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Permanent of a matrix

Let A be an n× n matrix with ai,j ≥ 0.

Permanent of A:

perm(A) =
∑
π∈Πn

n∏
j=1

aj,π(j).

Evaluation of permanents is
#P-complete (Valiant 1979)
if there exists a polynomial-time
algorithm for permanent
evaluation, then any #P problem
can be solved in polynomial time.
Fast computation ⇒ P=NP.

Determinant of A:

det(A) =
∑
π∈Πn

sign(π)

n∏
j=1

aj,π(j).

Evaluation of determinants is fast:
use e.g., triangularization by
Gaussian elimination.
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Applications of permanents

Wick’s formula
Let f1, . . . , fn, g1, . . . , gn be complex centered normal random variables. Then

E
n∏

j=1

fjḡj = perm(A),

where A is the correlation matrix: ai,j = Efiḡj.
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Applications of permanents

Perfect matchings

Let Γ = (L,R,V) be an n× n bipartite
graph.

A perfect matching is a bijection
τ : E → R such that e→ τ(e) for all
e ∈ E.

#(perfect matchings) = perm(A),

where A is the adjacency matrix of the
graph:

ai,j = 1 if i→ j.
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Deterministic bounds

Linial–Samorodnitsky–Wigderson algoritm: if perm(A) > 0, then one can find
in polynomial time diagonal matrices D,D′ such that the renormalized matrix
A′ = D′AD is almost doubly stochastic:

1− ε <
n∑

i=1

a′i,j < 1 + ε, for all j = 1, . . . , n

1− ε <
n∑

j=1

a′i,j < 1 + ε, for all i = 1, . . . , n

perm(A) =
∏n

i=1 di ·
∏n

j=1 d′j · perm(A′)
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Deterministic bounds

Linial–Samorodnitsky–Wigderson algoritm: reduces permanent estimates to
almost doubly stochastic matrices
Van der Waerden conjecture, proved by Falikman and Egorychev:
if A is doubly stochastic, then

1 ≥ perm(A) ≥ n!

nn ≈ e−n

Linial–Samorodnitsky–Wigderson algorithm estimates the permanent with the
multiplicative error at most en

Bregman’s theorem (1973) implies that if A is doubly stochastic, and
max ai,j ≤ t ·min ai,j, then

perm(A) ≤ e−n · nO(t2)

Conclusion: if max ai,j ≤ t ·min ai,j, then
Linial–Samorodnitsky–Wigderson algoritm with multiplicative error nO(t2)

Doesn’t cover matrices with zeros.
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Probabilistic estimates

Jerrum–Sinclair–Vigoda algorithm estimates the permanent of any matrix with
polynomial multiplicative error with high probability.

Deficiency: running time is O(n10)

Godsil–Gutman estimator Let A1/2 be the matrix with entries a1/2
i,j .

Let R be an n× n random matrix with i.i.d. ±1 entries.
Form the Hadamard product R� A1/2: wi,j =

√ai,j · ri,j.
Then

perm(A) = E det2(R� A1/2).

Estimator: perm(A) ≈ det2(R� A1/2).
Advantage: Godsil–Gutman estimator is faster than any other algorithm.
Deficiency: Godsil–Gutman estimator performs well for “generic” matrices,
but fails for large classes of {0, 1} matrices, because of arithmetic issues.
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Barvinok’s estimator

Godsil–Gutman estimator Let A1/2 be the matrix with entries a1/2
i,j .

Let R be an n× n random matrix with i.i.d. ±1 entries.
Form the Hadamard product R� A1/2. Then

perm(A) = E det2(R� A1/2).

Estimator: perm(A) ≈ det2(R� A1/2).

Godsil–Gutman estimator has no arithmetic issues.

Theorem (Barvinok)

Let A be any n× n matrix. Then, with high probability,

((1− ε) · θ)n perm(A) ≤ det2(G� A1/2) ≤ C perm(A),

where C is an absolute constant and

θ = 0.28 for real Gaussian matrices;

θ = 0.56 for complex Gaussian matrices;
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Subexponential bounds for Barvinok’s estimator

Identity matrix: multiplicative error at least exp(cn) w.h.p.
Matrix of all ones: multiplicative error at most exp(C

√
log n) (Goodman, 1963).

What happens for other matrices?

Balanced entries (Friedland, Rider, Zeitouni, 2004):
if max ai,j ≤ t ·min ai,j, then

e−o(n) ≤
det2(G� A1/2)

perm(A)
≤ eo(n)

with probability 1− o(1) as n→∞.

The bound is asymptotic.
Not applicable for matrices with zeros.
Linial–Samorodnitsky–Wigderson algorithm estimates the permanent with
polynomial error for balanced matrices.
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Subexponential bounds for Barvinok’s estimator

Question:

for which graphs would Barvinok’s estimator
yield a small error?
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Strongly connected bipartite graphs

Let Γ = (L,R,V) be an n× n bipartite graph.

A vertex i ∈ L is δ-strongly connected
to a set J ⊂ R if it is connected
to at least (δ/2) · |J| vertices of J.

Strongly connected graph

Let δ, κ > 0, δ/2 > κ. The graph Γ is
(δ, κ)-strongly connected if

1 Left degree condition: deg(i) ≥ δn
for all i ∈ [n];

2 Right degree condition: deg(j) ≥ δn
for all j ∈ [n];

3 Strong expansion condition: for any
set J ⊂ [m]
the set of its δ-strongly connected
neighbors has the cardinality
|I(J)| ≥ min

(
(1 + κ)|J|, n

)
.

JI(J)
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Results for bipartite graphs

Good news: the Barvinok estimator is strongly concentrated:
the multiplicative error is O(exp

(
(cn log n)1/3

)
with high probability

Bad news: It can be concentrated around a wrong value

Theorem (R’–Zeitouni, 2013)

Let A be the adjacency matrix A of an n× n bipartite graph, which has

the minimal degree at least δn with some δ > 0;

expander-type property

then for any τ ≥ 1

P

[

exp
(
−C(τn log n)1/3

)

≤
det2(A1/2 � G)

M
≤

exp
(

C(τn log n)1/3
)

]
≥ 1− exp(−τ)+ exp

(
−c
√

n/ log n
)

and
exp

(
−C(τn log n)1/2

)
≤ M

perm(A)
≤ 1.
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the multiplicative error is O(exp

(
(cn log n)1/3
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with high probability

Bad news: It can be concentrated around a wrong value
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Results for matrices

Large entries graph

Let s > 0 and let B be an n× n matrix B with non-negative entries.
Define the bipartite graph ΓB(s) connecting the vertices i and j whenever bi,j ≥ s

B =


0.7 0 0.1 0.5
0.1 0.6 0.8 0.2
0.6 0.6 0.3 0.5
0.2 0.8 0.7 0.3

 ⇒


1 0 0 1
0 1 1 0
1 1 0 1
0 1 1 0

 (s = 0.5)

Consider matrices with strongly connected large entries graphs.
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Results for matrices

Theorem
Let B be an n× n matrix such that

n∑
i=1

bi,j ≤ 1 for all j ∈ [n]; and
n∑

j=1

bi,j ≤ 1 for all i ∈ [n],

and 0 ≤ bi,j ≤ bn/n, where 0 < bn ≤ n.
Assume that the large entries graph ΓB(1/n) is (δ, κ)-strongly connected.

Then for any τ ≥ 1

P

[
exp

(
−C(τbnn)1/3logc n

)
≤

det2(A1/2 � G)

M
≤ exp

(
C(τbnn)1/3logc n

)]
≥ 1− exp(−τ)+ exp

(
−c
√

n/ logc n
)

and exp
(
−C(τbnn)1/2logc n

)
≤ M

perm(A)
≤ 1.
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Results for matrices

Theorem

P

[
exp

(
−C(τbnn)1/3logc n

)
≤

det2(A1/2 � G)

M
≤ exp

(
C(τbnn)1/3logc n

)]
≥ 1− exp(−τ)+ exp

(
−c
√

n/ logc n
)

and exp
(
−C(τbnn)1/2logc n

)
≤ M

perm(A)
≤ 1.

Small maximal entry: max bi,j = o(1) or bn = o(n):
Barvinok’s estimator is well-concentrated about the permanent.

Large maximal entry: max bi,j = Ω(1) or bn = Ω(n):
Barvinok’s estimator is well-concentrated: (τbnn)1/3 = O(n2/3);
It may be concentrated exponentially far from the permanent:

√
bnn = Ω(n).

Consistent failure is possible.
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Example of a consistent failure

Let B be the n× n matrix with entries

bi,j =

{
θ if i = j
1−θ
n−1 if i 6= j

.

The matrix B is doubly stochastic for θ ∈ (0, 1).
B has no zero entries.
ΓB is a complete bipartite graph.

Theorem

There exists θ0 < 1 such that for any θ ∈ (θ0, 1)

det2(B1/2 � G) < e−cn perm(B)

with high probability.
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Approach to concentration

Aim: X(G) := det2(A1/2 � G) is concentrated.

det2(A1/2 � G) is highly non-linear ⇒ log(det2(A1/2 � G)) is easier to
control.
Modified aim : Y(G) = log det2(A1/2 � G) is concentrated around its
expectation.
We will have to compare the concentration for X(G) and Y(G) at the end.
There exists a subgaussian concentration inequality for Lipschitz functions on
Rn×n with respect to the gaussian measure.
log det2(A1/2 � G) is not Lipschitz.
Main challenge: using the Lipschitz concentration for a non–Lipschitz function.
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Concentration for Gaussian measure

Aim: Y(G) = log det2(A1/2 � G) is concentrated around its expectation. There exists
a subgaussian concentration inequality for Lipschitz functions on Rn×n with respect
to the gaussian measure:

P (|F(G)− EF(G)| ≥ t) ≤ 2 exp
(
− t2

2L2(F)

)
.

log det2(A1/2 � G) = 2
∑n

j=1 log sj(A1/2 � G).
The maping G→ A1/2 � G is Lipschitz.

The mapping M →
(
s1(M), . . . , sn(M)

)
is Lipschitz.

Logarithm is not a Lipschitz function.
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The maping G→ A1/2 � G is Lipschitz.

The mapping M →
(
s1(M), . . . , sn(M)

)
is Lipschitz.

Truncated logarithm logε x = max(log x, ε) is a Lipschitz function.
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Strategy of the proof

1 Singular value estimates:

Adaptive threshold: sm(A1/2 � G) ≥ εm for all m with high probability.

2 log det2(A1/2 � G) =
∑n−k

j=1 log sj(A1/2 � G) +
∑n

j=n−k+1 log sj(A1/2 � G)

3
∑n−k

j=1 log sj(A1/2 � G) =
∑n−k

j=1 logεj
sj(A1/2 � G)

is a (?)-Lipschitz function ⇒ balance the concentration

4

∣∣∣∑n
j=n−k+1 log sj(A1/2 � G)

∣∣∣ ≤∑n
j=n−k+1 | log εj|

⇒ contribution of the last singular values is limited.

5 How to choose the threshold k?

Smaller k ⇒ smaller error.
Larger k ⇒ stronger concentration.
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Choosing the right threshold

log det2(A1/2 � G) =

n−k∑
j=1

logεj
sj(A1/2 � G) +

n∑
j=n−k+1

error terms

l̃og det2(A1/2 � G) is concentrated about its expectation.

Smaller k ⇒ smaller error.

log det2(A1/2 � G) is close to E log det2(A1/2 � G) with high probability.
This may be far from log perm(A).

Larger k ⇒ stronger concentration.

Strong concentration ⇒

E log det2(A1/2 � G) ≈ logE det2(A1/2 � G)

= log perm(A)

up to the error terms.

We had to use a random variable to connect two deterministic quantities.

Mark Rudelson (Michigan) Permanent estimators via random matrices Saint Petersburg, 2013 20 / 20



Choosing the right threshold

log det2(A1/2 � G) = l̃og det2(A1/2 � G) +

n∑
j=n−k+1

error terms

l̃og det2(A1/2 � G) is concentrated about its expectation.

Smaller k ⇒ smaller error.

log det2(A1/2 � G) is close to E log det2(A1/2 � G) with high probability.
This may be far from log perm(A).

Larger k ⇒ stronger concentration.

Strong concentration ⇒

E log det2(A1/2 � G) ≈ logE det2(A1/2 � G)

= log perm(A)

up to the error terms.

We had to use a random variable to connect two deterministic quantities.

Mark Rudelson (Michigan) Permanent estimators via random matrices Saint Petersburg, 2013 20 / 20



Choosing the right threshold

log det2(A1/2 � G) = l̃og det2(A1/2 � G) +

n∑
j=n−k+1

error terms

l̃og det2(A1/2 � G) is concentrated about its expectation.

Smaller k ⇒ smaller error.
log det2(A1/2 � G) is close to E log det2(A1/2 � G) with high probability.
This may be far from log perm(A).
Larger k ⇒ stronger concentration.

Strong concentration ⇒

E log det2(A1/2 � G) ≈ logE det2(A1/2 � G)

= log perm(A)

up to the error terms.

We had to use a random variable to connect two deterministic quantities.

Mark Rudelson (Michigan) Permanent estimators via random matrices Saint Petersburg, 2013 20 / 20



Choosing the right threshold

log det2(A1/2 � G) = l̃og det2(A1/2 � G) +

n∑
j=n−k+1

error terms

l̃og det2(A1/2 � G) is concentrated about its expectation.

Smaller k ⇒ smaller error.
log det2(A1/2 � G) is close to E log det2(A1/2 � G) with high probability.
This may be far from log perm(A).
Larger k ⇒ stronger concentration.
Strong concentration ⇒

E l̃og det2(A1/2 � G) ≈ l̃ogE det2(A1/2 � G)

= log perm(A)

up to the error terms.
We had to use a random variable to connect two deterministic quantities.

Mark Rudelson (Michigan) Permanent estimators via random matrices Saint Petersburg, 2013 20 / 20



Choosing the right threshold

log det2(A1/2 � G) = l̃og det2(A1/2 � G) +

n∑
j=n−k+1

error terms

l̃og det2(A1/2 � G) is concentrated about its expectation.

Smaller k ⇒ smaller error.
log det2(A1/2 � G) is close to E log det2(A1/2 � G) with high probability.
This may be far from log perm(A).
Larger k ⇒ stronger concentration.
Strong concentration ⇒

E log det2(A1/2 � G) ≈ logE det2(A1/2 � G) = log perm(A)

up to the error terms.
We had to use a random variable to connect two deterministic quantities.

Mark Rudelson (Michigan) Permanent estimators via random matrices Saint Petersburg, 2013 20 / 20


