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Minkowski’s theorem

Denote by Kn
c the family of compact, convex sets in Rn

Theorem (Minkowski)
Fix K1,K2, . . . ,Km in Kn

c . Then the function

F (λ1,λ2, · · · ,λm) = Vol (λ1K1 + λ2K2 + · · ·+ λmKm)

is a homogeneous polynomial of degree n, with non-negative coefficients

Here + is the Minkowski addition:

A+ B = {a+ b : a ∈ A, b ∈ B}
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Minkowski’s theorem - Contd.

Theorem (Minkowski, second version)
There exists a form V : (Kn

c )
n → [0,∞) which:

is symmetric in its arguments:
V (K1,K2, . . . ,Kn) = V (Kσ(1),Kσ(2), . . . ,Kσ(n)).
is multilinear (linear in each argument).
satisfies V (K ,K , . . . ,K ) = Vol(K ).

We say that V is the polarization of the volume w.r.t the Minkowski
addition.

V (K1,K2, . . . ,Kn) is called the mixed volume of the bodies.

Minkowski’s discovery was actually about the Minkowski sum and volume.

The Steiner polynomial was about something else: it is on polynomiality of
the volume of an “ε-tube” around a convex body.
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Quasi-concave functions

We will work in the following class:

Definition
A function f : Rn → [0,∞) is quasi-concave if

f (λx + (1− λ)y) ≥ min {f (x), f (y)}

for x , y ∈ Rn and 0 < λ < 1.

For this talk, also assume that f is upper semicontinuous, max f = 1 and
f (x)→ 0 as x → ∞.

Denote the class of these functions by QC (Rn).
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Operations on quasi-concave functions

Definition
The sum of functions f , g ∈ QC (Rn) is

(f ⊕ g) (x) = sup
y+z=x

min {f (y), g(z)} .

Similarly, for λ > 0 we define a compatible product via

(λ� f ) (x) = f
( x

λ

)
.
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A geometric interpretation of our addition

Fact
A function f : Rn → [0, 1] is in QC (Rn) if and only if its level sets

K t(f ) := Kt(f ) = {x ∈ Rn : f (x) ≥ t}

are convex and compact for 0 < t ≤ 1.

Fact
For f , g ∈ QC (Rn) and λ > 0

Kt (f ⊕ (λ� g)) = Kt(f ) + λKt(g)

In particular, for convex bodies K ,T ∈ Kn
c

1K ⊕ (λ� 1T ) = 1K+λT
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A functional Minkowski theorem

Theorem (M.-Rotem)
Fix f1, f2, . . . , fm ∈ QC (Rn). Then the function

F (λ1,λ2, · · · ,λm) =
∫

((λ1 � f1)⊕ (λ2 � f2)⊕ · · · ⊕ (λm � fm))

is a homogeneous polynomial of degree n, with non-negative coefficients.

Hence, there exists a polarization of the integral w.r.t ⊕. i.e. there exists
V : QC (Rn)n → [0,∞] which is symmetric, multilinear (w.r.t. our
operations) and V (f , f , · · · , f ) =

∫
Rn f (x)dx .

We call V (f1, f2, . . . , fn) the mixed integral of f1, f2, . . . , fn.
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Properties of the addition

It is obvious that the class QC (Rn) is closed under ⊕.

Surprisingly, the same is true for log-concave functions (and also more
generally α-concave functions, for any α).

Definition
Fix −∞ ≤ α ≤ ∞. A function f : Rn → [0,∞) is α-concave if for every
x , y ∈ Rn such that f (x)f (y) > 0 and every 0 ≤ λ ≤ 1 we have

f (λx + (1− λ)y) ≥ [λf (x)α + (1− λ) f (y)α]
1
α .

f is log-concave if it is 0-concave, i.e. it satisfies

f (λx + (1− λ)y) ≥ f (x)λf (y)1−λ.

Like before, assume also that f is upper semicontinuous, max f = 1 and
f (x)→ 0 as x → ∞.
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Addition on convex functions

The operation ⊕ on log (and α)-concave functions is induced by an
operation � on convex functions, defined by

(ϕ � ψ) (x) = inf
y+z=x

max {ϕ(y),ψ(z)} .

Equivalently,
K t (ϕ � ψ) = K t(ϕ) +K t(ψ),

where
K t(ϕ) = {x ∈ Rn : ϕ(x) ≤ t} .

Also, � preserves convexity (!)
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Another addition on convex functions

Definition
If ϕ,ψ : Rn → [0,∞] are convex functions, their inf-convolution is defined
by

(f�g) (x) = inf
y+z=x

(ϕ(y) + ψ(z)) .

(� is the Legendre image of the sum of convex functions)

This allows us to define the sum f ? g of log-concave functions, by

(f ? g) (x) = sup
y+z=x

f (y)g(z)

Notice that � and � are actually close. For geometric convex functions
we have

1
2 (ϕ�ψ) ≤ ϕ � ψ ≤ ϕ�ψ
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Convex sets with measures

As a special case of the general construction, one can define a Minkowski
type addition for the class of pairs (K , µ) where K is a convex set and µ a
measure (say, log-concave) supported on K .

Indeed, we can identify such a measure µ with its density f and define

(K , f ) + (T , g) = (K + T , f ⊕ g) ,

where, as usual

{x : (f ⊕ g) (x) ≥ t} = {x : f (x) ≥ t}+ {x : g(x) ≥ t}
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Uniqueness

Question
Assume that � is an addition operation on QC (Rn) which polarizes the
Lebesgue integral. Is it necessarily true that � = ⊕?

In fact, even the corresponding question for Kn
c is unsolved.
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Quermassintegrals
A very important particular case of mixed volumes is the quermassintegrals of K :

Wk (K ) = V (K ,K , . . . ,K︸ ︷︷ ︸
n−k times

,D,D, . . . ,D︸ ︷︷ ︸
k times

)

They are the coefficients of the Steiner polynomial Vol (K + εD).

In our functional generalization,

Wk (f ) = V (f , f , . . . , f︸ ︷︷ ︸
n−k times

, 1D , 1D , . . . , 1D︸ ︷︷ ︸
k times

)

will be called the quermassintegrals of f . These are the coefficients of the
generalized Steiner polynomial∫

(f ⊕ (ε� 1D)) =
∫

sup
|y |<ε

f (x + y)dx .

This notion was independently introduced by Bobkov, Colesanti and Fragalà
(using a different approach).
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Inequalities
Remember that a log-concave function f : Rn → [0,∞) is called
geometric if maxx∈Rn f (x) = f (0) = 1.
There are well known Alexandrov inequalities for “volume”
quermassintegrals. We have the corresponding Alexandrov type
inequalities for geometric log-concave functions:

Theorem (M.-Rotem)
Define g(x) = e−|x |. For every geometric log-concave function f and
every integers 0 ≤ k < m < n we have(

Wk(f )
Wk(g)

) 1
n−k
≤
(
Wm(f )
Wm(g)

) 1
n−m

,

with equality if and only if f (x) = e−c |x | for some c > 0.

In particular, this theorem implies an isoperimetric type and an Urysohn type
inequalities.
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Inequalities for quasi-concave functions

Let us return to our case of quasi-concave functions with ⊕ as sum.

Definition
For f ∈ QC (Rn) define its symmetric decreasing rearrangement f ∗ by the
relation

Kt(f ∗) = Kt(f )∗.

Here K ∗ is the Euclidean ball centered at 0 with the same volume as K .

Facts (M.-Rotem)
Assume fi ∈ QC (Rn). Then

S(f ) ≥ S(f ∗), where S(f ) = nV (f , f , . . . , f , 1D).
V (f1, f2, . . . , fn) ≥ V (f ∗1 , f ∗2 , . . . , f ∗n ). If fi = 1Ki this reduces to
V (K1,K2, . . . ,Kn) ≥ (∏n

i=1 |Ki |)
1
n .

Brunn-Minkowski inequality: (f1 ⊕ f2)∗ ≥ f ∗1 ⊕ f ∗2 .
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Inequalities for quasi-concave functions

More delicate results require a generalized notion of rearrangement. For
example:

Definition
For K ∈ Kn

c and 0 ≤ i ≤ n− 1 let KWi be the Euclidean ball centered
around 0 with the same i-th quermassintegral as K .
If f ∈ QC (Rn) we define f Wi by the relation

Kt
(
f Wi
)
= Kt(f )Wi

Now the following is a proper generalization of the Alexandrov inequalities:

Proposition
If 0 ≤ i < j < n then f Wj ≥ f Wi for every f ∈ QC (Rn) .
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Inequalities (not connected with polynomiality)

Whenever we have a cone structure on a set X and a “size” function |·|,
we can try and bound the first variation functional

V (A,B) = lim inf
λ→0+

|A� (λ �B)| − |A|
λ

in terms of |A| and |B|.

Polynomiality is NOT a necessary condition for such lower bounds to be
meaningful. Several examples include:

Vitali Milman A functional Minkowski theorem 17 / 21



Inequalities (not connected with polynomiality)

Convex bodies containing the origin, with standard volume and the
operation of p-sum:

hp
K+T (x) = hp

K (x) + hp
T (x)

We have a Brunn-Minkowski type inequality, which implies an
inequality of Minkowski type (Lutwak):

V (K ,T ) ≥ n
p |K |

1− p
n |T |

p
n .

In particular, the Urysohn inequality in this case reads

∫
Sn−1

hp
K (θ)dσ(θ) =

p
n |D| · V (D,K ) ≥

(
|K |
|D|

) p
n
.
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Inequalities (not connected with polynomiality)

Convex bodies containing the origin, with standard volume and the
operation of polar sum

K �T = (K ◦ + T ◦)◦ .

Again, we have a Brunn-Minkowski type inequality (Firey, Lutwak):

|K �T |−
1
n ≥ |K |−

1
n + |T |−

1
n .

The corresponding Urysohn inequality, for example, will read

1
w (K ◦)

≤
(
|K |
|D|

) 1
n
,

which is well known and has a lot of meaning in Asymptotic Theory.
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Inequalities (not connected with polynomiality)

Convex bodies, with standard volume and the operation of Blaschke
sum.
The Brunn-Minkowski inequality (Kneser–Süss) is

|K#T |
n−1

n ≥ |K |
n−1

n + |T |
n−1

n ,

which leads to the bound

V (K ,T ) ≥ n
n− 1 |K |

1
n |T |1−

1
n
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Inequalities (not connected with polynomiality)

Log-concave functions with Lebesgue integral as volume, and
sup-convolution as addition.
There exists Brunn-Minkowski inequalities (Prèkopa–Leindler), which
again yields first variation bounds (Klartag-M., Rotem,
Colesanti-Fragalà).
More generally, α-concave functions with Lebesgue integral as
volume, and ?α as addition.
The Brunn-Minkowski type inequality is due to Borell, Brascamp and
Lieb, and the resulting Urysohn inequality is due to Rotem.

In almost all results, it is possible to replace the volume (or integral) with
general quermassintegrals. In the case of α-concave functions, this is due
to Bobkov, Colesanti, and Fragalà.
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