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Kannan Lovasz Simonovits Conjecture.

A random vector X is said to be log-concave if it satisfies
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Assume that X is a symmetric log-concave isotropic that
is E(X,0)% = |0)5.

The KLS conjecture. (Poincaré inequality). There exist a
universal constant 4 such that for every function F,

n* Var F(X) < E|VF(X)[5.
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is E(X,0)% = |0)5.

The KLS conjecture. (Poincaré inequality). There exist a
universal constant 4 such that for every function F,

h* VarF(X) < E|VF(X)[3.
Variance conjecture.

h? Var |X|; < E[X|5 = n.
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Kannan Lovasz Simonovits Conjecture.

This conjecture implies :
Strong concentration of the measure in a thin Euclidean

shell
P (||X] = v/n| > 1v/n) < C exp(—cty/n)

Theorem [Guédon-Milman '11]
Vi >0, P(|[X>—vn|>1tv/n) < Cexp(—cy/n min(£,1))
Var | X2 < Cn®® and h>cn>/"

Improvement of results due to Paouris ('06), Klartag ('07),
Fleury Guédon Paouris ('07), Fleury ('09).
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Pictures - Intuition in high dimension.

volume inside a shell of width /n/n!/®
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Isoperimetric problem.

Let 1 be the log-concave probability associated to the
log-concave r.v. X.

Define S g S
e—>

3

Question. Find the largest / such that
VS CK, ut(S) > hul(S)(1—pu(S) ?
1 is log-concave with log concave density.

e E. Milman ('09), Gozlan Roberto Samson (’12)

e Eldan-Klartag ['11], Eldan ['12] : Variance conjecture
implies hyperplane conjecture, KLS



Central limit theorem and thin shell

CLT : classical case. xi, ..., x,, ni.i.d random variables,
Ex! = 1,Ex; = 0,Ex; = 7
then V4 € §"~!

. ! du
P Ox; <t]| — / e 2
(Somer) [

<rlof = —.

Vn

sup
teR




Central limit theorem and thin shell

Question. [Ball '97], [Brehm-Voigt '98] Let K be an
isotropic convex body, find a direction # € S"~! such that
sup
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Central limit theorem and thin shell

Question. [Ball '97], [Brehm-Voigt '98] Let K be an
isotropic convex body, find a direction # € S"~! such that
sup

. ! du
P (9,'X,‘ S t) — / e_”z/z—
teR (; ) —00 V 27T

with lim o o, = 0 ?

The approach. [Anttila-Ball-Perissinaki '03]

Thin shell estimate implies CLT : Vn, 3¢, such that for
every random vector uniformly distributed in an isotropic
convex body

<

— n

P &—1 >e, ) <e
\/ﬁ —_ ~n — ~n

with lim, . £, = 0.
Theorem [Bobkov 03] General isotropic random vector.
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where o,(X) = supy., -, (E(z, X)")""""

In isotropic position, E|X|, < (E|X[3)!/? = \/n.
By Borell's inequality (Khintchine type inequality)

=1, EX)") <Cp (BX?) =Cpl

Hence Vp>1, (EXP)'”" <Cyn+cp
Take p = tv/n, Markov gives

Vi>1, P(|X|x>1vn) <e V"



Concentration of the mass in a Euclidean ball or shell
&

Behavior of (E|X[2)'/” for some values of p.

¢ X log-concave random vector. Paouris Theorem (large
deviation) may be written as (ALLOPT ’12)

V=1, (EIX|})"" < CEX|+cop(X) ()
where o,(X) = supy., -, (E(z, X)")""""
e Small Ball Estimates of Paouris - Negative moments.

e Variance conjecture - slightly more, cf KLS. In isotropic
position,
Vp e Roevil, (BIXD)P < vate Lo = @IXR) (14D,
Vn n
e In view of (x), more tractable conjecture :
Vo= 1, (EIX)"" <EJX]:+co,(X)



Other probabilistic questions.

For which random vector do we have that for any norm,

(EIX]")"" < CE|X]| + ¢ sup (E(z,X)")'".

llzll«<1

Examples : Gaussian and Rademacher vectors, for all
p > 1. Other example of the form X = > &v; with &;
independant, symmetric random variables with

logarithmicaly concave tails (see the work of Gluskin,
Kwapien, Latata).

It is conjecture that it is true for log-concave random
vectors (Latata).



Other probabilistic questions.

For which random vector do we have that for any norm,

(EIX]")"" < CE|X]| + ¢ sup (E(z,X)")'".

llzll«<1

Examples : Gaussian and Rademacher vectors, for all
p > 1. Other example of the form X = > &v; with &;
independant, symmetric random variables with
logarithmicaly concave tails (see the work of Gluskin,
Kwapien, Latata).

It is conjecture that it is true for log-concave random
vectors (Latata).

Paouris Theorem tells that it is true for log-concave and
the Euclidean norm.

Latata True for any ¢,-norm forp > 1.



New class of random vectors

The hypothesis H(p. \) :

Letp >0, m = [p],and A\ > 1. A random vector X in E
satisfies the assumption H(p, \) if for every linear
mapping A : E — R” s. t. Y = AX is non-degenerate there
exists a gauge || - || on R" s. t. E||Y|| < oo and

(E|Y|P)'? < AE|Y].
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New class of random vectors

The hypothesis H(p. \) :

Letp >0, m = [p],and A\ > 1. A random vector X in E
satisfies the assumption H(p, \) if for every linear
mapping A : E — R” s. t. Y = AX is non-degenerate there
exists a gauge || - || on R" s. t. E||Y|| < oo and

(E|Y|P)'? < AE|Y].

e Any m-dimensional norm can be approx. by ¢” numbers
of linear forms
(B[|Y|]")/7 < C sup (Elp(¥)]")""
llell«<1
— Rademacher, Gaussian, v, vectors satisfy H(p, C1/?)

for every p < n. Wlog, assume isotropicity of the vector AX

(E|Y[5)'? < Cy\/p sup E|(p, Y)| < Cyp/m < Cp*V2E|Y,

le[2<1



Results. (AGLLOPT*’12)

The hypothesis H(p. \) :

Letp >0, m = [p],and A\ > 1. A random vector X in E
satisfies the assumption H(p, \) if for every linear
mapping A : E — R s. t. Y = AX is non-degenerate there
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Results. (AGLLOPT*’12)

The hypothesis H(p. \) :

Letp >0, m = [p],and A\ > 1. A random vector X in E
satisfies the assumption H(p, \) if for every linear
mapping A : E — R s. t. Y = AX is non-degenerate there
exists a gauge || - || on R" s. t. E||Y|| < oo and

EY|)'? < XE|)Y].
Theorem 1 Letp > 0 and A > 1. If a random vector X
satisfies H(p, \) then
(EX[5)'? < ¢ (AEIX]> + 0,(X))
where c is a universal constant.

* Adamczak, Guédon, Latata, Litvak, Oleszkiewicz, Pajor, Tomczak-Jaegermann



s-concave random vectors, s < 0

Convex measures : definition
Let s < 1/n. A probability Borel measure p on R” is called
s-concave if VA, B C R",V# € [0, 1],

p((1—60)A+0B) > ((1 —0)u(A)* +(9,u(B)S)1/S

whenever u(A)u(B) > 0.
For s = 0, this corresponds to log-concave measures.

The class of s-concave measures was introduced and
studied by Borell in the 70’s. A s-concave probability

(s < 0) is supported on some convex subset of an affine
subspace where it has a density.



s-concave random vectors, s < 0

Convex measures : properties

Lets=—1/r.

When the support generates the whole space, a convex
measure has a density g which has the form

g=f% with a=n+r

and f is a positive convex function on R”". (Borell).
Example :
g(x) = ¢(1 + [lf) ", r > 0.

e A log-concave prob is (—1/r)-concave for any r > 0

e The linear image of a (—1/r)-concave vector is also
(—1/r)-concave.

e The Euclidean norm of a (—1/r)-concave random vector
has moments of order 0 < p < r.



Convex measures and H(p, \)

Theorem 2. Letr > 2 and X be a (—1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p, C), C being a universal constant.



Convex measures and H(p, \)

Theorem 2. Letr > 2 and X be a (—1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p, C), C being a universal constant.

Recall H(p, \) : for every linear mapping A : E — R™ s. 1.
Y = AX is non-degenerate there exists a gauge || - || on R™
s. . E||Y|| < o0 and

(E[|Y|I")'” < NE||Y]].

For Y = AX symmetric, the norm is defined by a level set
of the density of gy. Its unit ball is

Ko ={1 € R": g,(1) < a"[|gr]lo}



Convex measures and H(p, \)

Theorem 2. Letr > 2 and X be a (—1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p, C), C being a universal constant.

Theorem 3. Letr > 2 and X be a (—1/r)-concave random
vector. Then for every 0 < p < r/2,

(EIXE)'" < CE|X]2 + 0,(X)).



Convex measures. Concentration of |X|,.
Large deviation

Corollary. Letr > 2 and X be a (—1/r)-concave random
vector. Then for everyt > 0,

P(|X|, > tv/n) < (Cmax(lt’ r/\/ﬁ)),/2
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Convex measures. Concentration of |X|,.
Large deviation

Corollary. Letr > 2 and X be a (—1/r)-concave random
vector. Then for everyt > 0,

P(|X|, > tv/n) < (Cmax(lt’ r/\/ﬁ)),/2

Srivastava and Vershynin ['12] — Approximation of the
covariance matrix of convex measures.

Corollary. Letr > logn and X be a (—1/r)-concave
isotropic random vector. Let X,, ..., Xy be independent
copies of X. Then for every ¢ € (0,1) and every

N > C(¢)n, one has

E <e.

1 N
=N XX, — 1
v




Convex measures. Concentration of |X|,.
Thin shell. (FGP*’13)

Theorem 4. Let X be a (—1/r)-concave isotropic random
vector on R". Then for any p € R such that

0 < |p| < 2 min(r,n'/?), we have

EXE)'" | Clp=2, (Clp—2]\""
EXE2 |- nl?

where C is a universal constant.

* Fradelizi, Guédon, Pajor



Convex measures. Concentration of |X|,.
Thin shell. (FGP*’13)

Theorem 4. Let X be a (—1/r)-concave isotropic random
vector on R". Then for any p € R such that
0 < |p| < 2 min(r,n'/?), we have
(E|XE)' " Clp—2|  (Clp—2[\*"
(E[X[3)!> r n'/3
where C is a universal constant.

Optimality. There are (—1/r)-concave isotropic random
vector on R” for which

(EX[)'?
(ElX[3)'/
So r must go to infinity with the dimension n.

Clp—2|

r

* Fradelizi, Guédon, Pajor



Convex measures. Concentration of |X|,.
Thin shell. (FGP*’13)

Theorem 4. Let X be a (—1/r)-concave isotropic random
vector on R". Then for any p € R such that
0 < |p| < 2 min(r,n'/?), we have
EXE)'" | Clp=2, (Clp—2]\""
EXR)7= 1= n'/3
where C is a universal constant.

Central Limit Theorem.

Op_1 (9 c S sup|P((X,0) < 1) — ®(t)] > 4e(X) + 5)

teR

< 4n3/86—cn64

* Fradelizi, Guédon, Pajor



Adaptation of several tools valid for log-concave
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Adaptation of several tools valid for log-concave
measures to the class of —1/r-concave measures.

Theorem 5. Leta > 0 andf : [0,00) — [0, 00) be
(—1/a)-concave and integrable. Define H; : [0, ) — R,
by

1 +oo e
Hf(p){ m/o 7 f(dr, 0<p<a
£(0) p=0

where

! +o0
B(p,a —p) =/ u’”(l—u)“ldu:/ N (4 1)t
0 0

Then H; is log-concave on [0, o).



Adaptation of several tools valid for log-concave
measures to the class of —1/r-concave measures.

Berwald type inequality with sharp constants.

Corollary. Letr > 0 and i be a (—1/r)-concave measure
onR". Let¢ : R" — R, be concave on its support. Then
forany0 <p<g<r,

d(x)9dpu(x) . < (gBlg,r ‘I))l/q syt 1p
N = wbtpr—p)" s

and for every 6 ¢ S"~!,
([ o) g(g:: o (/< )

5 (Lo anen)”

IA

IA



Strategy of the proof

Letl <k <n.
E|X]}  Epx|PeX|;,  Epx|PeX[;

E|G.[;  ErclPrGals Ec|Gily

We get
E|X|} = U((p+n)/2)L'(k/2)
[(n/2)0((p +k)/2)
Rewriting using the invariance of the Haar measure and
polar coordinates :
Ef‘7x|Pﬁ‘X‘P = EullkJ;(U)

where U is uniformly distributed over SO(n), and
hyp, : SO(n) — R, is defined as :

hep(U) == vol(S") / e w(tU (80))

0
Ey € Gy, 0y € S(Ey), w denotes the density of X in R".




Strategy of the proof

Properties of A, ?

i, (U) := vol($*1) / P ey w(tU(0p))dt U € SO(n).
0



Strategy of the proof

Properties of A, ?
mﬂm:wmﬁb/}wk%wwmwmmr,erm)
0

Some log-concavity

Corollary Letr > 0. For any —1/(r + n)-concave function
w:R" — R,, and any subspace F of dimension k < n,

hkp(U)
: o> k41,
p 4 Bptkr—p) 7
vol(S* N mygyw(0), p=—k+1

is log-concave on [—k + 1,r).



Strategy of the proof

An estimate from above of its log-Lipschitz constant.
The Z; bodies associated to a random vector X

hys o) (0) = (E(X,0)7)"

Proposition Letn > 1, r > 2 andw be a

—1/(r + n)-concave density of a probability measure on
R". Letl <k<min(*3},f —1)and -4 +1<p<r-—1
Denote by Ly, the log-Lipschitz constant of U — hy ,(U).
Then

Ly < Cmax(k,p)d(Zy, (W), B3)

where C is a universal constant.



Strategy of the proof

An estimate from above of its log-Lipschitz constant.
The le bodies associated to a random vector X

hys o) (0) = (E(X,0)7)"

Proposition Letn > 1, r > 2 andw be a

—1/(r + n)-concave density of a probability measure on
R". Letl <k<min(*3},f —1)and -4 +1<p<r-—1
Denote by Ly, the log-Lipschitz constant of U — hy ,(U).
Then

Ly < Cmax(k,p)d(Zy, (W), B3)
where C is a universal constant.

End of the proof.
Log-Sobolev inequality on SO(n).
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