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Kannan Lovász Simonovits Conjecture.

A random vector X is said to be log-concave if it satisfies

P(X ∈ (1− θ)A + θB) ≥ P(X ∈ A)1−θP(X ∈ B)θ

Assume that X is a symmetric log-concave isotropic that
is E〈X, θ〉2 = |θ|22.
The KLS conjecture. (Poincaré inequality). There exist a
universal constant h such that for every function F,

h2 Var F(X) ≤ E|∇F(X)|22.
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Assume that X is a symmetric log-concave isotropic that
is E〈X, θ〉2 = |θ|22.
The KLS conjecture. (Poincaré inequality). There exist a
universal constant h such that for every function F,

h2 Var F(X) ≤ E|∇F(X)|22.

Variance conjecture.

h2 Var |X|22 ≤ E|X|22 = n.
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Kannan Lovász Simonovits Conjecture.
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Theorem [Guédon-Milman ’11]
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n min(t3, t))

Var |X|22 ≤ C n5/3 and h ≥ c n−5/12

Improvement of results due to Paouris (’06), Klartag (’07),
Fleury Guédon Paouris (’07), Fleury (’09).
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Let µ be the log-concave probability associated to the
log-concave r.v. X.
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∀ S ⊂ K, µ+(S) ≥ h µ(S)(1− µ(S)) ?

µ is log-concave with log concave density.



Isoperimetric problem.

Let µ be the log-concave probability associated to the
log-concave r.v. X.

S

K\S
ε

Define
µ+(S) = lim inf

ε→0

µ(S + εBn
2)− µ(S)

ε

Question. Find the largest h such that

∀ S ⊂ K, µ+(S) ≥ h µ(S)(1− µ(S)) ?

µ is log-concave with log concave density.

• E. Milman (’09), Gozlan Roberto Samson (’12)

• Eldan-Klartag [’11], Eldan [’12] : Variance conjecture
implies hyperplane conjecture, KLS



Central limit theorem and thin shell
CLT : classical case. x1, . . . , xn, n i.i.d random variables,
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Central limit theorem and thin shell
Question. [Ball ’97], [Brehm-Voigt ’98] Let K be an
isotropic convex body, find a direction θ ∈ Sn−1 such that
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with lim+∞ αn = 0 ?
The approach. [Anttila-Ball-Perissinaki ’03]
Thin shell estimate implies CLT : ∀n,∃εn such that for
every random vector uniformly distributed in an isotropic
convex body
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Question. [Ball ’97], [Brehm-Voigt ’98] Let K be an
isotropic convex body, find a direction θ ∈ Sn−1 such that
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∫ t
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2π

∣∣∣∣∣ ≤ αn

with lim+∞ αn = 0 ?
The approach. [Anttila-Ball-Perissinaki ’03]
Thin shell estimate implies CLT : ∀n,∃εn such that for
every random vector uniformly distributed in an isotropic
convex body

P
(∣∣∣∣ |X|2√n

− 1
∣∣∣∣ ≥ εn

)
≤ εn

with lim+∞ εn = 0.
Theorem [Bobkov ’03] General isotropic random vector.
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deviation) may be written as (ALLOPT ’12)

∀p ≥ 1, (E|X|p2)
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Concentration of the mass in a Euclidean ball or shell
⇔

Behavior of (E|X|p2)
1/p for some values of p.

• X log-concave random vector. Paouris Theorem (large
deviation) may be written as (ALLOPT ’12)

∀p ≥ 1, (E|X|p2)
1/p ≤ C E|X|2 + cσp(X) (?)

where σp(X) = sup|z|2≤1 (E〈z,X〉p)1/p .

• Small Ball Estimates of Paouris - Negative moments.

• Variance conjecture - slightly more, cf KLS. In isotropic
position,

∀p ∈ [2, c
√

n], (E|X|p2)
1/p ≤

√
n+c

p√
n

= (E|X|22)1/2(1+
c p
n

)
.

• In view of (?), more tractable conjecture :
∀p ≥ 1, (E|X|p2)

1/p ≤ E|X|2 + cσp(X)



Other probabilistic questions.

For which random vector do we have that for any norm,

(E‖X‖p)1/p ≤ C E‖X‖+ c sup
‖z‖?≤1

(E〈z,X〉p)1/p.

Examples : Gaussian and Rademacher vectors, for all
p ≥ 1. Other example of the form X =

∑
ξivi with ξi

independant, symmetric random variables with
logarithmicaly concave tails (see the work of Gluskin,
Kwapien, Latała).

It is conjecture that it is true for log-concave random
vectors (Latała).



Other probabilistic questions.

For which random vector do we have that for any norm,

(E‖X‖p)1/p ≤ C E‖X‖+ c sup
‖z‖?≤1

(E〈z,X〉p)1/p.

Examples : Gaussian and Rademacher vectors, for all
p ≥ 1. Other example of the form X =

∑
ξivi with ξi

independant, symmetric random variables with
logarithmicaly concave tails (see the work of Gluskin,
Kwapien, Latała).

It is conjecture that it is true for log-concave random
vectors (Latała).

Paouris Theorem tells that it is true for log-concave and
the Euclidean norm.
Latała True for any `p-norm for p ≥ 1.



New class of random vectors

The hypothesis H(p, λ) :
Let p > 0, m = dpe, and λ ≥ 1. A random vector X in E
satisfies the assumption H(p, λ) if for every linear
mapping A : E → Rm s. t. Y = AX is non-degenerate there
exists a gauge ‖ · ‖ on Rm s. t. E‖Y‖ <∞ and

(E‖Y‖p)1/p ≤ λE‖Y‖.
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New class of random vectors

The hypothesis H(p, λ) :
Let p > 0, m = dpe, and λ ≥ 1. A random vector X in E
satisfies the assumption H(p, λ) if for every linear
mapping A : E → Rm s. t. Y = AX is non-degenerate there
exists a gauge ‖ · ‖ on Rm s. t. E‖Y‖ <∞ and
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• Any m-dimensional norm can be approx. by em numbers
of linear forms

(E‖Y‖p)1/p ≤ C sup
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Results. (AGLLOPT? ’12)

The hypothesis H(p, λ) :
Let p > 0, m = dpe, and λ ≥ 1. A random vector X in E
satisfies the assumption H(p, λ) if for every linear
mapping A : E → Rm s. t. Y = AX is non-degenerate there
exists a gauge ‖ · ‖ on Rm s. t. E‖Y‖ <∞ and

(E‖Y‖p)1/p ≤ λE‖Y‖.

? Adamczak, Guédon, Latała, Litvak, Oleszkiewicz, Pajor, Tomczak-Jaegermann



Results. (AGLLOPT? ’12)

The hypothesis H(p, λ) :
Let p > 0, m = dpe, and λ ≥ 1. A random vector X in E
satisfies the assumption H(p, λ) if for every linear
mapping A : E → Rm s. t. Y = AX is non-degenerate there
exists a gauge ‖ · ‖ on Rm s. t. E‖Y‖ <∞ and

(E‖Y‖p)1/p ≤ λE‖Y‖.

Theorem 1 Let p > 0 and λ ≥ 1. If a random vector X
satisfies H(p, λ) then

(E|X|p2)
1/p ≤ c (λE|X|2 + σp(X))

where c is a universal constant.

? Adamczak, Guédon, Latała, Litvak, Oleszkiewicz, Pajor, Tomczak-Jaegermann



s-concave random vectors, s < 0

Convex measures : definition
Let s < 1/n. A probability Borel measure µ on Rn is called
s-concave if ∀A,B ⊂ Rn,∀θ ∈ [0, 1],

µ((1− θ)A + θB) ≥ ((1− θ)µ(A)s + θµ(B)s)1/s

whenever µ(A)µ(B) > 0.

For s = 0, this corresponds to log-concave measures.

The class of s-concave measures was introduced and
studied by Borell in the 70’s. A s-concave probability
(s ≤ 0) is supported on some convex subset of an affine
subspace where it has a density.



s-concave random vectors, s < 0

Convex measures : properties
Let s = −1/r.
When the support generates the whole space, a convex
measure has a density g which has the form

g = f−α with α = n + r

and f is a positive convex function on Rn. (Borell).
Example :

g(x) = c(1 + ‖x‖)−n−r, r > 0.

• A log-concave prob is (−1/r)-concave for any r > 0
• The linear image of a (−1/r)-concave vector is also
(−1/r)-concave.
• The Euclidean norm of a (−1/r)-concave random vector
has moments of order 0 < p < r.



Convex measures and H(p, λ)

Theorem 2. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p,C), C being a universal constant.



Convex measures and H(p, λ)

Theorem 2. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p,C), C being a universal constant.

Recall H(p, λ) : for every linear mapping A : E → Rm s. t.
Y = AX is non-degenerate there exists a gauge ‖ · ‖ on Rm

s. t. E‖Y‖ <∞ and

(E‖Y‖p)1/p ≤ λE‖Y‖.

For Y = AX symmetric, the norm is defined by a level set
of the density of gY . Its unit ball is

Kα = {t ∈ Rm : gy(t) ≤ αm‖gY‖∞}



Convex measures and H(p, λ)

Theorem 2. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p,C), C being a universal constant.

Theorem 3. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every 0 < p < r/2,

(E|X|p2)
1/p ≤ C(E|X|2 + σp(X)).



Convex measures. Concentration of |X|2.
Large deviation

Corollary. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every t > 0,
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Srivastava and Vershynin [’12]→ Approximation of the
covariance matrix of convex measures.



Convex measures. Concentration of |X|2.
Large deviation

Corollary. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every t > 0,

P
(
|X|2 > t

√
n
)
≤
(

c max(1, r/
√

n)

t

)r/2

Srivastava and Vershynin [’12]→ Approximation of the
covariance matrix of convex measures.
Corollary. Let r ≥ log n and X be a (−1/r)-concave
isotropic random vector. Let X1, . . . ,XN be independent
copies of X. Then for every ε ∈ (0, 1) and every
N ≥ C(ε)n, one has

E

∥∥∥∥∥ 1
N

N∑
i=1

XiXi − I

∥∥∥∥∥ ≤ ε.



Convex measures. Concentration of |X|2.
Thin shell. (FGP? ’13)

Theorem 4. Let X be a (−1/r)-concave isotropic random
vector on Rn. Then for any p ∈ R such that
0 < |p| ≤ 1

2 min(r, n1/3), we have∣∣∣∣(E|X|p2)1/p

(E|X|22)1/2 − 1
∣∣∣∣ ≤ C |p− 2|
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+
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n1/3

)3/5

where C is a universal constant.

? Fradelizi, Guédon, Pajor



Convex measures. Concentration of |X|2.
Thin shell. (FGP? ’13)

Theorem 4. Let X be a (−1/r)-concave isotropic random
vector on Rn. Then for any p ∈ R such that
0 < |p| ≤ 1

2 min(r, n1/3), we have∣∣∣∣(E|X|p2)1/p

(E|X|22)1/2 − 1
∣∣∣∣ ≤ C |p− 2|

r
+

(
C |p− 2|

n1/3

)3/5

where C is a universal constant.

Optimality. There are (−1/r)-concave isotropic random
vector on Rn for which∣∣∣∣(E|X|p2)1/p

(E|X|22)1/2 − 1
∣∣∣∣ ≥ C |p− 2|

r
.

So r must go to infinity with the dimension n.
? Fradelizi, Guédon, Pajor



Convex measures. Concentration of |X|2.
Thin shell. (FGP? ’13)

Theorem 4. Let X be a (−1/r)-concave isotropic random
vector on Rn. Then for any p ∈ R such that
0 < |p| ≤ 1

2 min(r, n1/3), we have∣∣∣∣(E|X|p2)1/p

(E|X|22)1/2 − 1
∣∣∣∣ ≤ C |p− 2|

r
+

(
C |p− 2|

n1/3

)3/5

where C is a universal constant.

Central Limit Theorem.

σn−1

(
θ ∈ Sn−1 : sup

t∈R
|P(〈X, θ〉 ≤ t)− Φ(t)| ≥ 4ε(X) + δ

)
≤ 4n3/8e−cnδ4

? Fradelizi, Guédon, Pajor



Adaptation of several tools valid for log-concave
measures to the class of −1/r-concave measures.



Adaptation of several tools valid for log-concave
measures to the class of −1/r-concave measures.

Theorem 5. Let α > 0 and f : [0,∞)→ [0,∞) be
(−1/α)-concave and integrable. Define Hf : [0, α)→ R+

by

Hf (p) =


1

B(p, α− p)

∫ +∞

0
tp−1f (t)dt, 0 < p < α

f (0) p = 0

where

B(p, α− p) =

∫ 1

0
up−1(1− u)α−p−1du =

∫ +∞

0
tp−1(t + 1)−αdt.

Then Hf is log-concave on [0, α).



Adaptation of several tools valid for log-concave
measures to the class of −1/r-concave measures.

Berwald type inequality with sharp constants.

Corollary. Let r > 0 and µ be a (−1/r)-concave measure
on Rn. Let φ : Rn → R+ be concave on its support. Then
for any 0 < p ≤ q < r,(∫

Rn
φ(x)qdµ(x)

)1/q

≤ (qB(q, r − q))1/q

(pB(p, r − p))1/p

(∫
Rn
φ(x)pdµ(x)

)1/p

and for every θ ∈ Sn−1,(∫
Rn
〈x, θ〉q+ dµ(x)

)1/q

≤ (qB(q, r − q))1/q

(pB(p, r − p))1/p

(∫
Rn
〈x, θ〉p+ dµ(x)

)1/p

≤ C q
p

(∫
Rn
〈x, θ〉p+ dµ(x)

)1/p



Strategy of the proof
Let 1 ≤ k < n.

E|X|p2
E|Gn|p2

=
EF,X|PFX|p2
EF,G|PFGn|p2

=
EF,X|PFX|p2
EG|Gk|p2

.

We get

E|X|p2 =
Γ((p + n)/2)Γ(k/2)

Γ(n/2)Γ((p + k)/2)
EF,X|PFX|p2

Rewriting using the invariance of the Haar measure and
polar coordinates :

EF,X|PFX|p2 = EUhk,p(U)

where U is uniformly distributed over SO(n), and
hk,p : SO(n)→ R+ is defined as :

hk,p(U) := vol(Sk−1)

∫ ∞
0

tp+k−1πU(E0)w(tU(θ0))dt,

E0 ∈ Gn,k, θ0 ∈ S(E0), w denotes the density of X in Rn.
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Strategy of the proof

Properties of hk,p ?

hk,p(U) := vol(Sk−1)

∫ ∞
0

tp+k−1πU(E0)w(tU(θ0))dt , U ∈ SO(n).

Some log-concavity

Corollary Let r > 0. For any −1/(r + n)-concave function
w : Rn → R+, and any subspace F of dimension k ≤ n,

p 7→


hk,p(U)

B(p + k, r − p)
, p > −k + 1,

vol(Sk−1)πU(E0)w(0), p = −k + 1

is log-concave on [−k + 1, r).



Strategy of the proof

An estimate from above of its log-Lipschitz constant.
The Z+

p bodies associated to a random vector X

hZ+
p (X)(θ) = (E〈X, θ〉p+)

1/p

Proposition Let n ≥ 1, r > 2 and w be a
−1/(r + n)-concave density of a probability measure on
Rn. Let 1 ≤ k ≤ min(n−1

2 , r
2 − 1) and − k

2 + 1 ≤ p ≤ r − 1.
Denote by Lk,p the log-Lipschitz constant of U 7→ hk,p(U).
Then

Lk,p ≤ C max(k, p)d(Z+
max(k,p)(w),Bn

2)

where C is a universal constant.



Strategy of the proof

An estimate from above of its log-Lipschitz constant.
The Z+

p bodies associated to a random vector X

hZ+
p (X)(θ) = (E〈X, θ〉p+)

1/p

Proposition Let n ≥ 1, r > 2 and w be a
−1/(r + n)-concave density of a probability measure on
Rn. Let 1 ≤ k ≤ min(n−1

2 , r
2 − 1) and − k

2 + 1 ≤ p ≤ r − 1.
Denote by Lk,p the log-Lipschitz constant of U 7→ hk,p(U).
Then

Lk,p ≤ C max(k, p)d(Z+
max(k,p)(w),Bn

2)

where C is a universal constant.

End of the proof.
Log-Sobolev inequality on SO(n).
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