Smoothed analysis of random matrices

Roman Vershynin

University of Michigan

Asymptotic Geometric Analsysis II
Euler International Mathematical Institute, Saint-Petersburg, Russia, June 2013

Smoothed analysis. [Spielman-Teng '01]

In theoretical computer science:
"An object should become better under a random perturbation."

Better $=$ non-degenerate (hence algorithms are faster, more accurate).
Objects: polytopes, convex sets (?), polynomials, etc. In this talk, an $n \times n$ matrix D.

Random perturbation $=$ adding to D a random matrix R :

$$
A=D+R .
$$

"An $n \times n$ matrix D should become non-degenerate when replaced by $D+R$, where R is a random matrix."

Non－degeneracy

Qualitatively：A has full rank，invertible．
Quantitatively：control of $\left\|A^{-1}\right\|$ ．
Equivalently，the smallest singular value（smallest eigenvalue of $\sqrt{A^{*} A}$ ），

$$
\begin{aligned}
s_{n}(A) & =\frac{1}{\left\|A^{-1}\right\|}=\min _{x} \frac{\|A x\|_{2}}{\|x\|_{2}} \\
& =\operatorname{dist}_{\|\cdot\|}(A, \text { non-invertible matrices })
\end{aligned}
$$

Problem (Smoothed analysis of matrices)

Let D be a $n \times n$ deterministic matrix,
R be an $n \times n$ random matrix (some natural distribution, or "ensemble"). Does the smallest singular value satisfy

$$
s_{n}(D+R) \geq \text { something nice }
$$

with high probability?

Intuition in 1D: if R has a continuous distribution, bounded density, then

$$
|D+R| \gtrsim 1 \quad \text { w.h.p. }
$$

The bound does not depend on D. Worst case: $D=0$.

Gaussian random matrices R with iid entries ("Ginibre")

Matrix case: D, R are $n \times n$ matrices.

Theorem [Sankar-Spielman-Teng '06]
Let D be arbitrary, R be a Gaussian random matrix (entries iid $N(0,1)$). Then

$$
\mathbb{P}\left\{s_{n}(D+R)<\varepsilon n^{-1 / 2}\right\} \leq \varepsilon, \quad \varepsilon>0
$$

Hence

$$
s_{n}(D+R) \gtrsim n^{-1 / 2} \quad \text { with high probability. }
$$

The bound is independent of D.
"Worst case" is $D=0$, since $s_{n}(R) \sim n^{-1 / 2}$ [Edelman '88, Szarek '90].

General random matrices with iid entries (general Ginibre)

Theorem [Rudelson-Vershynin '08]

Let $\|D\|=O(\sqrt{n})$ and R be a random matrix with iid sub-gaussian entries, zero means, unit variances. Then

$$
\mathbb{P}\left\{s_{n}(D+R)<\varepsilon n^{-1 / 2}\right\} \leq C \varepsilon+c^{n}, \quad \varepsilon>0 .
$$

Hence:
if $\|D\| \lesssim \sqrt{n}$, the result does not depend on D, the "worst case" is $D=0$.

If $\|D\| \gg n$, the result is generally false:

Example (Rudelson), see also [Tao-Vu '08]
$D=M \cdot \operatorname{diag}(0,1, \ldots, 1)$,
$R=$ Bernoulli random matrix (entries iid ± 1). Then

$$
s_{n}(D+R) \leq \frac{C \sqrt{n}}{M} \quad \text { with probability } \frac{1}{2} .
$$

Hence $D=0$ is not the worst case!
$D+R$ can become more degenerate for D large.

Open question: How large?
When does $s_{n}(D+R)$ start to feel the deterministic part D ?

What we know:
Does not feel for $\|D\| \lesssim \sqrt{n}$, feels for $\|D\| \gg n$. Where is the threshold?

Polynomiality

In any case:
If $\|D\|$ is polynomial in n, then $s_{n}(A+B)$ is polynomial, too.
Theorem. [Tao-Vu '08]
For any $B>0$ there exists $A=A(\alpha, B)$ so that if $\|D\| \leq n^{\alpha}$, then

$$
\mathbb{P}\left\{s_{n}(D+R)<C n^{-A}\right\} \leq n^{-B} .
$$

Symmetric random matrices

R has iid sub-gaussian entries modulo symmetry: $R_{i j}=R_{j i}$.
("general Wigner")
Similar results, more difficult:

Theorem [Vershynin '11]

$$
\mathbb{P}\left\{s_{n}(R)<\varepsilon n^{-1 / 2}\right\} \leq C \varepsilon^{1 / 9}+\exp \left(-n^{c}\right), \quad \varepsilon>0
$$

Same for $D+R$ where D is any diagonal matrix.
Thus Rudelson's example is not a problem for symmetric matrices.
Theorem [Nguyen '11]
For any $B>0$ there exists $A=A(\alpha, B)$ so that if $\|D\| \leq n^{\alpha}$, then

$$
\mathbb{P}\left\{s_{n}(D+R)<C n^{-A}\right\} \leq n^{-B} .
$$

When entries have continuous distributions

Conjecture

Suppose the entries of R have uniformly bounded densities.
Then $s_{n}(D+R)$ should not feel the deterministic part D.
The worst case should be $D=0$.

What we know: Polynomial bounds independent of D, but non-optimal.
Theorem (simple for indep. entries; [Farrell-Vershynin '12] for symmetric)

$$
\mathbb{P}\left\{s_{n}(D+R)<\varepsilon n^{-p}\right\} \leq C \varepsilon, \quad \varepsilon>0 .
$$

$p=3 / 2$ for indep. entries (maybe better), and $p=2$ for symmetric.
C depends only on the maximal density of the entries of R.

Question. Is $p=1 / 2$, i.e. $s_{n}(D+R) \gtrsim \varepsilon n^{-1 / 2}$, like in the Gaussian case?

Proof for symmetric matrices [Farrell, Vershynin '12]

Enough to show that

$$
\left(A^{-1}\right)_{i j}=O(1) \quad \text { with high probability. }
$$

Influence of $A_{1 n}$ on $\left(A^{-1}\right)_{1 n}$? Cramer's rule: $\left(A^{-1}\right)_{1 n}=\frac{\operatorname{det} A_{(1 n)}}{\operatorname{det} A}$

$$
|A|=a A_{11}^{2}+2 b A_{11}+c, \quad\left|A_{(11)}\right|=a A_{11}+b
$$

Divide, use that $A_{1 n}$ fluctuates continuously by \gtrsim const w.h.p.

Proof for non-symmetric matrices: distance argument

$A:=D+R . \quad s_{n}(D+R)=1 /\left\|A^{-1}\right\| \geq$?
Negative second moment identity (noticed by [Tao-Vu '08]):

$$
\left\|A^{-1}\right\|^{2} \leq\left\|A^{-1}\right\|_{\mathrm{HS}}^{2}=\sum_{i=1}^{n} d\left(A_{i}, H_{i}\right)^{-2}
$$

where $A_{i}=$ columns of A and $H_{i}=\operatorname{span}\left(A_{i}\right)_{i \neq j}$.

Remains to estimate each $d\left(A_{i}, H_{i}\right)$; finish by union bound.

Proof for non-symmetric matrices: distance argument

$$
d\left(A_{1}, H_{1}\right)=\left|\left\langle A_{1}, h_{1}\right\rangle\right|=\left|\sum_{j=1}^{n} h_{1 j} A_{1 j}\right|
$$

where $h_{1}=$ unit normal for H_{1}. Condition on $h_{1} ; A_{1}$ is independent. Hence we have a sum of independent random variables.
$A_{1 j}$ are continuous, densities bounded by $M \Rightarrow$ same for their sum [Rogozin $]+[$ Ball]. Hence

$$
\mathbb{P}\left\{d\left(A_{1}, H_{1}\right)<\varepsilon\right\} \leq C M \varepsilon .
$$

Remark. Discrete distributions - combinatorial arguments [Rudelson- $\left.\underline{E}^{\prime} 08\right]_{\mathrm{ac}}$

Theoretical applications: limit laws in RMT

Polynomial estimates of $s_{n}(A)$ are essential for validating limit laws of random matrix theory.

Two examples:

Circular law [Girko, Bai, Götze-Tikhomirov, Pan-Zhou, Tao-Vu]

 Spectrum of $n^{-1 / 2} R$ converges to the uniform distribution on the unit disc:

Uses $s_{n}(R) \geq n^{-c}$ w.h.p.

Random unitary and orthogonal matrices

Conjecture (O. Zeitouni).

Let D be a deterministic matrix, U be a random matrix uniformly distributed in $U(n)$ or $O(n)$. Show that

$$
s_{n}(D+R) \geq n^{-c} \quad \text { w.h.p. }\left(1-n^{-10}\right) .
$$

This is needed to validate the Single ring theorem:

Single ring theorem [Guionnet, Krishnapur, Zeitouni '11]

Distribution of spectrum of UDV is supported in a single ring, where $U, V \in U(n)$ or $O(n)$ random uniform.

Naïve approach:

Instead of using the full power of $U \in U(n)$ just multiply by a random complex number $r,|r|=1$.

$$
s_{n}(D+U) \equiv s_{n}\left(D+U^{-1}\right)=s_{n}\left(D+r^{-1} U^{-1}\right)=s_{n}(r U D-I) .
$$

Condition on U.
Multiplication by $r \Leftrightarrow$ random rotation of spectrum $\sigma(U D)$ in \mathbb{C}.

$\sigma(U D)=\{n$ points $\}$. Rotation separates it from $\sigma(I)=\{1\}$ w.h.p.

$$
\Rightarrow \quad \sigma(r U D-I) \text { is bounded away from } 0
$$

Q.E.D.?

Not Q.E.D. Fault:

Spectrum bounded away from $0 \nRightarrow$ matrix well invertible.
In other words, No eigenvalues near $0 \nRightarrow$ no singular values near 0 .
Example [Trefethen, Viswanath '98] Triangular random Gaussian matrix A :

$$
\sigma(A)=\operatorname{diag}(A) \gtrsim \frac{1}{n} \quad \text { while } \quad s_{n}(A) \sim e^{-c n}
$$

Random unitary matrices

Theorem (Unitary perturbations) [Rudelson, Vershynin '12]
Let D be any fixed matrix, and $U \in U(n)$ be random uniform. Then

$$
\mathbb{P}\left\{s_{n}(D+U) \leq t n^{-C}\right\} \leq t^{c}, \quad t>0 .
$$

Here $C, c>0$ are absolute constants (independent of D).

Hence

$$
s_{n}(D+U) \geq t n^{-C} \quad \text { w.h.p. }
$$

Random orthogonal matrices

The result fails over \mathbb{R}, for $U \in O(n)$!
Example. If n is odd, every rotation $U \in S O(n)$ has eigenvalue 1 . $\Rightarrow-I+U$ is singular with probability $1 / 2$.

Moreover: by rotation invariance, every orthogonal matrix D is a counterexample:
$D+U$ is singular with probability $1 / 2$.
Main result: These are the only counterexamples. If D is not approximately orthogonal, then

$$
s_{n}(D+U) \geq t n^{-C} \quad \text { w.h.p. : }
$$

Random orthogonal matrices

Theorem (Orthogonal perturbations) [Rudelson, Vershynin '12]
Let D be a fixed matrix, and $U \in U(n)$ be random uniform. Suppose

$$
\inf _{V \in O(n)}\|D-V\| \geq \delta, \quad\|D\| \leq K
$$

Then

$$
\mathbb{P}\left\{s_{n}(D+U) \leq t(\delta / K n)^{C}\right\} \leq t^{c}, \quad t>0 .
$$

Here $C, c>0$ are absolute constants (independent of D).

Remarks.

Orthogonal case is harder than unitary.
Nontrivial even in low dimensions $n=3,4$.
The bound $\|D\| \leq K$ may not be needed.
Optimal exponents C, c are unknown.

Approach: local perturbations

Difficulty: entries of $U \in U(n)$ are dependent.
Fixing it: like in the naïve approach, do not use the full strength of U. Instead, replace U by infinitesimal perturbations of identity $=$ skew-Hermitian matrices, $S^{*}=-S$.

Advantage: skew-Hermitian matrices can be forced to have independent entries.

Algebraically:
Local structure of Lie group $U(n)$ is given by the associated Lie algebra ($=$ tangent space at I) $=$ space of skew-Hermitian matrices.

Approach: local perturbations

Problem: skew-symmetric matrices themselves are singular (for odd n)!
Indeed, one one hand

$$
\operatorname{det}(S)=\operatorname{det}\left(S^{\top}\right)=\operatorname{det}(-S)=(-1)^{n} \operatorname{det}(S)
$$

So $\operatorname{det}(S)=0$.

Approach：complementing by global perturbations

Global perturbation：rotation in one coordinate（say，first）in \mathbb{C}^{n} ． Multiply that coordinate by a random complex number $r,|r|=1$ ．

Summary of the approach：

Use both local and global structures of $U(n)$ ．
Local：skew－symmetric matrices（Lie algebra）．
Global：random uniform rotation in one coordinate．

Formalizing local and global perturbations

$$
s_{n}(D+U) \gtrsim ?
$$

Local:

$S:=$ skew-symmetric real Gaussian random matrix, $\varepsilon>0$ small (n^{-10}).
Then $I+\varepsilon S$ is approximately unitary. \Rightarrow Replace U by $I+\varepsilon S$.
Global:
$R:=\operatorname{diag}(r, 1, \ldots, 1)$, where r random uniform, $|r|=1$. Replace further $I+\varepsilon S$ by $R^{-1}(I+\varepsilon S)$.

$$
s_{n}(D+U) \cong s_{n}\left(D+R^{-1}(I+\varepsilon S)\right) \cong s_{n}\left(R D^{\prime}+I+\varepsilon S\right)
$$

Formalizing local and global perturbations

$$
s_{n}(D+U) \cong s_{n}\left(R D^{\prime}+I+\varepsilon S\right) \geq ?
$$

Condition on V.
Summary: two layers of randomness, local S (Gaussian skew-symmetric); global R (rotation in first coordinate).

Advantages: S has independent entries (modulo skew-symmetry); R is very simple (determined by one random variable r).

Challenges: skew-symmetry \Rightarrow dependences in half of the entries. Otherwise we would finish by the distance argument like before.

Distance argument revisited

Distance argument: estimating $s_{n}(A)$ reduces to estimating

$$
d\left(A_{1}, H_{1}\right)=\left|h_{1}^{\top} A_{1}\right| \geq \cdots \quad \text { w.h.p. }
$$

where $A_{1}=$ first column of A and $H_{1}=\operatorname{span}\left(A_{j}\right)_{i>1}$, and $h_{1}=H_{1}^{\perp}$.

Challenge of skew-symmetry: In our matrix $A=R V D+I+\varepsilon S$, the first column A_{1} is correlated with H_{1} through the first row.

How to express $h_{1}^{\top} A_{1}$?

Distance argument revisited

$$
A=R D^{\prime}+I+\varepsilon S=\left[\begin{array}{cc}
A_{11} & Y^{\top} \\
X & B^{\top}
\end{array}\right]
$$

Lemma (distance via quadratic forms)

$$
\left|h_{1}^{\top} A_{1}\right|=\frac{\left|A_{11}-X^{\top} M Y\right|}{\sqrt{1+\|M Y\|_{2}^{2}}}, \quad \text { where } M=B^{-1} .
$$

Our situation: $Z \in \mathbb{R}^{n-1}$ random Gaussian vector,

$$
S=\left[\begin{array}{cc}
0 & -Z^{\top} \\
Z & 0
\end{array}\right], \quad D^{\prime}=\left[\begin{array}{cc}
p & v^{\top} \\
u & Q
\end{array}\right] \quad \Rightarrow \quad A=\left[\begin{array}{cc}
r p+1 & (r v-\varepsilon Z)^{\top} \\
u+\varepsilon Z & I+Q
\end{array}\right]
$$

Good: $h_{1}^{\top} A_{1}$ is a self-normalized quadratic form in Gaussian random variables (Z). Essentially a linear form ($\varepsilon^{2}=$ second order term).

Bad: bound it below without knowing much about $M=(I+Q)^{-1}$.
Idea (local/global): Use r or Z (or both) depending on $\|M\|_{\text {. }}$

Orthogonal perturbations

Same approach（local／global，via quadratic forms），with one difference：
Global perturbation：instead of random rotation in one coordinate， rotate in two coordinates．

Argument is more challenging．
Seems to differentiate odd and even n ；reduces the problem to $n=3$ ．

Entries of the inverse matrix

Question.

For A a random matrix, what is the magnitude of the entries of A^{-1} ?

$$
\text { Is } \max _{i j}\left|\left(A^{-1}\right)_{i j}\right| \lesssim n^{-1 / 2} \quad \text { w.h.p. (up to log-factors)? }
$$

This would imply $\left\|A^{-1}\right\| \leq\left\|A^{-1}\right\|_{\mathrm{HS}} \lesssim n^{1 / 2}$, so

$$
s_{n}(A) \gtrsim n^{-1 / 2} \quad \text { w.h.p., as before. }
$$

Work by [L. Erdös-Schlein-Yau+Yin '12], [Tao-Vu '12].

Entries of the inverse matrix and delocalization

Question.

Is $\max _{i j}\left|\left(A^{-1}\right)_{i j}\right| \lesssim n^{-1 / 2}$ w.h.p. (up to log-factors) ?

Related to delocalization of eigenvectors of A.
Heuristics. Say, A is symmetric, iid entries. Spectral decomposition:

$$
A=\sum \lambda_{i} u_{i} u_{i}^{\top} \quad \Rightarrow \quad A^{-1}=\sum \lambda_{i}^{-1} u_{i} u_{i}^{\top} \approx \lambda_{n}^{-1} u_{n} u_{n}^{\top}
$$

where λ_{n} is the smallest eigenvalue in magnitude.

$$
\max _{i j}\left|\left(A^{-1}\right)_{i j}\right| \approx\left|\lambda_{n}^{-1} u_{n}(i) u_{n}(j)\right| .
$$

Invertibility as before $\Rightarrow \lambda_{n} \gtrsim n^{-1 / 2}$. Delocalization: all $\left|u_{n}(i)\right| \lesssim n^{-1 / 2}$.

$$
\Rightarrow \quad \max _{i j}\left|\left(A^{-1}\right)_{i j}\right| \lesssim n^{-1 / 2} .
$$

