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Permanent of a matrix
Let A be an n X n matrix with a;; > 0.
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Permanent of a matrix

Let A be an n x n matrix with a; ; > 0.

Permanent of A: Determinant of A:

n
perm(A Z Hamr(,) det(A) = Z Sign(”)H“jm(I’)'
j=1

mell, j=1 mwell,

Evaluation of determinants is fast:
use e.g., triangularization by
Gaussian elimination.
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Permanent of a matrix

Let A be an n x n matrix with a; ; > 0.

Permanent of A: Determinant of A:

n
perm(A Z Hamr(,) det(A) = Z Sign(”)H“ij)'
j=1

mell, j=1 mwell,

Evaluation of permanents is
#P-complete (Valiant 1979)

if there exists a polynomial-time
algorithm for permanent

evaluation, then any #P problem Evaluation of determinants is fast:
can be solved in polynomial time. use e.g., triangularization by
Fast computation = P=NP. Gaussian elimination.
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Applications of permanents

Wick’s formula
Letfla '7fn7g17'

, &n be complex centered normal random variables. Then

=1
where A is the correlation matrix: a;; = Efig;.
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Applications of permanents

Perfect matchings

LetI' = (L,R, V) be an n X n bipartite
graph.
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Applications of permanents

Perfect matchings

LetI’ = (L,R,V) be an n X n bipartite
graph.

A perfect matching is a bijection

7 : E — R such that e — 7(e) for all
eckE.
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Applications of permanents

Perfect matchings

L

LetI’ = (L,R,V) be an n X n bipartite

graph.

A perfect matching is a bijection ‘\ (’

T : E — Rsuch that e — 7(e) for all >

ecE. o« e
— e
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Applications of permanents

Perfect matchings o o
LetI’ = (L,R,V) be an n X n bipartite
graph.
A perfect matching is a bijection * °
7 : E — R such that e — 7(e) for all
ecFk. ] °
. . °
#(perfect matchings) = perm(A),
where A is the adjacency matrix of the . °
graph:
a;j = 1 ifi— ] ° °
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Deterministic bounds

o Linial-Samorodnitsky—Wigderson algoritm: if perm(A) > 0, then one can find
in polynomial time diagonal matrices D, D’ such that the renormalized matrix
A’ = D'AD is almost doubly stochastic:

1—5<ZafJ<1+s, forallj=1,...,n

i=1

n
1—5<ZafJ<1+s, foralli=1,...,n
=1
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Deterministic bounds

o Linial-Samorodnitsky—Wigderson algoritm: if perm(A) > 0, then one can find
in polynomial time diagonal matrices D, D’ such that the renormalized matrix
A’ = D'AD is almost doubly stochastic:

1—5<ZafJ<1+s, forallj=1,...,n
i=1

n
1—5<ZafJ<1+s, foralli=1,...,n
=1

o perm(A) =[], d; - H;-l:] d; - perm(A’)

Mark Rudelson (Michigan) Permanent estimators via random matrices Saint Petersburg, 2013 5/20



Deterministic bounds

o Linial-Samorodnitsky—Wigderson algoritm: reduces permanent estimates to
almost doubly stochastic matrices
@ Van der Waerden conjecture, proved by Falikman and Egorychev:
if A is doubly stochastic, then
n!
1 >perm(A) > — =~ e "

nn

@ Linial-Samorodnitsky—Wigderson algorithm estimates the permanent with the
multiplicative error at most ¢”
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Deterministic bounds

o Linial-Samorodnitsky—Wigderson algoritm: reduces permanent estimates to
almost doubly stochastic matrices

@ Van der Waerden conjecture, proved by Falikman and Egorychev:
if A is doubly stochastic, then

!
1 > perm(A) > Boe

nn
@ Linial-Samorodnitsky—Wigderson algorithm estimates the permanent with the
multiplicative error at most ¢”
@ Bregman'’s theorem (1973) implies that if A is doubly stochastic, and

max a;; < t-mina;, then

perm(A) < e™" )

@ Conclusion: if max a;; < t - mina; j, then
Linial-Samorodnitsky—Wigderson algoritm with multiplicative error n0()

@ Doesn’t cover matrices with zeros.
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Probabilistic estimates

o Jerrum—Sinclair—Vigoda algorithm estimates the permanent of any matrix with
polynomial multiplicative error with high probability.
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Probabilistic estimates

o Jerrum—Sinclair—Vigoda algorithm estimates the permanent of any matrix with
polynomial multiplicative error with high probability.

@ Deficiency: running time is O(n'?)
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Probabilistic estimates

o Jerrum—Sinclair—Vigoda algorithm estimates the permanent of any matrix with
polynomial multiplicative error with high probability.
@ Deficiency: running time is O(n'?)

@ Godsil-Gutman estimator Let A; /, be the matrix with entries a} ‘// 2,
Let R be an n x n random matrix with i.i.d. =1 entries.

Form the Hadamard product R © Ay o: wy; = \/aij - 1.

Then

perm(A) = E det*(R OA ).

Estimator: perm(A) ~ det’(R ® A, »).
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Probabilistic estimates

o Jerrum—Sinclair—Vigoda algorithm estimates the permanent of any matrix with
polynomial multiplicative error with high probability.
@ Deficiency: running time is O(n'?)

@ Godsil-Gutman estimator Let A; /, be the matrix with entries a} ‘// 2,
Let R be an n x n random matrix with i.i.d. =1 entries.

Form the Hadamard product R © Ay o: wy; = \/aij - 1.

Then

perm(A) = E det*(R OA ).

Estimator: perm(A) ~ det’(R ® A, »).

@ Advantage: Godsil-Gutman estimator is faster than any other algorithm.
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Probabilistic estimates

Jerrum—Sinclair—Vigoda algorithm estimates the permanent of any matrix with
polynomial multiplicative error with high probability.
@ Deficiency: running time is O(n'?)

1/2
ij

Godsil-Gutman estimator Let A}/, be the matrix with entries a
Let R be an n x n random matrix with i.i.d. =1 entries.
Form the Hadamard product R ©® Ay p:  wij = \/dij - Fiyj.
Then

perm(A) = Edet®(R ©® A, )»).

Estimator: perm(A) ~ det*(R OA)).

Advantage: Godsil-Gutman estimator is faster than any other algorithm.

Deficiency: Godsil-Gutman estimator performs well for “generic” matrices,
but fails for large classes of {0, 1} matrices, because of arithmetic issues.
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Barvinok’s estimator

@ Godsil-Gutman estimator Let A/, be the matrix with entries al-1 J/ 2,
Let R be an n x n random matrix with i.i.d. &1 entries.

Form the Hadamard product R ® A, /,. Then

perm(A) = E det*(R OA ).

Estimator: perm(A) ~ det*(R ® A, /2)-
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Barvinok’s estimator

@ Barvinok’s estimator Let Ay, be the matrix with entries al-1 J/ 2,
Let G be an n x n random matrix with i.i.d. N(0, 1) entries.

Form the Hadamard product G ® A ;. Then

perm(A) = Edet*(G OA)).

Estimator: perm(A) ~ det*(G ©® Aip).
@ Barvinok’s estimator has no arithmetic issues.
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Barvinok’s estimator

1/2

@ Barvinok’s estimator Let Ay, be the matrix with entries ;"

Let G be an n x n random matrix with i.i.d. N(0, 1) entries.
Form the Hadamard product G ® A ;. Then

perm(A) = Edet*(G OA)).

Estimator: perm(A) ~ det*(G ©® Aip).
@ Barvinok’s estimator has no arithmetic issues.

Theorem (Barvinok)

Let A be any n x n matrix. Then, with high probability,
((1 —¢) - 0)" perm(A) < det*(G ® A 5) < Cperm(A),

where C is an absolute constant and

e 0 = 0.28 for real Gaussian matrices;

e 6 = 0.56 for complex Gaussian matrices;
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Subexponential bounds for Barvinok’s estimator

o Identity matrix: multiplicative error at least exp(cn) w.h.p.
@ Matrix of all ones: multiplicative error at most exp(C+/log n) (Goodman, 1963).
@ What happens for other matrices?
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Subexponential bounds for Barvinok’s estimator

o Identity matrix: multiplicative error at least exp(cn) w.h.p.
@ Matrix of all ones: multiplicative error at most exp(C+/log n) (Goodman, 1963).
@ What happens for other matrices?

@ Balanced entries (Friedland, Rider, Zeitouni, 2004):
if maxa;; < t-mina,;, then

det’ (G © Ay )

e
perm(A)

< o)

with probability 1 — o(1) as n — oc.
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Subexponential bounds for Barvinok’s estimator

o Identity matrix: multiplicative error at least exp(cn) w.h.p.
@ Matrix of all ones: multiplicative error at most exp(C+/log n) (Goodman, 1963).
@ What happens for other matrices?

@ Balanced entries (Friedland, Rider, Zeitouni, 2004):
if maxa;; < t-mina,;, then

det’ (G © Ay )

e
perm(A)

< o)

with probability 1 — o(1) as n — oc.

@ The bound is asymptotic.

@ Not applicable for matrices with zeros.

o Linial-Samorodnitsky—Wigderson algorithm estimates the permanent with
polynomial error for balanced matrices.
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Subexponential bounds for Barvinok’s estimator

Question:

for which graphs would Barvinok’s estimator

yield a small error?
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Strongly connected bipartite graphs

LetT' = (L,R, V) be an n x n bipartite graph.
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Strongly connected bipartite graphs

LetT' = (L,R, V) be an n x n bipartite graph.
A vertex i € L is d-strongly connected
to asetJ C Rif it is connected
to at least (§/2) - |J| vertices of J.

A

I
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Strongly connected bipartite graphs

LetT' = (L,R, V) be an n x n bipartite graph.
A vertex i € L is d-strongly connected
to asetJ C Rif it is connected
to at least (§/2) - |J| vertices of J.

Strongly connected graph

Let,x >0, §/2 > k. The graph I is
(6, k)-strongly connected if

@ Left degree condition: deg(i) > on
foralli € [n];
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Strongly connected bipartite graphs

LetT' = (L,R, V) be an n x n bipartite graph.
A vertex i € L is d-strongly connected
to asetJ C Rif it is connected
to at least (§/2) - |J| vertices of J.

Strongly connected graph

Let,x >0, §/2 > k. The graph I is
(6, k)-strongly connected if

@ Left degree condition: deg(i) > on
foralli € [n];

@ Right degree condition: deg(j) > dn
forallj € [n];
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Strongly connected bipartite graphs

LetT' = (L,R, V) be an n x n bipartite graph.
A vertex i € L is d-strongly connected
to asetJ C R if it is connected
to at least (§/2) - |J| vertices of J.

Strongly connected graph

Let,x >0, §/2 > k. The graph I is
(6, k)-strongly connected if

@ Left degree condition: deg(i) > on

foralli € [n];
@ Right degree condition: deg(j) > dn o
forallj € [n]; *\
@ Strong expansion condition: for any I( o——J

J)—>
setJ C [m]
the set of its §-strongly connected .

neighbors has the cardinality
1(J)] > min ((1 + &)[J],n).
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Results for bipartite graphs

@ Good news: the Barvinok estimator is strongly concentrated:
the multiplicative error is O(exp ((cnlogn)!/?) with high probability

Mark Rudelson (Michigan) Permanent estimators via random matrices Saint Petersburg, 2013 12/20



|
Results for bipartite graphs

@ Good news: the Barvinok estimator is strongly concentrated:
the multiplicative error is O(exp ((cnlogn)!/?) with high probability
@ Bad news: It can be concentrated around a wrong value

Mark Rudelson (Michigan) Permanent estimators via random matrices Saint Petersburg, 2013 12/20



|
Results for bipartite graphs

@ Good news: the Barvinok estimator is strongly concentrated:
the multiplicative error is O(exp ((cnlogn)!/?) with high probability
@ Bad news: It can be concentrated around a wrong value
Theorem (R’—Zeitouni, 2013)
Let A be the adjacency matrix A of an n X n bipartite graph, which has
© the minimal degree at least on with some § > 0;
@ expander-type property
then for any T > 1

det*(A
< et( 1/2@G)<
> M >~

P

> 1 — small

v
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Results for bipartite graphs

@ Good news: the Barvinok estimator is strongly concentrated:
the multiplicative error is O(exp ((cnlogn)!/?) with high probability
@ Bad news: It can be concentrated around a wrong value
Theorem (R’—Zeitouni, 2013)
Let A be the adjacency matrix A of an n X n bipartite graph, which has
© the minimal degree at least on with some § > 0;
@ expander-type property
then for any T > 1

det*(A G
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@ Good news: the Barvinok estimator is strongly concentrated:
the multiplicative error is O(exp ((cnlogn)!/?) with high probability
@ Bad news: It can be concentrated around a wrong value
Theorem (R’—Zeitouni, 2013)
Let A be the adjacency matrix A of an n X n bipartite graph, which has
© the minimal degree at least on with some § > 0;
@ expander-type property
then for any T > 1

det*(A G
P lexp (—C(Tnlogn)l/3) < % < exp (C(Tnlogn)m)]

>1— exp(—7)

and

M
~Crnlogn)?) < —— - <1,
exp( C(tnlogn) S perm(d) =

y
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Results for bipartite graphs

@ Good news: the Barvinok estimator is strongly concentrated:
the multiplicative error is O(exp ((cnlogn)!/?) with high probability
@ Bad news: It can be concentrated around a wrong value
Theorem (R’—Zeitouni, 2013)
Let A be the adjacency matrix A of an n X n bipartite graph, which has
@ the minimal degree at least Sn with some § > 0;
@ expander-type property
then for any T > 1

det’(A;/, ® G)
exp(E log det? (A1), ®G))

P lexp (—C(Tnlogn)l/3) <

>1— exp(—7)

< exp (C(Tl’l log n)1/3) ]

and
exp(Elog detz(Al/z ®G))

]Edetz(Al O} G)
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Results for matrices

Large entries graph

Let s > 0 and let B be an n x n matrix B with non-negative entries.
Define the bipartite graph I'z(s) connecting the vertices i and j whenever b; ; > s
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Results for matrices

Large entries graph

Let s > 0 and let B be an n x n matrix B with non-negative entries.
Define the bipartite graph I'z(s) connecting the vertices i and j whenever b; ; > s

07 0 01 05 10 0 1
0.1 06 08 02 01 1 0

B=106 06 03 05| = |1 10 1] 6=05
02 08 07 03 01 1 0

Consider matrices with strongly connected large entries graphs.
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Results for matrices

Theorem

Let B be an n x n matrix such that

n n
wa <1 forallje [n]; and Zbu <1 forallié€ [n],

i=1 j=1

and 0 < b;j < b,/n, where 0 < b, < n.
Assume that the large entries graph T'g(1/n) is (6, k)-strongly connected.
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Results for matrices

Theorem

Let B be an n x n matrix such that

n n
Zb"x/ <1 forallje [n]; and Zbu <1 forallié€ [n],

i=1 j=1

and 0 < b;j < b,/n, where 0 < b, < n.

Assume that the large entries graph T'g(1/n) is (6, k)-strongly connected.
Then for any T > 1

det’ (A1, © G
P [exp (—C(Tb,,n)l/3 ) < % < exp (C(Tb,,n)l/3 )]

>1—exp(—7)

v
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Results for matrices

Theorem

Let B be an n x n matrix such that

n n
Zb"x/ <1 forallje [n]; and Zbu <1 forallié€ [n],

i=1 j=1

and 0 < b;j < b,/n, where 0 < b, < n.

Assume that the large entries graph T'g(1/n) is (6, k)-strongly connected.
Then for any T > 1

det’ (A1, © G
P [exp (—C(Tb,,n)l/3 ) < % < exp (C(Tb,,n)l/3 )]

>1—exp(—7)

M
_ 1/2 < <
and exp( C(rb,n) ) S —V 1.

v
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Results for matrices

Theorem

det*(A
< € ( 1/2®G)

i < exp (C(Tbnl’l)l/3

P [exp (—C(Tbnl’l)l/3 )
>1—exp(—7)

M
— 1/2 < — < 1.
and exp( C(tb,n) ) < perm(a) = 1

e Small maximal entry: max b;; = o(1) or b, = o(n):
e Barvinok’s estimator is well-concentrated about the permanent.
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Results for matrices

Theorem

det*(A
< € ( 1/2®G)

Vi < exp (C(Tbnl’l)l/3

P [exp (—C(Tbnl’l)l/3 )
>1—exp(—7)

M
and exp (—C(Tbnn)l/2 ) < peT(A) <1

e Small maximal entry: max b;; = o(1) or b, = o(n):
e Barvinok’s estimator is well-concentrated about the permanent.
o Large maximal entry: max b;; = Q(1) or b, = Q(n):

o Barvinok’s estimator is well-concentrated: (7h,n)'/> = O(n*/?);
o It may be concentrated exponentially far from the permanent: v/b,n = Q(n).
o Consistent failure is possible.
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Example of a consistent failure

Let B be the n X n matrix with entries

9 ifi=j
biJ:{l—O

128 ifiA)

@ The matrix B is doubly stochastic for 6 € (0, 1).

@ B has no zero entries.

o I'p is a complete bipartite graph.
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Example of a consistent failure

Let B be the n X n matrix with entries

b 0  ifi=j
Y 120 ity

@ The matrix B is doubly stochastic for 6 € (0, 1).
@ B has no zero entries.

o I'p is a complete bipartite graph.

Theorem

There exists 0y < 1 such that for any 6 € (0, 1)

detZ(Bl/g ©® G) < e " perm(B)

with high probability.
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Approach to concentration

o Aim: X(G) := det’(A, /2 © G) is concentrated.
o det’(4, ,2 © G) is highly non-linear = log(det® (A, /2 ® G)) is easier to
control.

o Modified aim : Y(G) = log det*(A, /2 © G) is concentrated around its
expectation.
We will have to compare the concentration for X(G) and Y(G) at the end.

@ There exists a subgaussian concentration inequality for Lipschitz functions on
R™" with respect to the gaussian measure.

o logdet’(A, /2 © G) is not Lipschitz.
@ Main challenge: using the Lipschitz concentration for a non—Lipschitz function.
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Concentration for Gaussian measure

Aim: Y(G) = logdet*(A, /2 © G) is concentrated around its expectation. There exists

a subgaussian concentration inequality for Lipschitz functions on R"*" with respect
to the gaussian measure:

2
P (IF(G) ~ BF(G) > ) < 2exp (- 57575 ) -

Mark Rudelson (Michigan)
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Concentration for Gaussian measure

Aim: Y(G) = logdet’(A;/» ® G) is concentrated around its expectation. There exists
a subgaussian concentration inequality for Lipschitz functions on R"*" with respect
to the gaussian measure:

2
P (|F(G) —EF(G)| >t <2 - .
(F(6) - EF(G)| = 1) < 2089 (520 )
e log detz(Al/z ©G)=2 27=1 logsj(A; 2 © G).
@ The maping G — A/, © G is Lipschitz.
o The mapping M — (s1(M), .. .,s,(M)) is Lipschitz.
@ Truncated logarithm log, x = max(logx, €) is a Lipschitz function.
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Strategy of the proof
@ Singular value estimates:
=] =g = = o
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Strategy of the proof

@ Singular value estimates:
o Adaptive threshold: s, (A, ® G) > &, for all m with high probability.

Mark Rudelson (Michigan) Permanent estimators via random matrices Saint Petersburg, 2013 19/20



|
Strategy of the proof

@ Singular value estimates:
o Adaptive threshold: s, (A, ® G) > &, for all m with high probability.

e lOg detz(A1/2 ® G) = Z]n:_lk 10g Sj(Al/Q ® G) + Z;L:nkarl IOg Sj(A1/2 ® G)
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Strategy of the proof

@ Singular value estimates:
o Adaptive threshold: s, (A, ® G) > &, for all m with high probability.

e lOg detz(Al/z ® G) = E;;Ik log Sj(A]/z ® G) + Z;L:nkarl IOg Sj(A1/2 ® G)
@ Y logsi(Ar2 ©G) =Y\~ log. si(A1/2 ® G)

is a (7)-Lipschitz function = balance the concentration
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Strategy of the proof

@ Singular value estimates:
o Adaptive threshold: s, (A, ® G) > &, for all m with high probability.

e lOg detz(A1/2 ® G) = Z]n:_lk 10g Sj(A1/2 ® G) + 2}1:117k+1 lOg Sj(Al/Z ® G)
o Z,n;lk logsj(A1, © G) = Z;:lk log. sj(A12® G)
is a (7)-Lipschitz function = balance the concentration

o Z;l:nfk+l logsj(A12 ©G)| <DL, iy |logsj|

= contribution of the last singular values is limited.
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Strategy of the proof

@ Singular value estimates:
o Adaptive threshold: s, (A, ® G) > &, for all m with high probability.

e lOg detz(A1/2 ® G) = Z;l:_lk 10g Sj(A1/2 ® G) + erf:nkarl IOg Sj(A1/2 ® G)
o Z,n;lk logsj(A1, © G) = Z;:lk log. sj(A12® G)
is a (7)-Lipschitz function = balance the concentration

o Z;l:nfk+l logsj(A12 ©G)| <DL, iy |logsj|

= contribution of the last singular values is limited.
© How to choose the threshold k?

o Smaller k = smaller error.
o Largerk =- stronger concentration.
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Choosing the right threshold

n—k
log detz(Al/z ©G)

Zl(’gs 5i(A12 © G) +
j=1

g error terms

Jj=n—k+1

=] F = = DA
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Choosing the right threshold

log det (A1 0G) = log det® (A1 ©G) + Z error terms
j=n—k+1
log det? (A2 ® G) is concentrated about its expectation.

@ Smallerk = smaller error.

e Larger k = stronger concentration.
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Choosing the right threshold

n

log det (A1 0G) = log det® (A1 ©G) + Z error terms
j=n—k+1

log det? (A2 ® G) is concentrated about its expectation.

@ Smaller k = smaller error.
logdet’(A;/» ® G) is close to E log det’ (4, /» ® G) with high probability.
This may be far from log perm(A).

o Larger k = stronger concentration.
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Choosing the right threshold

log det (A1 0G) = log det? (A1 ©G) + Z error terms
j=n—k+1

loAé det’(A, /2 ® G) is concentrated about its expectation.

o Smallerk = smaller error.
log det?(A, /2 © G) is close to E log det® (A, /2 © G) with high probability.
This may be far from log perm(A).

o Larger k = stronger concentration.
Strong concentration =

Elogdet’ (A, ® G) ~ logEdet*(A,, ® G)
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Choosing the right threshold

log det (A1 0G) = log det® (A1 ©G) + Z error terms
j=n—k+1

log det? (A2 ® G) is concentrated about its expectation.

@ Smaller k = smaller error.
logdet’(A;/» ® G) is close to E log det’ (4, /» ® G) with high probability.
This may be far from log perm(A).

o Larger k = stronger concentration.
Strong concentration =

Elog detz(Al/z OG0~ logEdet2(A1/2 © G) = logperm(A)

up to the error terms.

@ We had to use a random variable to connect two deterministic quantities.
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