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Smoothed analysis. [Spielman-Teng ’01]

In theoretical computer science:

“An object should become better under a random perturbation.”

Better = non-degenerate (hence algorithms are faster, more accurate).

Objects: polytopes, convex sets (?), polynomials, etc.
In this talk, an n × n matrix D.

Random perturbation = adding to D a random matrix R:

A = D + R.

”An n × n matrix D should become non-degenerate when replaced
by D + R, where R is a random matrix.”



Non-degeneracy

Qualitatively: A has full rank, invertible.

Quantitatively: control of ‖A−1‖.

Equivalently, the smallest singular value (smallest eigenvalue of
√

A∗A),

sn(A) =
1

‖A−1‖
= min

x

‖Ax‖2
‖x‖2

= dist‖·‖(A, non-invertible matrices).



Problem (Smoothed analysis of matrices)

Let D be a n × n deterministic matrix,
R be an n × n random matrix (some natural distribution, or “ensemble”).
Does the smallest singular value satisfy

sn(D + R) ≥ something nice

with high probability?

Intuition in 1D: if R has a continuous distribution, bounded density, then

|D + R| & 1 w.h.p.

The bound does not depend on D. Worst case: D = 0.



Gaussian random matrices R with iid entries (“Ginibre”)

Matrix case: D,R are n × n matrices.

Theorem [Sankar-Spielman-Teng ’06]

Let D be arbitrary, R be a Gaussian random matrix (entries iid N(0, 1)).
Then

P
{

sn(D + R) < εn−1/2
}
≤ ε, ε > 0.

Hence
sn(D + R) & n−1/2 with high probability.

The bound is independent of D.

“Worst case” is D = 0, since sn(R) ∼ n−1/2 [Edelman ’88, Szarek ’90].



General random matrices with iid entries (general Ginibre)

Theorem [Rudelson-Vershynin ’08]

Let ‖D‖ = O(
√

n) and R be a random matrix with iid sub-gaussian
entries, zero means, unit variances. Then

P
{

sn(D + R) < εn−1/2
}
≤ Cε+ cn, ε > 0.

Hence:

if ‖D‖ .
√

n, the result does not depend on D,
the “worst case” is D = 0.

If ‖D‖ � n, the result is generally false:



Example (Rudelson), see also [Tao-Vu ’08]

D = M · diag(0, 1, . . . , 1),
R = Bernoulli random matrix (entries iid ±1). Then

sn(D + R) ≤ C
√

n

M
with probability

1

2
.

Hence D = 0 is not the worst case!
D + R can become more degenerate for D large.

Open question: How large?

When does sn(D + R) start to feel the deterministic part D?

What we know:
Does not feel for ‖D‖ .

√
n, feels for ‖D‖ � n. Where is the threshold?



Polynomiality

In any case:

If ‖D‖ is polynomial in n, then sn(A + B) is polynomial, too.

Theorem. [Tao-Vu ’08]

For any B > 0 there exists A = A(α,B) so that if ‖D‖ ≤ nα, then

P
{

sn(D + R) < C n−A
}
≤ n−B .



Symmetric random matrices

R has iid sub-gaussian entries modulo symmetry: Rij = Rji .
(“general Wigner”)

Similar results, more difficult:

Theorem [Vershynin ’11]

P
{

sn(R) < εn−1/2
}
≤ Cε1/9 + exp(−nc), ε > 0.

Same for D + R where D is any diagonal matrix.
Thus Rudelson’s example is not a problem for symmetric matrices.

Theorem [Nguyen ’11]

For any B > 0 there exists A = A(α,B) so that if ‖D‖ ≤ nα, then

P
{

sn(D + R) < C n−A
}
≤ n−B .



When entries have continuous distributions

Conjecture

Suppose the entries of R have uniformly bounded densities.
Then sn(D + R) should not feel the deterministic part D.
The worst case should be D = 0.

What we know: Polynomial bounds independent of D, but non-optimal.

Theorem (simple for indep. entries; [Farrell-Vershynin ’12] for symmetric)

P
{

sn(D + R) < εn−p
}
≤ Cε, ε > 0.

p = 3/2 for indep. entries (maybe better), and p = 2 for symmetric.
C depends only on the maximal density of the entries of R.

Question. Is p = 1/2, i.e. sn(D + R) & εn−1/2, like in the Gaussian case?



Proof for symmetric matrices [Farrell, Vershynin ’12]

Enough to show that

(A−1)ij = O(1) with high probability.

Influence of A1n on (A−1)1n ? Cramer’s rule: (A−1)1n =
detA(1n)

detA

|A| = aA2
11 + 2b A11 + c , |A(11)| = a A11 + b.

Divide, use that A1n fluctuates continuously by & const w.h.p.



Proof for non-symmetric matrices: distance argument

A := D + R. sn(D + R) = 1/‖A−1‖ ≥?

Negative second moment identity (noticed by [Tao-Vu ’08]):

‖A−1‖2 ≤ ‖A−1‖2HS =
n∑

i=1

d(Ai ,Hi )
−2

where Ai = columns of A and Hi = span(Ai )i 6=j .

Remains to estimate each d(Ai ,Hi ); finish by union bound.



Proof for non-symmetric matrices: distance argument

d(A1,H1) = |〈A1, h1〉| =
∣∣∣ n∑
j=1

h1jA1j

∣∣∣
where h1 = unit normal for H1. Condition on h1; A1 is independent.

Hence we have a sum of independent random variables.

A1j are continuous, densities bounded by M ⇒ same for their sum
[Rogozin] + [Ball]. Hence

P
{

d(A1,H1) < ε
}
≤ CMε.

Remark. Discrete distributions - combinatorial arguments [Rudelson-V ’08].



Theoretical applications: limit laws in RMT

Polynomial estimates of sn(A) are essential for validating limit laws of
random matrix theory.

Two examples:

Circular law [Girko, Bai, Götze-Tikhomirov, Pan-Zhou, Tao-Vu]

Spectrum of n−1/2R converges to the uniform distribution on the unit disc:

Uses sn(R) ≥ n−c w.h.p.



Random unitary and orthogonal matrices

Conjecture (O. Zeitouni).

Let D be a deterministic matrix, U be a random matrix uniformly
distributed in U(n) or O(n). Show that

sn(D + R) ≥ n−c w.h.p. (1− n−10).

This is needed to validate the Single ring theorem:

Single ring theorem [Guionnet, Krishnapur, Zeitouni ’11]

Distribution of spectrum of UDV is supported in a single ring, where
U,V ∈ U(n) or O(n) random uniform.



Näıve approach:
Instead of using the full power of U ∈ U(n)
just multiply by a random complex number r , |r | = 1.

sn(D + U) ≡ sn(D + U−1) = sn(D + r−1U−1) = sn(rUD − I ).

Condition on U.

Multiplication by r ⇔ random rotation of spectrum σ(UD) in C.

σ(UD) = {n points}. Rotation separates it from σ(I ) = {1} w.h.p.

⇒ σ(rUD − I ) is bounded away from 0.

Q.E.D.?



Not Q.E.D. Fault:

Spectrum bounded away from 0 6⇒ matrix well invertible.

In other words, No eigenvalues near 0 6⇒ no singular values near 0.

Example [Trefethen, Viswanath ’98] Triangular random Gaussian matrix A:

σ(A) = diag(A) &
1

n
while sn(A) ∼ e−cn.



Random unitary matrices

Theorem (Unitary perturbations) [Rudelson, Vershynin ’12]

Let D be any fixed matrix, and U ∈ U(n) be random uniform. Then

P
{

sn(D + U) ≤ tn−C
}
≤ tc , t > 0.

Here C , c > 0 are absolute constants (independent of D).

Hence
sn(D + U) ≥ tn−C w.h.p.



Random orthogonal matrices

The result fails over R, for U ∈ O(n) !

Example. If n is odd, every rotation U ∈ SO(n) has eigenvalue 1.
⇒ −I + U is singular with probability 1/2.

Moreover: by rotation invariance,
every orthogonal matrix D is a counterexample:
D + U is singular with probability 1/2.

Main result: These are the only counterexamples.
If D is not approximately orthogonal, then

sn(D + U) ≥ tn−C w.h.p. :



Random orthogonal matrices

Theorem (Orthogonal perturbations) [Rudelson, Vershynin ’12]

Let D be a fixed matrix, and U ∈ U(n) be random uniform. Suppose

inf
V∈O(n)

‖D − V ‖ ≥ δ, ‖D‖ ≤ K .

Then
P
{

sn(D + U) ≤ t(δ/Kn)C
}
≤ tc , t > 0.

Here C , c > 0 are absolute constants (independent of D).

Remarks.
Orthogonal case is harder than unitary.
Nontrivial even in low dimensions n = 3, 4.

The bound ‖D‖ ≤ K may not be needed.

Optimal exponents C , c are unknown.



Approach: local perturbations

Difficulty: entries of U ∈ U(n) are dependent.

Fixing it: like in the näıve approach, do not use the full strength of U.
Instead, replace U by infinitesimal perturbations of identity
= skew-Hermitian matrices, S∗ = −S .

Advantage: skew-Hermitian matrices can be forced to have independent
entries.

Algebraically:

Local structure of Lie group U(n) is given by the associated Lie algebra
(= tangent space at I ) = space of skew-Hermitian matrices.



Approach: local perturbations

Problem: skew-symmetric matrices themselves are singular (for odd n)!

Indeed, one one hand

det(S) = det(ST) = det(−S) = (−1)n det(S).

So det(S) = 0.



Approach: complementing by global perturbations

Global perturbation: rotation in one coordinate (say, first) in Cn.
Multiply that coordinate by a random complex number r , |r | = 1.

Summary of the approach:
Use both local and global structures of U(n).
Local: skew-symmetric matrices (Lie algebra).
Global: random uniform rotation in one coordinate.



Formalizing local and global perturbations

sn(D + U) & ?

Local:
S := skew-symmetric real Gaussian random matrix, ε > 0 small (n−10).
Then I + εS is approximately unitary. ⇒ Replace U by I + εS .

Global:
R := diag(r , 1, . . . , 1), where r random uniform, |r | = 1.
Replace further I + εS by R−1(I + εS).

sn(D + U) ∼= sn(D + R−1(I + εS)) ∼= sn(RD ′ + I + εS).



Formalizing local and global perturbations

sn(D + U) ∼= sn(RD ′ + I + εS) ≥ ?

Condition on V .

Summary: two layers of randomness,
local S (Gaussian skew-symmetric); global R (rotation in first coordinate).

Advantages: S has independent entries (modulo skew-symmetry);
R is very simple (determined by one random variable r).

Challenges: skew-symmetry ⇒ dependences in half of the entries.
Otherwise we would finish by the distance argument like before.



Distance argument revisited

Distance argument: estimating sn(A) reduces to estimating

d(A1,H1) = |hT
1 A1| ≥ · · · w.h.p.

where A1 = first column of A and H1 = span(Aj)i>1, and h1 = H⊥1 .

Challenge of skew-symmetry: In our matrix A = RVD + I + εS , the
first column A1 is correlated with H1 through the first row.

How to express hT
1 A1 ?



Distance argument revisited

A = RD ′ + I + εS =

[
A11 Y T

X BT

]

Lemma (distance via quadratic forms)

|hT
1 A1| =

|A11 − XTMY |√
1 + ‖MY ‖22

, where M = B−1.

Our situation: Z ∈ Rn−1 random Gaussian vector,

S =

[
0 −ZT

Z 0

]
, D ′ =

[
p vT

u Q

]
⇒ A =

[
rp + 1 (rv − εZ )T

u + εZ I + Q

]
Good: hT

1 A1 is a self-normalized quadratic form in Gaussian random
variables (Z ). Essentially a linear form (ε2 = second order term).

Bad: bound it below without knowing much about M = (I + Q)−1.

Idea (local/global): Use r or Z (or both) depending on ‖M‖.



Orthogonal perturbations

Same approach (local/global, via quadratic forms), with one difference:

Global perturbation: instead of random rotation in one coordinate,
rotate in two coordinates.

Argument is more challenging.
Seems to differentiate odd and even n; reduces the problem to n = 3.



Entries of the inverse matrix

Question.

For A a random matrix, what is the magnitude of the entries of A−1?

Is max
ij
|(A−1)ij | . n−1/2 w.h.p. (up to log-factors)?

This would imply ‖A−1‖ ≤ ‖A−1‖HS . n1/2, so

sn(A) & n−1/2 w.h.p., as before.

Work by [L. Erdös-Schlein-Yau+Yin ’12], [Tao-Vu ’12].



Entries of the inverse matrix and delocalization
Question.

Is maxij |(A−1)ij | . n−1/2 w.h.p. (up to log-factors) ?

Related to delocalization of eigenvectors of A.

Heuristics. Say, A is symmetric, iid entries. Spectral decomposition:

A =
∑

λiuiu
T
i ⇒ A−1 =

∑
λ−1i uiu

T
i ≈ λ−1n unuT

n

where λn is the smallest eigenvalue in magnitude.

max
ij
|(A−1)ij | ≈ |λ−1n un(i)un(j)|.

Invertibility as before ⇒ λn & n−1/2. Delocalization: all |un(i)| . n−1/2.

⇒ max
ij
|(A−1)ij | . n−1/2.


