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L Introduction

m K is a convex body in R"

m Affine surface area as1(K) = [y m(:p)#ldu(m)
_Db
m L, affine surface area  asy(K) = [y, — 5 ——rydp

(z,N(z)) m+p

(Blaschke, Leichtweiss, Lutwak, Meyer-Werner, Schiitt-Werner .. .)
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L Introduction

@ :R™ — [0,00) is log concave if ¢ = e™%, ¢ : R” — R convex.

Theorem 1 (Artstein-Klartag-Schiitt-Werner, '12)

Let ¢ : R™ — [0,00) be a log concave function such that

[ pdz = 1.

/ @ln (det (Hess(—lngp)))da; < 2[Ent(yp) — Ent(g)]
supp(«)

2
llz]]

where g(z) = (2m)"ze" 2 .

Note that Ent(p) = [¢lnpdr and Ent(g) = —In(27e)?.
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L Introduction

Let ¢ : R™ — [0,00) be a log concave function.
The polar (Artstein-Klartag-Milman) of ¢ is
e_<may)

o) =it ©(y)

Functional Blaschke Santalé inequality (Ball;

Artstein-Klartag-Milman)

(fos) (] o) s
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Theorem 2 (C.-Schiitt-Werner, '13)

Let f:(0,00) — R be a convex function. Let ¢ : R™ — [0,00) be

a log concave function.

(Vo,z)

fo (S dwtmmnicmen Jaez (frie) 1 (755)
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a log concave function.

(Veo,z)
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If f is concave, the inequality is reversed. If f is linear, there is

equality.
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Theorem 2 (C.-Schiitt-Werner, '13)

Let f:(0,00) — R be a convex function. Let ¢ : R™ — [0,00) be

a log concave function.

(Veo,z)
: e i 5
/ © f(e 2 det (Hess (—In gp)))d:l; > (/ gpdw) f (Gid:>

If f is concave, the inequality is reversed. If f is linear, there is

equality.
If f is strictly convex or concave, there is equality for
o(z) = Ce={4%%) \where C' > 0 and A isann x n

positive-definite matrix.
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(Vo,z)

/sﬂ f(eg; det (Hess(—lnw)))dx > (/(pdx) f (Gij;)
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Theorem 2 =— Theorem 1

/SD f( (Vo,x)

e? det (Hess(_lnsp))>d$ > (/@dm) f ({fijj)
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Theorem 2 =— Theorem 1

/sﬂ f(ew;iw det (Hess(—lnw)))dx > (/(pdx) f (Gij;)

Put f(t) =1Int in Theorem 2:

/w {W";’” — 2Ing + In (det (Hess (— In gp)))]

= —n/gpdx—QEnt(go)+/<pln(det (Hess (—Ingp)))

e

/cpln (det (Hess(—1Ing))) < 2Ent(y)+In <6"/<p°das)

IN



Divergence for log concave functions
L Main Theorem

Theorem 2 =— Theorem 1

/sﬂ f( Se det(Hess(—lnso))>dx2 (/@dx) f (Gij;)

Put f(t) =1Int in Theorem 2:

/w {W";’” — 2Ing + In (det (Hess (— In gp)))]

= —n/gpdx—QEnt(go)+/<pln(det (Hess (—Ingp)))

e

/cpln(det(Hess(—lngp))) < 2Ent(yp —|—ln<e / de)

< 2Ent(p) + In (2me)"

IN
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The expressions of Theorem 2

Definition 3 (Csiszar, Morimoto, Ali-Silvery)

(X, p) is a measure space.
P = pp and @ = qu are measures on X that are absolutely
continuous with respect to the measure p.

f:(0,00) — R is a convex or a concave function.
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The expressions of Theorem 2

Definition 3 (Csiszar, Morimoto, Ali-Silvery)

(X, p) is a measure space.
P = pp and @ = qu are measures on X that are absolutely
continuous with respect to the measure p.

f:(0,00) — R is a convex or a concave function.

The f-divergence D¢(P,Q) of P and Q is

D¢(P,Q) = /Xf (5) qdp
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D;(P.@) = [ 1 (5) adp

1. f(t) = Int gives the Kullback-Leibler divergence or relative entropy

o Examples

from P to Q)

Dicr(PI@) = [ awZan
X q

2. The convex or concave functions f(t) =t leads to the Rényi entropy

1
_ In (/ paqlad‘u)
oa—1 x

The case a = 1 is the relative entropy Dy, (P[|Q).

of order «

Do (P|Q)
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(aKa ,LLK)
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u (XHU’) = (aKh“K)
QK = qx K, qx = (x, N(v))

Prc = prui: Pr = GG

m Qg and Pk are the cone measures of K and K°.
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B (X, p) = (0K, k)
Qk = qxpk, gk = (z,N(z))
Prc = prui: Pr = GG

m Qg and Pk are the cone measures of K and K°.

m [,-affine surface areas are a-Rényi entropy powers
(Werner, ’12)

ap D » (PxllQk)
(,LSI)(K) —e n+p nrp K

with o = -
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The f-divergence for a convex body K in R™ with respect to the

(cone) measures Px and Q) was defined by Werner

D¢(Pk,Qk) = /aKf <Z§> qrdp

= [t (i) = Ve
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J g

Let s € R. ¢ :R"™ — [0,00) is s-concave if for all A € (0, 1), for all

T,y

@ =

P ((1=Xz 4+ Ay) 2 [(1 = A)p(2)” + Ap(y)’]
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J g

Let s € R. ¢ :R"™ — [0,00) is s-concave if for all A € (0, 1), for all

T,y

@ =

P ((1=Xz 4+ Ay) 2 [(1 = A)p(2)” + Ap(y)’]

e relation to log concave functions:

Let © be a log concave function. Then for all s
1
ps=(1+slng);

is s-concave and (s — @ as s — 0
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Definition 5 ( f-divergences for s-concave functions)

s Vo, x
o522

det [Hess( In ) + smﬂ@v“’}

1
_ (Vea)\"tE
@(1 S - )

pg) =

D (PY, Q) =

det [Hess (—Iny) + svwﬁv“"} (Vo 2)
f 1—s—"L |dw
v nt+1+1 ®
SD2 (1 _ S< ﬁ@/’))
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L f_diverg f funct

D (Y, QY)) =

_ Yoove
; det[Hess( In ) + 557 } RACEIAW
v n+l+1 v i !
502 (1 _ SL;@’))

 s—=0
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L f_diverg f funct

DP(PY, Q) =

~ VeaVe
; det [Hess( Inp)+s 2 } - (Vp, ) d
v n+1+% ® s v
502 (1 _ SL;@’))

 s—=0

(Veo,@)
/f <€¢Zdet [Hess (1n<p)]> wdx
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L f_diverg f funct

DY (P, QL)) =

~ VeaVe
; det [Hess( Inp)+s 2 } - (Vp, ) d
v n+1+% ® s v
502 (1 _ SL;@’))

J s—=0

~Ne.z)

/f <e(p2det [Hess(1n<,0)]> edz  =: Dy(Py,Qy)
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L f_diverg f funct

D (Y, QY)) =

_ Yoove
; det[Hess( In ) + 557 } RACEIAW
v n+l+1 v i !
502 (1 _ SL;@’))

 s—=0

(Ve,z)

/f<e cpz det[HeSS(hNP)]) pdr =: Dy(Pp, Q)

for log concave ¢ with the corresponding ¢, = ¢ and

1 (Veo,z)

P =¢ ‘e ¢ det[Hess(—Iny)].
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Theorem 2

PP = ([ o) £ (L25)

If f is concave, the inequality is reversed. If f is linear, there is

equality.
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Theorem 2

i (fo) 1 (229

If f is concave, the inequality is reversed. If f is linear, there is

equality.

Theorem 1 Let [ pdz = 1.

Dir(P,||Qy) <1In (/ (poda;) < In (2me)"
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L f_diverg f funct

e relation to convex bodies
¢ : R™ — [0,00) s-concave. s > 0 such that 1 € N.

For such ¢ we consider the convex bodies introduced by

Artstein-Klartag-Milman

Ky(p) = {(z,y) € R" x R+ : 7 e supp(f), lyll < ¢*(—=)}

S
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J g

e relation to convex bodies
¢ : R™ — [0,00) s-concave. s > 0 such that 1 € N.
For such ¢ we consider the convex bodies introduced by

Artstein-Klartag-Milman

Ky(p) = {(z,y) € R" x R+ : 7 e supp(f), |yl < w%}

S

Proposition 6

_ Di(Pk,(¢), Qra()

(s) s s
Df (PSE’)’QSO)) 1_1‘

i3
S2 s
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Lf—t:livergences for s-concave functions

THANK YOU!

Email: uxc8@case.edu
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