Thin shell concentration for convex measures.

Olivier Guédon

Université Paris-Est Marne-la-Vallée

Asymptotic Geometric Analysis. June 2013

A random vector X is said to be log-concave if it satisfies

$$\mathbb{P}(X \in (1 - \theta)A + \theta B) \ge \mathbb{P}(X \in A)^{1 - \theta} \mathbb{P}(X \in B)^{\theta}$$

Assume that *X* is a symmetric log-concave isotropic that is $\mathbb{E}\langle X, \theta \rangle^2 = |\theta|_2^2$.

The KLS conjecture. (Poincaré inequality). There exist a universal constant h such that for every function F,

$$h^2$$
 Var $F(X) \leq \mathbb{E} |\nabla F(X)|_2^2$.

A random vector X is said to be log-concave if it satisfies

$$\mathbb{P}(X \in (1 - \theta)A + \theta B) \ge \mathbb{P}(X \in A)^{1 - \theta} \mathbb{P}(X \in B)^{\theta}$$

Assume that *X* is a symmetric log-concave isotropic that is $\mathbb{E}\langle X, \theta \rangle^2 = |\theta|_2^2$.

The KLS conjecture. (Poincaré inequality). There exist a universal constant h such that for every function F,

$$h^2$$
 Var $F(X) \leq \mathbb{E} |\nabla F(X)|_2^2$.

Variance conjecture.

$$h^2$$
 Var $|X|_2^2 \le \mathbb{E}|X|_2^2 = n$.

This conjecture implies :

Strong concentration of the measure in a thin Euclidean shell

 $\mathbb{P}\left(\left||X|_2 - \sqrt{n}\right| \ge t\sqrt{n}\right) \le C \exp(-c t \sqrt{n})$

This conjecture implies :

Strong concentration of the measure in a thin Euclidean shell

 $\mathbb{P}\left(\left||X|_2 - \sqrt{n}\right| \ge t\sqrt{n}\right) \le C \exp(-c t \sqrt{n})$

Theorem [Guédon-Milman '11]

$$\forall t \ge 0, \quad \mathbb{P}\left(\left||X|_2 - \sqrt{n}\right| \ge t\sqrt{n}\right) \le C \exp(-c\sqrt{n} \min(t^3, t))$$
$$\operatorname{Var} |X|_2^2 \le C n^{5/3} \quad and \quad h \ge c n^{-5/12}$$

Improvement of results due to Paouris ('06), Klartag ('07), Fleury Guédon Paouris ('07), Fleury ('09).

convex body in "isotropic position".

intersection with a ball of radius \sqrt{n} .

volume inside a ball of radius $100\sqrt{n}$

volume inside a shell of width $\sqrt{n}/n^{1/6}$

Let μ be the log-concave probability associated to the log-concave r.v. *X*.

Let μ be the log-concave probability associated to the log-concave r.v. X.

Let μ be the log-concave probability associated to the log-concave r.v. X.

Question. Find the largest *h* such that

$$\forall S \subset K, \ \mu^+(S) \ge h \ \mu(S)(1-\mu(S)) \quad ?$$

 μ is log-concave with log concave density.

Let μ be the log-concave probability associated to the log-concave r.v. *X*.

Question. Find the largest h such that

$$\forall S \subset K, \ \mu^+(S) \ge \ \boldsymbol{h} \ \mu(S)(1-\mu(S)) \quad ?$$

 μ is log-concave with log concave density.

• E. Milman ('09), Gozlan Roberto Samson ('12)

• Eldan-Klartag ['11], Eldan ['12] : Variance conjecture implies hyperplane conjecture, KLS

CLT : classical case. x_1, \ldots, x_n , *n* i.i.d random variables, $\mathbb{E}x_i^2 = 1, \mathbb{E}x_i = 0, \mathbb{E}x_i^3 = \tau$ then $\forall \theta \in S^{n-1}$

$$\sup_{t\in\mathbb{R}}\left|\mathbb{P}\left(\sum_{i=1}^n\theta_ix_i\leq t\right)-\int_{-\infty}^t e^{-u^2/2}\frac{du}{\sqrt{2\pi}}\right|\leq \tau|\theta|_4^2=\frac{\tau}{\sqrt{n}}.$$

Question. [Ball '97], [Brehm-Voigt '98] Let *K* be an isotropic convex body, find a direction $\theta \in S^{n-1}$ such that

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sum_{i=1}^{n} \theta_{i} x_{i} \leq t \right) - \int_{-\infty}^{t} e^{-u^{2}/2} \frac{du}{\sqrt{2\pi}} \right| \leq \alpha_{n}$$
with $\lim_{+\infty} \alpha_{n} = 0$?

Question. [Ball '97], [Brehm-Voigt '98] Let *K* be an isotropic convex body, find a direction $\theta \in S^{n-1}$ such that

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sum_{i=1}^{n} \theta_{i} x_{i} \leq t \right) - \int_{-\infty}^{t} e^{-u^{2}/2} \frac{du}{\sqrt{2\pi}} \right| \leq \alpha_{n}$$

with $\lim_{+\infty} \alpha_{n} = 0$?
The approach. [Anttila-Ball-Perissinaki '03]
Thin shell estimate implies CLT : $\forall n, \exists \varepsilon_{n}$ such that for

every random vector uniformly distributed in an isotropic convex body

$$\mathbb{P}\left(\left|\frac{|X|_2}{\sqrt{n}}-1\right|\geq\varepsilon_n\right)\leq\varepsilon_n$$

with $\lim_{+\infty} \varepsilon_n = 0$.

Question. [Ball '97], [Brehm-Voigt '98] Let *K* be an isotropic convex body, find a direction $\theta \in S^{n-1}$ such that

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sum_{i=1}^{n} \theta_{i} x_{i} \leq t \right) - \int_{-\infty}^{t} e^{-u^{2}/2} \frac{du}{\sqrt{2\pi}} \right| \leq \alpha_{n}$$

with $\lim_{+\infty} \alpha_{n} = 0$?
The approach. [Anttila-Ball-Perissinaki '03]
Thin shell estimate implies CLT : $\forall n, \exists \varepsilon_{n}$ such that for

every random vector uniformly distributed in an isotropic convex body

$$\mathbb{P}\left(\left|\frac{|X|_2}{\sqrt{n}}-1\right|\geq\varepsilon_n\right)\leq\varepsilon_n$$

with $\lim_{+\infty} \varepsilon_n = 0$. Theorem [Bobkov '03] *General isotropic random vector.*

• *X* log-concave random vector. *Paouris Theorem (large deviation) may be written as (ALLOPT '12)*

 $\forall p \ge 1, \quad \left(\mathbb{E}|X|_2^p\right)^{1/p} \le C \; \mathbb{E}|X|_2 + c \, \sigma_p(X) \qquad (\star)$ where $\sigma_p(X) = \sup_{|z|_2 \le 1} \left(\mathbb{E}\langle z, X \rangle^p\right)^{1/p}$.

• X log-concave random vector. *Paouris Theorem (large deviation) may be written as (ALLOPT '12)*

 $\forall p \ge 1, \quad \left(\mathbb{E}|X|_2^p\right)^{1/p} \le C \ \mathbb{E}|X|_2 + c \ \sigma_p(X) \qquad (\star)$ where $\sigma_p(X) = \sup_{|z|_2 \le 1} \left(\mathbb{E}\langle z, X \rangle^p\right)^{1/p}$.

In isotropic position, $\mathbb{E}|X|_2 \leq (\mathbb{E}|X|_2^2)^{1/2} = \sqrt{n}$. By Borell's inequality (Khintchine type inequality)

$$orall p \geq 1, \quad \left(\mathbb{E}\langle z,X
angle^p
ight)^{1/p} \leq Cp \left(\mathbb{E}\langle z,X
angle^2
ight)^{1/2} = Cp |z|_2$$

Hence $\forall p \ge 1$, $(\mathbb{E}|X|_2^p)^{1/p} \le C\sqrt{n} + cp$

• X log-concave random vector. *Paouris Theorem (large deviation) may be written as (ALLOPT '12)*

 $\forall p \ge 1, \quad \left(\mathbb{E}|X|_2^p\right)^{1/p} \le C \ \mathbb{E}|X|_2 + c \ \sigma_p(X) \qquad (\star)$ where $\sigma_p(X) = \sup_{|z|_2 \le 1} \left(\mathbb{E}\langle z, X \rangle^p\right)^{1/p}.$

In isotropic position, $\mathbb{E}|X|_2 \leq (\mathbb{E}|X|_2^2)^{1/2} = \sqrt{n}$. By Borell's inequality (Khintchine type inequality)

$$orall p \geq 1, \quad \left(\mathbb{E}\langle z,X
angle^p
ight)^{1/p} \leq C p \; \left(\mathbb{E}\langle z,X
angle^2
ight)^{1/2} = C p \; |z|_2$$

Hence $\forall p \ge 1$, $(\mathbb{E}|X|_2^p)^{1/p} \le C\sqrt{n} + cp$ Take $p = t\sqrt{n}$, Markov gives

 $\forall t \geq 1, \quad \mathbb{P}\left(|X|_2 \geq t\sqrt{n}\right) \leq e^{-ct\sqrt{n}}.$

• *X* log-concave random vector. *Paouris Theorem (large deviation) may be written as (ALLOPT '12)*

 $\forall p \ge 1, \quad \left(\mathbb{E}|X|_2^p\right)^{1/p} \le C \; \mathbb{E}|X|_2 + c \, \sigma_p(X) \qquad (\star)$ where $\sigma_p(X) = \sup_{|z|_2 \le 1} \left(\mathbb{E}\langle z, X \rangle^p\right)^{1/p}$.

- Small Ball Estimates of Paouris Negative moments.
- Variance conjecture slightly more, cf KLS. In isotropic position,

 $\forall p \in [2, c\sqrt{n}], \quad (\mathbb{E}|X|_2^p)^{1/p} \le \sqrt{n} + c \frac{p}{\sqrt{n}} = (\mathbb{E}|X|_2^2)^{1/2} (1 + \frac{cp}{n}).$

• In view of (*), more tractable conjecture : $\forall p \ge 1, \quad (\mathbb{E}|X|_2^p)^{1/p} \le \mathbb{E}|X|_2 + c \sigma_p(X)$

Other probabilistic questions.

For which random vector do we have that for any norm,

 $(\mathbb{E}||X||^p)^{1/p} \leq C \mathbb{E}||X|| + c \sup_{||z||_{\star} \leq 1} (\mathbb{E}\langle z, X \rangle^p)^{1/p}.$

Examples : Gaussian and Rademacher vectors, for all $p \ge 1$. Other example of the form $X = \sum \xi_i v_i$ with ξ_i independant, symmetric random variables with logarithmically concave tails (see the work of Gluskin, Kwapien, Latała).

It is conjecture that it is true for log-concave random vectors (Latała).

Other probabilistic questions.

For which random vector do we have that for any norm,

 $(\mathbb{E}||X||^p)^{1/p} \leq C \mathbb{E}||X|| + c \sup_{||z||_{\star} \leq 1} (\mathbb{E}\langle z, X \rangle^p)^{1/p}.$

Examples : Gaussian and Rademacher vectors, for all $p \ge 1$. Other example of the form $X = \sum \xi_i v_i$ with ξ_i independant, symmetric random variables with logarithmically concave tails (see the work of Gluskin, Kwapien, Latała).

It is conjecture that it is true for log-concave random vectors (Latała).

Paouris Theorem tells that it is *true for log-concave and the Euclidean norm*.

Latała True for any ℓ_p -norm for $p \ge 1$.

The hypothesis $H(p, \lambda)$:

Let p > 0, $m = \lceil p \rceil$, and $\lambda \ge 1$. A random vector *X* in *E* satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A : E \to \mathbb{R}^m$ s. t. Y = AX is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^m s. t. $\mathbb{E}||Y|| < \infty$ and

 $(\mathbb{E}||Y||^p)^{1/p} \le \lambda \mathbb{E}||Y||.$

The hypothesis $H(p, \lambda)$:

Let p > 0, $m = \lceil p \rceil$, and $\lambda \ge 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A : E \to \mathbb{R}^m$ s. t. Y = AX is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^m s. t. $\mathbb{E}\|Y\| < \infty$ and

 $(\mathbb{E}||Y||^p)^{1/p} \le \lambda \mathbb{E}||Y||.$

• Any *m*-dimensional norm can be approx. by e^m numbers of linear forms

$$(\mathbb{E}||Y||^p)^{1/p} \le C \left(\mathbb{E}\sup_{i=1,\dots,e^m} |\varphi_i(Y)|^p\right)^{1/p}$$

The hypothesis $H(p, \lambda)$:

Let p > 0, $m = \lceil p \rceil$, and $\lambda \ge 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A : E \to \mathbb{R}^m$ s. t. Y = AX is non-degenerate there exists a gauge $\| \cdot \|$ on \mathbb{R}^m s. t. $\mathbb{E} \|Y\| < \infty$ and

 $(\mathbb{E}||Y||^p)^{1/p} \le \lambda \mathbb{E}||Y||.$

• Any *m*-dimensional norm can be approx. by e^m numbers of linear forms

$$(\mathbb{E} \|Y\|^p)^{1/p} \le C \sup_{\|arphi\|_{\star} \le 1} (\mathbb{E} |arphi(Y)|^p)^{1/p}$$

The hypothesis $H(p, \lambda)$:

Let p > 0, $m = \lceil p \rceil$, and $\lambda \ge 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A : E \to \mathbb{R}^m$ s. t. Y = AX is non-degenerate there exists a gauge $\| \cdot \|$ on \mathbb{R}^m s. t. $\mathbb{E} \|Y\| < \infty$ and

 $(\mathbb{E}||Y||^p)^{1/p} \le \lambda \mathbb{E}||Y||.$

• Any *m*-dimensional norm can be approx. by e^m numbers of linear forms

$$(\mathbb{E}||Y||^p)^{1/p} \le C \sup_{\|\varphi\|_* \le 1} (\mathbb{E}|\varphi(Y)|^p)^{1/p}$$

→ Rademacher, Gaussian, ψ_2 vectors satisfy $H(p, C\psi^2)$ for every $p \le n$. Wlog, assume isotropicity of the vector AX

$$(\mathbb{E}|Y|_{2}^{p})^{1/p} \leq C \sup_{|\varphi|_{2} \leq 1} (\mathbb{E}\langle\varphi, Y\rangle^{p})^{1/p} \leq C\psi\sqrt{p} \sup_{|\varphi|_{2} \leq 1} \mathbb{E}|\langle\varphi, Y\rangle|$$

The hypothesis $H(p, \lambda)$:

Let p > 0, $m = \lceil p \rceil$, and $\lambda \ge 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A : E \to \mathbb{R}^m$ s. t. Y = AX is non-degenerate there exists a gauge $\| \cdot \|$ on \mathbb{R}^m s. t. $\mathbb{E} \|Y\| < \infty$ and

 $(\mathbb{E}||Y||^p)^{1/p} \le \lambda \mathbb{E}||Y||.$

• Any *m*-dimensional norm can be approx. by e^m numbers of linear forms

$$(\mathbb{E}||Y||^p)^{1/p} \le C \sup_{\|\varphi\|_* \le 1} (\mathbb{E}|\varphi(Y)|^p)^{1/p}$$

→ Rademacher, Gaussian, ψ_2 vectors satisfy $H(p, C\psi^2)$ for every $p \le n$. Wlog, assume isotropicity of the vector AX

 $(\mathbb{E}|Y|_2^p)^{1/p} \le C\psi\sqrt{p} \sup_{|\varphi|_2 \le 1} \mathbb{E}|\langle\varphi, Y\rangle| \le C\psi\sqrt{m} \le C\psi^2\sqrt{2}\mathbb{E}|Y|_2$

Results. (AGLLOPT* '12)

The hypothesis $H(p, \lambda)$:

Let p > 0, $m = \lceil p \rceil$, and $\lambda \ge 1$. A random vector *X* in *E* satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A : E \to \mathbb{R}^m$ s. t. Y = AX is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^m s. t. $\mathbb{E}\|Y\| < \infty$ and

 $(\mathbb{E}||Y||^p)^{1/p} \le \lambda \mathbb{E}||Y||.$

* Adamczak, Guédon, Latała, Litvak, Oleszkiewicz, Pajor, Tomczak-Jaegermann

Results. (AGLLOPT* '12)

The hypothesis $H(p, \lambda)$:

Let p > 0, $m = \lceil p \rceil$, and $\lambda \ge 1$. A random vector *X* in *E* satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A : E \to \mathbb{R}^m$ s. t. Y = AX is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^m s. t. $\mathbb{E} \|Y\| < \infty$ and

 $(\mathbb{E}||Y||^p)^{1/p} \le \lambda \,\mathbb{E}||Y||.$

Theorem 1 Let p > 0 and $\lambda \ge 1$. If a random vector X satisfies $H(p, \lambda)$ then

 $(\mathbb{E}|X|_2^p)^{1/p} \le c \left(\lambda \mathbb{E}|X|_2 + \sigma_p(X)\right)$

where c is a universal constant.

* Adamczak, Guédon, Latała, Litvak, Oleszkiewicz, Pajor, Tomczak-Jaegermann

s-concave random vectors, s < 0

Convex measures : definition

Let s < 1/n. A probability Borel measure μ on \mathbb{R}^n is called *s*-concave if $\forall A, B \subset \mathbb{R}^n, \forall \theta \in [0, 1]$,

$$\mu((1-\theta)A+\theta B) \ge ((1-\theta)\mu(A)^s + \theta\mu(B)^s)^{1/s}$$

whenever $\mu(A)\mu(B) > 0$.

For s = 0, this corresponds to log-concave measures.

The class of *s*-concave measures was introduced and studied by Borell in the 70's. A *s*-concave probability ($s \le 0$) is supported on some convex subset of an affine subspace where it has a density.

s-concave random vectors, s < 0

Convex measures : properties Let s = -1/r. When the support generates the whole space

When the support generates the whole space, a convex measure has a density g which has the form

 $g = f^{-\alpha}$ with $\alpha = n + r$

and f is a positive convex function on \mathbb{R}^n . (Borell). Example :

 $g(x) = c(1 + ||x||)^{-n-r}, r > 0.$

- A log-concave prob is (-1/r)-concave for any r > 0
- The linear image of a (-1/r)-concave vector is also (-1/r)-concave.

• The Euclidean norm of a (-1/r)-concave random vector has moments of order 0 .

Convex measures and $H(p, \lambda)$

Theorem 2. Let $r \ge 2$ and X be a (-1/r)-concave random vector. Then for every 0 , <math>X satisfies the assumption H(p, C), C being a universal constant.

Convex measures and $H(p, \lambda)$

Theorem 2. Let $r \ge 2$ and X be a (-1/r)-concave random vector. Then for every 0 , <math>X satisfies the assumption H(p, C), C being a universal constant.

Recall $H(p, \lambda)$: for every linear mapping $A : E \to \mathbb{R}^m$ s. t. Y = AX is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^m s. t. $\mathbb{E}\|Y\| < \infty$ and

 $(\mathbb{E}||Y||^p)^{1/p} \le \lambda \mathbb{E}||Y||.$

For Y = AX symmetric, the norm is defined by a level set of the density of g_Y . Its unit ball is

$$K_{\alpha} = \{t \in \mathbb{R}^m : g_y(t) \le \alpha^m \|g_Y\|_{\infty}\}$$

Convex measures and $H(p, \lambda)$

Theorem 2. Let $r \ge 2$ and X be a (-1/r)-concave random vector. Then for every 0 , <math>X satisfies the assumption H(p, C), C being a universal constant.

Theorem 3. Let $r \ge 2$ and X be a (-1/r)-concave random vector. Then for every 0 ,

 $(\mathbb{E}|X|_2^p)^{1/p} \le C(\mathbb{E}|X|_2 + \sigma_p(X)).$

Convex measures. Concentration of $|X|_2$. Large deviation

Corollary. Let $r \ge 2$ and X be a (-1/r)-concave random vector. Then for every t > 0,

$$\mathbb{P}(|X|_2 > t\sqrt{n}) \le \left(\frac{c \max(1, r/\sqrt{n})}{t}\right)^{r/2}$$

Convex measures. Concentration of $|X|_2$. Large deviation

Corollary. Let $r \ge 2$ and X be a (-1/r)-concave random vector. Then for every t > 0,

$$\mathbb{P}(|X|_2 > t\sqrt{n}) \le \left(\frac{c \max(1, r/\sqrt{n})}{t}\right)^{r/2}$$

Srivastava and Vershynin ['12] \rightarrow Approximation of the covariance matrix of convex measures.

Convex measures. Concentration of $|X|_2$. Large deviation

Corollary. Let $r \ge 2$ and X be a (-1/r)-concave random vector. Then for every t > 0,

$$\mathbb{P}(|X|_2 > t\sqrt{n}) \le \left(\frac{c \max(1, r/\sqrt{n})}{t}\right)^{r/2}$$

Srivastava and Vershynin ['12] \rightarrow Approximation of the covariance matrix of convex measures.

Corollary. Let $r \ge \log n$ and X be a (-1/r)-concave isotropic random vector. Let X_1, \ldots, X_N be independent copies of X. Then for every $\varepsilon \in (0, 1)$ and every $N \ge C(\varepsilon)n$, one has

$$\mathbb{E}\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}X_{i}-I\right\|\leq\varepsilon.$$

Convex measures. Concentration of $|X|_2$. Thin shell. (FGP^{*} '13)

Theorem 4. Let X be a (-1/r)-concave isotropic random vector on \mathbb{R}^n . Then for any $p \in \mathbb{R}$ such that $0 < |p| \le \frac{1}{2} \min(r, n^{1/3})$, we have $\left| \frac{(\mathbb{E}|X|_2^p)^{1/p}}{(\mathbb{E}|X|_2^2)^{1/2}} - 1 \right| \le \frac{C|p-2|}{r} + \left(\frac{C|p-2|}{n^{1/3}} \right)^{3/5}$

where C is a universal constant.

Convex measures. Concentration of $|X|_2$. Thin shell. (FGP^{*} '13)

Theorem 4. Let *X* be a (-1/r)-concave isotropic random vector on \mathbb{R}^n . Then for any $p \in \mathbb{R}$ such that $0 < |p| \le \frac{1}{2} \min(r, n^{1/3})$, we have $\left| \frac{(\mathbb{E}|X|_2^p)^{1/p}}{(\mathbb{E}|X|_2^2)^{1/2}} - 1 \right| \le \frac{C|p-2|}{r} + \left(\frac{C|p-2|}{n^{1/3}} \right)^{3/5}$

where C is a universal constant.

Optimality. There are (-1/r)-concave isotropic random vector on \mathbb{R}^n for which

$$\frac{(\mathbb{E}|X|_2^p)^{1/p}}{(\mathbb{E}|X|_2^2)^{1/2}} - 1 \bigg| \ge \frac{C|p-2|}{r}.$$

So r must go to infinity with the dimension n.

★ Fradelizi, Guédon, Pajor

Convex measures. Concentration of $|X|_2$. Thin shell. (FGP^{*} '13)

Theorem 4. Let *X* be a (-1/r)-concave isotropic random vector on \mathbb{R}^n . Then for any $p \in \mathbb{R}$ such that $0 < |p| \le \frac{1}{2} \min(r, n^{1/3})$, we have $\left| \frac{(\mathbb{E}|X|_2^p)^{1/p}}{(\mathbb{E}|X|_2^2)^{1/2}} - 1 \right| \le \frac{C|p-2|}{r} + \left(\frac{C|p-2|}{n^{1/3}} \right)^{3/5}$

where C is a universal constant.

Central Limit Theorem.

$$\sigma_{n-1}\left(\theta \in S^{n-1} : \sup_{t \in \mathbb{R}} |\mathbb{P}(\langle X, \theta \rangle \le t) - \Phi(t)| \ge 4\varepsilon(X) + \delta\right) \le 4n^{3/8} e^{-cn\delta^4}$$

* Fradelizi, Guédon, Pajor

Adaptation of several tools valid for log-concave measures to the class of -1/r-concave measures.

Adaptation of several tools valid for log-concave measures to the class of -1/r-concave measures.

Theorem 5. Let $\alpha > 0$ and $f : [0, \infty) \rightarrow [0, \infty)$ be $(-1/\alpha)$ -concave and integrable. Define $H_f : [0, \alpha) \rightarrow \mathbb{R}_+$ by

$$H_{f}(p) = \begin{cases} \frac{1}{B(p, \alpha - p)} \int_{0}^{+\infty} t^{p-1} f(t) dt, & 0$$

where

$$B(p, \alpha - p) = \int_0^1 u^{p-1} (1 - u)^{\alpha - p - 1} du = \int_0^{+\infty} t^{p-1} (t + 1)^{-\alpha} dt.$$

Then H_f is log-concave on $[0, \alpha)$.

Adaptation of several tools valid for log-concave measures to the class of -1/r-concave measures.

Berwald type inequality with sharp constants.

Corollary. Let r > 0 and μ be a (-1/r)-concave measure on \mathbb{R}^n . Let $\phi : \mathbb{R}^n \to \mathbb{R}_+$ be concave on its support. Then for any 0 ,

$$\left(\int_{\mathbb{R}^n} \phi(x)^q d\mu(x)\right)^{1/q} \le \frac{(qB(q,r-q))^{1/q}}{(pB(p,r-p))^{1/p}} \left(\int_{\mathbb{R}^n} \phi(x)^p d\mu(x)\right)^{1/p}$$

and for every $\theta \in S^{n-1}$,

$$\left(\int_{\mathbb{R}^n} \langle x, \theta \rangle_+^q \, d\mu(x) \right)^{1/q} \leq \frac{(qB(q, r-q))^{1/q}}{(pB(p, r-p))^{1/p}} \left(\int_{\mathbb{R}^n} \langle x, \theta \rangle_+^p \, d\mu(x) \right)^{1/p} \\ \leq \frac{Cq}{p} \left(\int_{\mathbb{R}^n} \langle x, \theta \rangle_+^p \, d\mu(x) \right)^{1/p}$$

Let
$$1 \le k < n$$
.

$$\frac{\mathbb{E}|X|_2^p}{\mathbb{E}|G_n|_2^p} = \frac{\mathbb{E}_{F,X}|P_FX|_2^p}{\mathbb{E}_{F,G}|P_FG_n|_2^p} = \frac{\mathbb{E}_{F,X}|P_FX|_2^p}{\mathbb{E}_G|G_k|_2^p}$$

We get

$$\mathbb{E}|X|_2^p = \frac{\Gamma((p+n)/2)\Gamma(k/2)}{\Gamma(n/2)\Gamma((p+k)/2)} \mathbb{E}_{F,X}|P_FX|_2^p$$

Rewriting using the invariance of the Haar measure and polar coordinates :

 $\mathbb{E}_{F,X}|P_FX|_2^p = \mathbb{E}_U h_{k,p}(U)$

where *U* is uniformly distributed over SO(n), and $h_{k,p}: SO(n) \to \mathbb{R}_+$ is defined as :

$$h_{k,p}(U) := \operatorname{vol}(S^{k-1}) \int_0^\infty t^{p+k-1} \pi_{U(E_0)} w(tU(\theta_0)) dt,$$

 $E_0 \in G_{n,k}, \, \theta_0 \in S(E_0), \, w$ denotes the density of X in \mathbb{R}^n .

Properties of $h_{k,p}$?

$$h_{k,p}(U) := \mathrm{vol}(S^{k-1}) \int_0^\infty t^{p+k-1} \pi_{U(E_0)} w(tU(heta_0)) dt \ , \ \ U \in SO(n).$$

Properties of $h_{k,p}$?

$$h_{k,p}(U) := \operatorname{vol}(S^{k-1}) \int_0^\infty t^{p+k-1} \pi_{U(E_0)} w(tU(heta_0)) dt \quad , \quad U \in SO(n).$$

Some log-concavity

Corollary Let r > 0. For any -1/(r+n)-concave function $w : \mathbb{R}^n \to \mathbb{R}_+$, and any subspace *F* of dimension $k \le n$,

$$p \mapsto \left\{ egin{array}{c} h_{k,p}(U) \ \overline{B(p+k,r-p)}, \quad p > -k+1, \ \mathrm{vol}(S^{k-1})\pi_{U(E_0)}w(0), \quad p = -k+1 \end{array}
ight.$$

is log-concave on [-k+1, r).

An estimate from above of its log-Lipschitz constant. The Z_p^+ bodies associated to a random vector *X*

$$h_{Z_p^+(X)}(\theta) = \left(\mathbb{E}\langle X, \theta \rangle_+^p\right)^{1/p}$$

Proposition Let $n \ge 1$, r > 2 and w be a -1/(r+n)-concave density of a probability measure on \mathbb{R}^n . Let $1 \le k \le \min(\frac{n-1}{2}, \frac{r}{2} - 1)$ and $-\frac{k}{2} + 1 \le p \le r - 1$. Denote by $L_{k,p}$ the log-Lipschitz constant of $U \mapsto h_{k,p}(U)$. Then

$$L_{k,p} \leq C \max(k,p) d(Z^+_{\max(k,p)}(w), B^n_2)$$

where C is a universal constant.

An estimate from above of its log-Lipschitz constant. The Z_p^+ bodies associated to a random vector *X*

$$h_{Z_p^+(X)}(\theta) = \left(\mathbb{E}\langle X, \theta \rangle_+^p\right)^{1/p}$$

Proposition Let $n \ge 1$, r > 2 and w be a -1/(r+n)-concave density of a probability measure on \mathbb{R}^n . Let $1 \le k \le \min(\frac{n-1}{2}, \frac{r}{2} - 1)$ and $-\frac{k}{2} + 1 \le p \le r - 1$. Denote by $L_{k,p}$ the log-Lipschitz constant of $U \mapsto h_{k,p}(U)$. Then

$$L_{k,p} \leq C \max(k,p) d(Z^+_{\max(k,p)}(w), B^n_2)$$

where C is a universal constant.

End of the proof.

Log-Sobolev inequality on SO(n).

THANK YOU