m101/fig/helix.html
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Definition: If r(t) = (x(t), y(t), z(t)), then
∫
r(t) dt = (

∫
x(t) dt,

∫
y(t) dt,

∫
z(t) dt).

Definition: A curve described by the parametrization r(t) is called smooth if r′(t)
is continuous and r′(t) 6= 0.

Definition: A cusp of the curve r(t) is a point where the vector r′(t) is zero and at
least one of its components changes sign.

Definition: A smooth curve exhibits no sharp turns, reversals, or cusps.

Remark: The direction of the tangent line to a smooth curve r(t) is given by the
vector r′(t). The unit tangent vector T is therefore

T (t) =
r′(t)

|r′(t)| .

The unit tangent vector T changes slowly when the curve is straight and rapidly
when the curve bends or twists.

Remark: Since T is a unit vector, its magnitude is constant. This means that

0 =
d

dt
|T |2 =

d

dt
(T ·T ) = T ′·T + T ·T ′ = 2T ′·T .

Thus, at every point of a curve, the derivative T ′ of the unit tangent vector is
always perpendicular to T .



Chapter 11

The Geometry of Space

11.1 Lines and Planes

• The parametric equation of a line through p and q in Rn is

v = (1− t)p + tq,

where t is a real parameter.

• If we express the above parametric form as

v = p + t(q − p)

and denote p = (x0, y0, z0) and q − p = (a, b, c), we obtain the point-direction
parametric equation of a line through the point (x0, y0, z0) in the direction (a, b, c):

(x, y, z) = (x0, y0, z0) + t(a, b, c).

• To obtain the symmetric equation of a line we eliminate t by solving for and equating
the expression for t in terms of each component:

x− x0

a
=
y − y0

b
=
z − z0

c
.

Remark: In two dimensions, lines either intersect or are parallel. In three dimensions,
there is a third possibility, as illustrated in Figure 11.1.

• two lines can intersect; e.g. the x axis and the y axis.

• two lines can be parallel; e.g. the line (0, t, 1) for t ∈ R and the y axis.

• two lines can be skew; e.g. the line (0, t, 1) for t ∈ R and the x axis.

206
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Figure 11.1: The x and y axes intersect; the red line is parallel to the y axis; the red
line and the x axis are skew.

• A plane is determined by a point (x0, y0, z0), through which it passes, and a vector
(a, b, c), called the normal, that is perpendicular to every vector (x, y, z)−(x0, y0, z0)
in the plane:

(a, b, c) · (x− x0, y − y0, z − z0) = 0.

• If we let d = ax0 + by0 + cz0, then the equation of a plane becomes

ax+ by + cz = d.

Problem 11.1: Find the point of intersection of the plane x + 2y − z = 6 and the
line through two points (1, 0, 1) and (2,−1, 3).

Let (x, y, z) be the intersection point. Then

(x, y, z) = (1, 0, 1) + t[(2,−1, 3)− (1, 0, 1)] = (1 + t,−t, 1 + 2t).

Since (x, y, z) also lies on the plane x+ 2y − z = 6, we find from

(1 + t) + 2(−t)− (1 + 2t) = 6

that t = −2. Thus (x, y, z) = (−1, 2,−3).

Remark: In general, the (perpendicular) distance of a point (X, Y, Z) from a plane

(a, b, c) · (x− x0, y − y0, z − z0) = 0,

passing through (x0, y0, z0) and with unit normal (a, b, c)/
√
a2 + b2 + c2 is given by

D =

∣∣∣∣
(a, b, c)√
a2 + b2 + c2

· (X − x0, Y − y0, Z − z0)

∣∣∣∣ =

∣∣∣∣
(a, b, c) · (X, Y, Z)− d√

a2 + b2 + c2

∣∣∣∣ ,

where d = ax0 + by0 + cz0. In particular, on setting (X, Y, Z) = (0, 0, 0), we see
that |d| /

√
a2 + b2 + c2 is the distance of the plane from the origin.

https://www.math.ualberta.ca/~bowman/m101/fig/skewlines.html
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Problem 11.2: Determine the distance between the point (0, 1, 1) and the plane
containing (1, 0, 0), (−1, 1, 0), and (1,−1, 1).

The normal to the plane must be perpendicular to (−1, 1, 0)− (1, 0, 0) = (−2, 1, 0) and
(1,−1, 1)− (1, 0, 0) = (0,−1, 1). It therefore lies in the direction

∣∣∣∣∣∣

i j k
−2 1 0
0 −1 1

∣∣∣∣∣∣
= (1, 2, 2).

The distance D of the point (0, 1, 1) from the plane is then given by the length of the
projection of the vector (0, 1, 1)− (1, 0, 0) = (−1, 1, 1) in the direction (1, 2, 2):

D =

∣∣∣∣
(−1, 1, 1) · (1, 2, 2)√

12 + 22 + 22

∣∣∣∣ =
3

3
= 1.

Alternatively, D can be computed as the distance of the point (0, 1, 1) from the plane

1(x− 1) + 2y + 2z = 0,

or equivalently,
x+ 2y + 2z = 1.

One then finds

D =

∣∣∣∣
1 · 0 + 2 · 1 + 2 · 1− 1√

12 + 22 + 22

∣∣∣∣ =
3

3
= 1.

Problem 11.3: Find the distance between the lines (7t + 1,−4t, 2t + 1) and (5s −
1,−s+ 1, 7s− 1).

Since the lines are not parallel, they either intersect or are skew. In either case, the
lines belong to two parallel (possibly identical) planes. Our strategy is to first find parallel
planes containing these lines and then find the distance between the two planes. The normal
vector n to these planes must be perpendicular to the line directions (7,−4, 2) and (5,−1, 7):

n = (7,−4, 2)×(5,−1, 7) =

∣∣∣∣∣∣

i j k
7 −4 2
5 −1 7

∣∣∣∣∣∣
= (−26,−39, 13),

which is parallel to (2, 3,−1).
The distance between the planes is then given by the length of the projection of the

vector (1, 0, 1)− (−1, 1,−1) = (2,−1, 2) in the direction (2, 3,−1):

D =

∣∣∣∣
(2,−1, 2) · (2, 3,−1)√

22 + 32 + 12

∣∣∣∣ =
1√
14
.

Alternatively, the distance between the planes can be computed as the distance between
the point (1, 0, 1) on the first line and the plane

0 = 2(x+ 1) + 3(y − 1)− 1(z + 1) = 2x+ 3y − z − 2

containing the second line: ∣∣∣∣
2 · 1 + 3 · 0− 1 · 1− 2√

22 + 32 + 12

∣∣∣∣ =
1√
14
.
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• The parametric equation of a plane spanned by u and v through r0 is given by

r = r0 + tu + sv,

where t and s are real parameters.

11.2 Cylinders

Definition: A cylinder is composed of all lines in a given direction that pass through
a given plane curve.

• The set of points (x, y, z) such that x2+y2 = a2 represents a cylinder of radius a (and
infinite height). The intersection of this cylinder with every plane z = constant is
a circle of radius a.

• The set of points (x, y, z) such that y = x2 is a parabolic cylinder, composed of
infinitely many vertically shifted copies of the parabola {(x, x2, 0) : x ∈ R}.

Problem 11.4: Show that the surface

y2 + 4z2 = 4

is an elliptic cylinder parallel to the x axis, with major radius 2 (in the y direction)
and minor radius 1 (in the z direction).

Problem 11.5: Show that the intersection of the sphere r = 2 with the plane x−y = 0
lies on two elliptic cylinders. Determine the major and minor radii of these elliptic
cylinders.

In spherical polar coordinates, the plane x = y simplifies to ϕ = π/4. Since cosϕ =
sinϕ = 1/

√
2, any point (x, y, z) on this intersection satisfies

x =
√

2 sin θ

y =
√

2 sin θ

z = 2 cos θ,

where θ ∈ [0, π]. We then see that 2x2+z2 = 4 sin2 θ+4 cos2 θ = 4 and similarly 2y2+z2 = 4.
From the equations (

x√
2

)2

+
(z

2

)2
= 1

and (
y√
2

)2

+
(z

2

)2
= 1,

we see that the elliptic cylinders have minor radii of
√

2 and major radii of 2.
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11.3 Quadric Surfaces

Definition: A quadric surface is the generalization of a conic section to three dimen-
sional space. The form of a general quadric surface,

Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy = Iz + J,

may be reduced to one of the two standard forms

Ax2 +By2 + Cz2 = J

or
Ax2 +By2 = Iz,

by appropriate translation and rotation of the coordinate axes.

Remark: To visualize such a three dimensional surface, it helps to draw the various
cross sections or traces obtained when one of the coordinates is held fixed.

• The cross sections of an ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 obtained by holding z
fixed (thereby slicing the object with a plane parallel to the xy plane) are the
ellipses

x2

(ka)2
+

y2

(kb)2
= 1

with k2 = 1− z2/c2.

Remark: By stretching the axes by positive constants it is possible to put each
standard form for a quadric surface into one of the following canonical forms:

• With appropriate stretching of the coordinate axes, the ellipsoid takes on the form
of a sphere x2 + y2 + z2 = 1:

https://www.math.ualberta.ca/~bowman/m101/fig/ellipsoid.html
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• The hyperboloid of one sheet has the generic form x2 + y2 − z2 = 1:

• The hyperboloid of two sheets has the generic form −x2 − y2 + z2 = 1:

https://www.math.ualberta.ca/~bowman/m101/fig/hyperboloid.html
https://www.math.ualberta.ca/~bowman/m101/fig/hyperboloid2.html
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• The elliptic paraboloid has the generic form z = x2 + y2:

• The hyperbolic paraboloid has the generic form z = x2 − y2:

https://www.math.ualberta.ca/~bowman/m101/fig/paraboloid.html
https://www.math.ualberta.ca/~bowman/m101/fig/hyperbolicparaboloid.html
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Problem 11.6: Find an equation for the surface consisting of all points (x, y, z) that
are twice as far from the point (0, 0, 4) as they are from the plane z = 1. Sketch
and identify the surface.

The distance between (x, y, z) and (0, 0, 4) is equal to
√
x2 + y2 + (z − 4)2 and the

distance of (x, y, z) from the plane z = 1 is |z − 1|. We thus want

x2 + y2 + (z − 4)2 = [2(z − 1)]2.

This expands to
x2 + y2 + z2 − 8z + 16 = 4z2 − 8z + 4,

which reduces to the hyperboloid of two sheets

3z2 − x2 − y2 = 12.

https://www.math.ualberta.ca/~bowman/m101/fig/hyperboloid2b.html
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• The equation
x2 − y2 + z2 = 1.

describes a hyperboloid of one sheet about the y axis. On constant x surfaces the
trace is a hyperbola

z2 − y2 = 1− x2.

On constant z surfaces the trace is also a hyperbola:

x2 − y2 = 1− z2.

However, on constant y surfaces the trace is a circle of radius
√

1 + y2:

x2 + z2 = 1 + y2.

• The right circular cone x2 + y2 = z2 is a degenerate limit of the hyperboloid of one
sheet.

Remark: Recall that the parabola is the equation of all points equidistant from a
focus point and a line called the directrix. Similarly, the elliptic paraboloid is the
equation of all points equidistant from a focus point and a given plane. For example,
if we take the focus to be the point (0, 0, a) and the plane given by z = −a, we
find the distance from P = (x, y, z) to the focus to be

√
x2 + y2 + (z − a)2. If we

equate this to the distance z + a of P from the plane z = −a, we obtain

x2 + y2 + (z − a)2 = (z + a)2,

which simplifies to the paraboloid

x2 + y2 = 4az.

Problem 11.7: Find an equation for the surface consisting of all points that are
equidistant from the point (0, 1, 0) and the plane y = −1. Sketch and identify the
surface.

Let (x, y, z) be a point on the surface. Then the distance between (x, y, z) and (0, 1, 0)
is equal to

√
x2 + (y − 1)2 + z2 and the distance from the plane y = −1 is |y + 1|. So

x2 + (y − 1)2 + z2 = (y + 1)2.

On simplifying, we obtain the paraboloid 4y = x2 + z2.

https://www.math.ualberta.ca/~bowman/m101/fig/paraboloid2.html
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Remark: The traces of the hyperbolic paraboloid z = x2 − y2 are a hyperbola on
constant z surfaces and parabolas on constant x and y surfaces, as seen in the
following figure.

https://www.math.ualberta.ca/~bowman/m101/fig/hyperbolicparaboloid2.html


Chapter 12

Arc Length, Surface Area, and
Curvature

12.1 Arc Length

Suppose x(t) and y(t) are functions on [a, b] with continuous derivatives. We have
seen that the equations

x = x(t), y = y(t)

provide a parametric representation of a smooth curve (x(t), y(t)) in R2 in terms of
the parameter t.

As a special case, we could take x(t) = t and y(t) = f(t). The points (t, f(t))
describe the familiar graph of the function f(t). However, the parametric representa-
tion allows us to describe relations, such as circles, that are not the graph of a single
function.

Q. What is the length of such a curve?

A. To answer this question, we must first define the notion of what we mean by
the “length” of a smooth curve. What we seek is an extension of Pythagoras’
Theorem, which allows us to calculate the length of line segments in terms of
their endpoints, to general curves.

Definition: The arc length or path length s(t) of a smooth curve (x(t), y(t)) on [a, b]
is the unique differentiable function s(t) that satisfies s(a) = 0 and the property
that

(12.1)lim
h→0+

s(t+ h)− s(t)√
[x(t+ h)− x(t)]2 + [y(t+ h)− y(t)]2

= 1

for all t ∈ [a, b). That is, the difference between the path lengths s(t+ h) and s(t)
to any points P = (x(t), y(t)) and Q = (x(t+h), y(t+h)) on the curve, respectively,

216
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should reduce to the length of the straight line segment joining P and Q in the
limit h→ 0 (in which case Q→ P ).

y

x

x(t+ h)− x(t)

y(t+ h)− y(t)

a b

s(a) = 0

s(t)

s(t+ h)
s(b) = L

P = (x(t), y(t))

Q = (x(t+ h), y(t+ h))

Upon dividing the numerator and denominator on the left-hand side of Eq. (12.1)
by h we see that

lim
h→0+

s(t+ h)− s(t)
h√

lim
h→0+

[
x(t+ h)− x(t)

h

]2

+ lim
h→0+

[
y(t+ h)− y(t)

h

]2
= 1.

This gives us a formula for the derivative of s(t) for every t ∈ [a, b],

(12.2)s′(t) =
√

[x′(t)]2 + [y′(t)]2.

Upon integrating this result from a to b, we find an expression for the arc length
L = s(b) of a curve (x(t), y(t)) on [a, b]. Since s(a) = 0, we have

s(b) = s(b)− s(a) =

∫ b

a

s′(t) dt =

∫ b

a

√
[x′(t)]2 + [y′(t)]2 dt.

Remark: One can think of each point on the curve (x(t), y(t)) as the position of a
point in R2 at each time t. The integrand

√
[x′(t)]2 + [y′(t)]2 is just the magnitude

|v| of the velocity vector v = (x′(t), y′(t)). The arc length, being the integral of
the speed |v| with respect to time, is then seen to be the distance travelled by the
point (x(t), y(t)) over the time interval [a, b].

Remark: An easy way to remember the arc-length formula is to multiply Eq. (12.2)
formally by dt and square the result:

ds2 = dx2 + dy2.

This can be thought of as a statement of Pythagoras’ Theorem for differentials.
The arc length can then be computed by integrating ds between t = a and t = b,
remembering that dx = x′(t) dt and dy = y′(t) dt.
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• A circle of radius r ≥ 0 centered on the origin can be described either by the
equation x2 + y2 = r2 or in parametric form as (r cos t, r sin t) for t ∈ [0, 2π]. The
circumference of the circle is then given by

∫ 2π

0

√
[x′(t)]2 + [y′(t)]2 dt =

∫ 2π

0

√
r2 sin2 t+ r2 cos2 t dt =

∫ 2π

0

r dt = 2πr.

Remark: If the curve (x(t), y(t)) for t ∈ [a, b] can be described by a differentiable
function y = f(x), then

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ x(b)

x(a)

√
1 +

(
dy

dx

)2

dx =

∫ x(b)

x(a)

√
1 + [f ′(x)]2 dx.

• We could also compute the circumference of a circle as twice the arc length of the
function f(x) =

√
r2 − x2 on [−r, r]:

2

∫ r

−r

√
1 + [f ′(x)]2 dx = 2

∫ r

−r

√
1 +

( −2x

2
√
r2 − x2

)2

dx = 4

∫ r

0

√
1 +

x2

r2 − x2
dx

= 4

∫ r

0

√
r2

r2 − x2
dx = 4r

∫ r

0

1√
r2 − x2

dx

= 4r

∫ 1

0

1√
1− u2

du = 4r[arcsinu]10 = 2πr,

where we have used the substitution u = x/r.

Remark: Of course, we can also express arc length as an integral in y:

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ y(b)

y(a)

√(
dx

dy

)2

+ 1 dy.

• Find the arc length L of the parabola y2 = x between (0, 0) and (1, 1).

Since dx/dy = 2y, we know that L =
∫ 1

0

√
(2y)2 + 1 dy. Let 2y = tan θ, so that

2 dy = sec2 θ dθ. Then
∫ √

4y2 + 1 dy =
1

2

∫
sec3 θ dθ =

1

4
(sec θ tan θ + log |sec θ + tan θ|) + C,

using a result from page 137. Thus

L =
1

4

[
2y
√

4y2 + 1 + log
∣∣∣
√

4y2 + 1 + 2y
∣∣∣
]1

0
=

1

4

[
2
√

5 + log
(√

5 + 2
)]
.
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Problem 12.1: A quadratic Bezier approximation to a quarter unit circle is described
by the curve x(t) = 1 − t2 and y(t) = 2t − t2, with t ∈ [0, 1]. Show that the arc
length of this curve is 1+log(1+

√
2)/
√

2. Hint: Recall that sinh−1 1 = log(1+
√

2).

Problem 12.2: A wheel of radius 1 is initially centered at (0, 0). The point on its
surface at (1, 0) is marked with a dot. The wheel then rolls along the line y = −1
one complete rotation.

y

x

y = −1

The position of the marked point at any time t ∈ [0, 2π] is given by the parametric
equations x(t) = t+ cos t, y(t) = − sin t. Find the arc length L of the path traced
out by the point (indicated above by the dotted curve).

Hint: Try multiplying the integrand by
√

1+sin t√
1+sin t

. Be careful about signs when
simplifying square roots!

L =

∫ 2π

0

√
x′2(t) + y′2(t) dt =

∫ 2π

0

√
(1− sin t)2 + cos2 t dt

=

∫ 2π

0

√
1− 2 sin t+ sin2 t+ cos2 t dt =

√
2

∫ 2π

0

√
1− sin t dt =

√
2

∫ 2π

0

√
1− sin t

√
1 + sin t√

1 + sin t
dt

=
√

2

∫ 2π

0

√
1− sin2 t√
1 + sin t

dt =
√

2

∫ 2π

0

|cos t|√
1 + sin t

dt =
√

2

∫ 3π/2

−π/2

|cos t|√
1 + sin t

dt

=
√

2

∫ π/2

−π/2

cos t√
1 + sin t

dt+
√

2

∫ 3π/2

π/2

− cos t√
1 + sin t

dt

= 2
√

2
[√

1 + sin t
]π/2
−π/2

− 2
√

2
[√

1 + sin t
]3π/2

π/2

= 2
√

2
[√

2− 0
]
− 2
√

2
[
0−
√

2
]

= 8.

https://www.math.ualberta.ca/~bowman/m101/fig/wheel.mp4
https://www.math.ualberta.ca/~bowman/m101/fig/wheel.mp4
https://www.math.ualberta.ca/~bowman/m101/fig/wheel.mp4
https://www.math.ualberta.ca/~bowman/m101/fig/wheel.mp4
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12.2 Arc Length in Polar Coordinates

Q. How can we, using polar coordinates, find the arc length of a curve r = r(θ) for
θ ∈ [a, b]?

A. Use the fact that x(θ) = r(θ) cos θ and y(θ) = r(θ) sin θ:

∫
ds =

∫ √
dx2 + dy2 =

∫ b

a

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ

=

∫ b

a

√
[r′(θ) cos θ − r(θ) sin θ]2 + [r′(θ) sin θ + r(θ) cos θ]2 dθ

=

∫ b

a

√
r′2 + r2 dθ.

• The circumference of a circle described in polar coordinates as r(θ) = a is thus seen

to be
∫ 2π

0

√
a2 dθ = 2πa.

• Consider the circle of radius a centered at (a, 0) described in polar coordinates as
r(θ) = 2a cos θ. Recall that as θ varies from 0 to 2π, the point (r, θ) moves twice
around the circle. Therefore, in order to compute the arc length of this curve, we
should only integrate from θ = 0 to θ = π:∫ π

0

√
4a2 sin2 θ + 4a2 cos2 θ dθ = π(2a) = 2πa.

Problem 12.3: Find the length of the cardioid r(θ) = 1 + cos θ.

Problem 12.4: Using the polar coordinates (r cos θ, r sin θ), consider the curve r =
r(θ) = e−aθ for θ ∈ [0,∞), where a > 0.

(a) Sketch the graph of this curve for a = 1
2π

.

(b) Show that the total arc length L =
∫∞

0

√
r′2 + r2 dθ of this curve is finite.

Evaluate L in terms of a.

Problem 12.5: In polar coordinates, (x, y) = (r cos θ, r sin θ), consider the curve

r(θ) =
1

1 + θ
for θ ∈ [0,∞).

(a) Sketch this curve on an xy graph.

y

x
(1, 0)
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(b) Express the arc length of this curve as an improper integral.
Since r′(θ) = −1/(1 + θ)2,

∫ ∞

0

√
1

(1 + θ)4
+

1

(1 + θ)2
dθ =

∫ ∞

1

√
1

u4
+

1

u2
du =

∫ ∞

1

1

u

√
1

u2
+ 1 du.

(c) Does this curve have finite length? Justify your answer.
No, the integral diverges:

0 ≤ 1

u
≤ 1

u

√
1

u2
+ 1

and

∫ ∞

1

1

u
du diverges, so we know from the Comparison Test that

∫ ∞

1

1

u

√
1

u2
+ 1 du

also diverges.

12.3 Arc Length in Three Dimensions

In three dimensions, the arc length formula generalizes to
∫ b

a

√
[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt,

which can be thought of as the time integral of the speed of the point r(t):

∫ b

a

|r′(t)| dt.

• The arc length of the helix (cos t, sin t, t) for t ∈ [0, 2π] is given by

∫ 2π

0

√
(− sin t)2 + (cos t)2 + 12 dt =

∫ 2π

0

√
2 dt = 2

√
2π.

Remark: It is often convenient to reparametrize a curve by its arc length, which is
a natural property of the curve that does not depend on a particular coordinate
system. In the above example, we see that the arc length s at parameter value t is
given by

s =

∫ t

0

√
2 dt =

√
2t.

If we change variables from t to s, we can then express the helix as

(
cos

s√
2
, sin

s√
2
,
s√
2

)

for s ∈ [0, 2
√

2π].
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12.4 Surface Area of Revolution

We have already discussed methods for finding the volume of an object that results
when we rotate a smooth curve about an axis. We now consider how to find the
surface area of such an object.

• If we revolve a line segment L about an axis parallel to itself, we obtain a cylinder.
If we cut this cylinder along L and unfold it, we see immediately that its surface
area is given by the product of its circumference 2πr and length L: A = 2πrL.

L L

2πr

r

In three dimensions, the green shaded region can be wrapped into a cylinder:

• Similarly, the surface area of a cone of slant height ` and radius r is given by

A =

(
2πr

2π`

)

︸ ︷︷ ︸
fraction
of circle

π`2
︸︷︷︸

area of
circle of
radius `

= πr`.

https://www.math.ualberta.ca/~bowman/m101/fig/sacylinder3D.html
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2πr

`

In three dimensions, the two blue lines in the above figure can be joined by wrapping
the green shaded region into a cone:

• A conical band (frustum) is obtained by removing from a large cone of radius r1

and slant height `1 a smaller cone of radius r2 < r1 and slant height `2 with the
same axis of symmetry,

`1

r1

`2

r2

such that (by similar triangles)
`1

r1

=
`2

r2

.

https://www.math.ualberta.ca/~bowman/m101/fig/sacone3D.html
https://www.math.ualberta.ca/~bowman/m101/fig/frustum3D.html
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The surface area of a conical band may be computed as the difference of the
respective surface areas A1 and A2 of the large and small cones. We may express this
area as

A = A1 − A2 = πr1`1 − πr2`2 = π(r1`1 − r2`2) = π(r1 + r2)(`1 − `2)
.
= 2πr`

since r1`2 − r2`1 = 0, where r
.
= (r1 + r2)/2 is the mean radius and `

.
= `1 − `2 is the

length of the sloped edge of the band.

Remark: Thus, the surface area generated by rotating a straight line segment of
length ` about an axis a mean distance r away is just 2πr`.

We can now calculate the surface area of the object formed by rotating any smooth
curve about an axis.

Definition: The surface area of the object formed by rotating the smooth curve
(x(t), y(t)) on [a, b] is the unique differentiable function A(t) that satisfies A(a) = 0
and the property that

lim
h→0+

A(t+ h)− A(t)

2π

(
r(t) + r(t+ h)

2

)√
[x(t+ h)− x(t)]2 + [y(t+ h)− y(t)]2

= 1,

for all t ∈ [a, b), where r(t) is the distance of (x(t), y(t)) from the axis of rotation.

Hence
A′(t) = 2πr(t)

√
[x′(t)]2 + [y′(t)]2,

so that

A(b) = A(b)− A(a) = 2π

∫ b

a

r(t)
√

[x′(t)]2 + [y′(t)]2 dt.

Remark: An easy way to remember this result is to integrate the product of the
circumference 2πr (associated with a complete revolution of a point on the curve
about the axis) and the infinitesimal arc length ds =

√
dx2 + dy2.

• The area generated by revolving the curve y = f(x) for x ∈ [a, b] about the x axis is

2π

∫
|y| ds = 2π

∫ b

a

|f(x)|
√

1 + [f ′(x)]2 dx.

• The area generated by revolving the curve y = f(x) for x ∈ [a, b] about the y axis is

2π

∫
|x| ds = 2π

∫ b

a

|x|
√

1 + [f ′(x)]2 dx.
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• The surface area of a sphere of radius a can be computed by revolving the curve
y =
√
a2 − x2 for x ∈ [−a, a] about the x axis. Since dy/dx = −x/

√
a2 − x2, the

surface area is seen to be

2π

∫
y ds = 2π

∫ a

−a
y

√
1 +

x2

a2 − x2
dx = 2π

∫ a

−a

√
a2 − x2

(
a√

a2 − x2

)
dx = 4πa2.

• Alternatively, the surface area of a sphere of radius a can be computed using the
parametric representation (a cos t, a sin t) of a half circle, with t ∈ [0, π]. If we
rotate this curve about the x axis, the surface area is seen to be

2π

∫
y ds = 2π

∫ π

0

a sin t
√
a2 sin2 t+ a2 cos2 t dt = 2πa2

∫ π

0

sin t dt = 2πa2[− cos t]π0 = 4πa2.

• The surface area generated by rotating the section of the parabola y = x2 from
(1, 1) to (2, 4) about the y axis can be computed from the formula 2π

∫
x ds =

2π
∫
x
√
dx2 + dy2:

2π

∫ 2

1

x

√
1 +

(
dy

dx

)2

dx = 2π

∫ 2

1

x
√

1 + 4x2 dx

= 2π

[
2

3

(
1 + 4x2

) 3
2

1

8

]2

1

=
π

6

(
17

3
2 − 5

3
2

)
.

12.5 Curvature

Remark: If we parametrize a curve with respect to arc length s, the derivative T ′(s)
provides us with a convenient measure, independent of parametrization, of how
quickly the curve changes direction.

Definition: The curvature κ of a curve with unit tangent vector T parametrized by
arc length s is given by

κ =

∣∣∣∣
dT

ds

∣∣∣∣ .

Remark: Since the arc length up to a point r(t) on a curve is given by

s =

∫ t

0

|r′(t)| dt,

we see that ds/dt = |r′(t)|. This allows us to express curvature in terms of an
arbitrary parametrization r(t):

κ =

∣∣∣∣
dT /dt

ds/dt

∣∣∣∣ =
|T ′(t)|
|r′(t)| .
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• The curvature of a straight line is zero (since the tangent vector is constant).

• If we parametrize a circle of radius a as r(t) = a cos ti + a sin tj, we find r′(t) =
−a sin ti + a cos tj, so that

T (t) =
r′(t)

|r′(t)| =
−a sin ti + a cos tj

a
= − sin ti + cos tj.

The rate of change in the tangent vector,

T ′(t) = − cos ti− sin tj,

can then be used to find the curvature:

κ =
|T ′(t)|
|r′(t)| =

1

a
.

We thus see that small circles have large curvature and large circles have small
curvature.

Remark: A more convenient expression for curvature can be obtained by noting that

r′ = |r′|T =
ds

dt
T ,

so that

r′′ =
d2s

dt2
T +

ds

dt
T ′.

Then since T×T = 0, T ·T ′ = 0, and |T | = 1, we find

|r′×r′′| =
∣∣∣∣
ds

dt
T×

(
d2s

dt2
T +

ds

dt
T ′
)∣∣∣∣ =

∣∣∣∣∣

(
ds

dt

)2

T×T ′

∣∣∣∣∣ = |r′|2 |T ′| .

Thus

κ =
|T ′|
|r′| =

|r′×r′′|
|r′|3

.

• To find the curvature of the twisted cubic r(t) = (t, t2, t3), first compute

r′(t) = (1, 2t, 3t2),

and

r′′(t) = (0, 2, 6t),
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from which we see that |r′(t)|=
√

1 + 4t2 + 9t4. Also,

r′(t)×r′′(t) =

∣∣∣∣∣∣

i j k
1 2t 3t2

0 2 6t

∣∣∣∣∣∣
= 6t2i− 6tj + 2k,

so that
|r′(t)×r′′(t)| =

√
36t4 + 36t2 + 4 = 2

√
9t4 + 9t2 + 1.

Thus

κ(t) =
|r′×r′′|
|r′|3

=
2
√

9t4 + 9t2 + 1

(1 + 4t2 + 9t4)3/2
.

Problem 12.6:

(a) Show that the curve

r(t) =
(

2 +
√

2 cos t, 1− sin t, 3 + sin t
)
, t ∈ R

lies at the intersection of a sphere and a plane.
Let x = 2 +

√
2 cos t, y = 1− sin t, z = 3 + sin t. Since

(x− 2)2 + (y − 1)2 + (z − 3)2 = 2 cos2 t+ sin2 t+ sin2 t = 2

we conclude that the curve lies on the sphere of radius
√

2 centered at (2, 1, 3). Also, since

y + z = 1− sin t+ 3 + sin t = 4 we conclude that the curve lies in the plane y + z = 4. The

curve therefore lies at the intersection of a sphere and a plane, which is a circle. Notice

that the center of the sphere is on this plane and hence the curve is actually a great circle

on the sphere, having the same center and radius.

(b) Find the curvature at an arbitrary point on the curve.
Since the curvature at every point of a circle of radius R is 1/R, we conclude that the

curvature of the curve is 1/
√

2.
Alternatively, we can find the curvature of the curve directly from the formula

κ =
|r′×r′′|
|r′|3

.

Since
r′(t) =

(
−
√

2 sin t,− cos t, cos t
)

and
r′′(t) =

(
−
√

2 cos t, sin t,− sin t
)
,

we find that

r′×r′′ =

∣∣∣∣∣∣

i j k
−
√

2 sin t − cos t cos t
−
√

2 cos t sin t − sin t

∣∣∣∣∣∣
= 0i−

√
2j −

√
2k.

Hence

κ =
|r′×r′′|
|r′|3

=
2

(√
2
)3 =

1√
2
.
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12.6 The Normal and Binormal Vectors

In computer graphics, it is often convenient to represent a curve using a local coordi-
nate system that is aligned with and twists with the curve. One obvious candidate for
one of the component vectors of such a coordinate system is the unit tangent vector

T =
r′

|r′| . We have already seen that the vector T ′ is perpendicular to T . A good

choice for the second component vector is therefore the unit normal

N =
T ′

|T ′| .

To find a third such vector, we simply take the cross product of T and N . This is
known as the binormal vector

B = T×N .

Notice that since T and N are unit vectors that are perpendicular to each other, B
is already a unit vector. It is perpendicular to both T and N .

Remark: The plane spanned by T and N is called the osculating plane; this is the
plane that comes closest to containing the portion of the curve near P . The circle
of radius 1/κ that lies in the osculating plane, has the same tangent as the curve at
P , and lies in the direction of N is called the osculating circle or circle of curvature
to the curve at P . It is the circle that at P has the same tangent, normal, and
curvature as the curve itself. The radius 1/κ is called the radius of curvature.

https://www.math.ualberta.ca/~bowman/m101/fig/frenet.html
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Remark: The plane spanned by N and B at a point P on a curve is called the
normal plane; this is the set of all vectors that are perpendicular to the tangent
vector T .

Problem 12.7: Find the equations of the osculating and normal planes of the helix
r(t) = (cos t, sin t, t) at the point (0, 1, π/2).

First note that the point (0, 1, π/2) corresponds to the parameter value t = π/2. Since

r′(t) = (− sin t, cos t, 1)

has magnitude
√

(− sin t)2 + cos2 t+ 1 =
√

2, the tangent vector is

T (t) =
r′(t)
|r′(t)| =

1√
2

(− sin t, cos t, 1).

Then

T ′(t) =
1√
2

(− cos t,− sin t, 0).

At t = π/2 we thus find that T (π/2) = 1√
2
(−1, 0, 1) and T ′(π/2) = 1√

2
(0,−1, 0). The unit

normal vector at t = π/2 is thus

N(π/2) =
T ′(π/2)

|T ′(π/2)| = (0,−1, 0).

We can then compute the binormal vector

B(π/2) = T (π/2)×N(π/2) =
1√
2

∣∣∣∣∣∣

i j k
−1 0 1
0 −1 0

∣∣∣∣∣∣
=

1√
2

(1, 0, 1).

The osculating plane spanned by T and N has normal B, which is parallel to (1, 0, 1),
and contains (0, 1, π/2):

x+ (z − π/2) = 0.

The normal plane spanned by N and B has normal T , which is parallel to (−1, 0, 1),
and contains (0, 1, π/2):

−x+ (z − π/2) = 0.

Remark: It is possible to find B directly from r and its derivatives, without first
computing T and N . From

T (t) =
r′(t)

|r′(t)| ,

we see that

T ′(t) =
r′′(t)

|r′(t)| + r′(t)
d

dt

1

|r′(t)| .
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Since

N =
T ′

|T ′| ,

we see that the direction of B = T×N is therefore the same as the direction of

r′×r′′,

on noting that r′×r′ = 0.

• In Problem 12.7, the direction of B can alternatively be computed by evaluating
r′(t) = (− sin t, cos t, 1) and r′′(t) = (− cos t,− sin t, 0) at t = π/2. We find

r′(π/2)×r′′(π/2) =

∣∣∣∣∣∣

i j k
−1 0 1
0 −1 0

∣∣∣∣∣∣
= (1, 0, 1).
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converges, 152, 155, 167
convex, 82
cos, 14
cosh, 71
cot, 14
coth, 71
critical, 80
cross sections, 117
csc, 14
csch, 71
cubic Bézier curve, 195
curvature, 225
cusp, 205
cylinder, 209
cylindrical coordinates, 201

decreasing, 13, 33
definite integral, 96, 101
degree, 12
degrees, 16
derivative, 45
Derivative Notation, 49
differentiable, 45
direction field, 162
directrix, 214
discontinuous, 40
discriminant, 143
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Divergence Test, 169
divergent, 167
diverges, 30, 152, 155
domain, 11

ellipsoid, 210
elliptic paraboloid, 212, 214
equation of a plane, 207
Euler’s, 163
even, 12
expansion point, 181
Extrema, 76
Extreme Value Theorem, 75
extremum, 75

family, 101
family of solutions, 160
Fibonacci, 29
First Convexity Test, 83
First Derivative Test, 80
first-order linear differential equation, 160
focus, 214
frustum, 223
FTC, 100
function, 11
Fundamental Theorem of Calculus, 100

geometric series, 167
global extrema, 76
global maximum, 75
global minimum, 75
graph, 216
great circle, 227
growth rate, 160

harmonic series, 168
horizontal line test, 61
Hyperbolic functions, 71
hyperbolic paraboloid, 212
hyperboloid of one sheet, 211
hyperboloid of two sheets, 211

implicit differentiation, 59
implicit equation, 59
improper integral, 152, 158
increasing, 13, 33
indefinite integral, 101
infinite series, 167
inflection point, 82
initial condition, 160
initial-value problem, 161
instantaneous velocity, 45
integrable, 96
Integral Test, 170
integrating factor, 164
integration by parts, 128
interior local extremum, 75, 76
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interior local minimum, 75
interior point, 40
Intermediate Value Theorem, 43
intersect, 206
inverse, 61
invertible, 61
IVT, 43

L’Hôpital’s Rule for 0
0
, 87

L’Hôpital’s Rule for ∞∞ , 88
left Riemann sum, 95
Leibniz Alternating Series Test, 175
Leibniz’s formula, 59
Limit Comparison Test, 174
Limit Ratio Test, 179
Limit Root Test, 180
linear, 46
linear differential equation, 164
linear interpolation, 82
local extremum, 75
logistic equation, 160

Maclaurin Series, 188
Mathematical Induction, 24
Mean Value Theorem, 78
method of cross sections, 117
method of cylindrical shells, 124
Midpoint Rule, 111
monotone, 33
MVT, 78

necessary, 76
Newton’s method, 92
Newton-Raphson, 92
node, 195
noninvertible, 61
nonlinear, 46
normal, 207
normal plane, 229

odd, 12
one-to-one, 61
open, 7
osculating circle, 228

osculating plane, 228

parabolic cylinder, 209
parallel, 206
parameter, 216
parametric equation of a line, 206
parametric equation of a plane, 209
parametric form, 195
parametric representation, 216
partial fraction decomposition, 142
partial sum, 167
path length, 216
piecewise, 13
Piecewise Integration, 97
plane, 207
point-direction parametric equation of a

line, 206
Polar coordinates, 196
Polynomials, 12
postcontrol point, 195
power series, 181
precontrol point, 195
principal branch, 63
proper form, 142
Pythagoras’ Theorem, 15

quadric surface, 210

radians, 16
Radius of Convergence, 182
radius of convergence, 182
radius of curvature, 228
range, 11
Ratio Comparison Test, 178
Ratio Test, 179
Rational functions, 12, 141
reduction formula, 132
remainder, 172, 186
Remainder Estimate, 172
Riemann Integral, 96
Riemann sum, 94
right circular cone, 214
right Riemann sum, 95
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Rolle’s Theorem, 77
Root Test, 180

sample points, 95
sec, 14
secant line, 44
sech, 71
Second Convexity Test, 84
Second Derivative Test, 81
separable, 163
sequence, 29
shells, 123
Simpson’s Rule, 111
sin, 14
sinh, 71
skew, 206
slant asymptote, 90
slope, 45
smooth, 205
smooth curve, 216
space curve, 204
speed, 217
spherical coordinates, 202
Squeeze Theorem, 33
Squeeze Theorem for Functions, 39
step size, 163
strictly decreasing, 13
strictly increasing, 13
Substitution Rule, 104
sufficient, 76
Summation Notation, 26
surface area, 224

Tan, 63
tan, 14
tangent line, 44
tanh, 71
Taylor expansion, 186
Taylor Series, 188
Taylor’s inequality, 187
Taylor’s Theorem, 186
Telescoping sum, 28
trace, 214

traces, 210
transcendental functions, 151
Trapezoidal Rule, 109
Triangle Inequality, 9
Triangle Inequality for Integrals, 97
Trigonometric functions, 14

unit circle, 15
unit normal, 228
unit tangent vector, 205

vanish, 78
vector function, 203
vector-valued function, 203
velocity, 217
vertical line test, 11
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