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Entropy

•When random variable X = (X1, . . . , Xn) has density f (x) on Rn, the
entropy of X is

h(X) = h(f ) := �
Z

Rn
f (x) log f (x)dx = E[� log f (X)]

• The entropy power of X is N(X) = e
2h(X)

n

Remarks

• Usual abuse of notation: we write h(X) even though the entropy is a
functional depending only on the density of X

• N(X) 2 [0,1] can be thought of as a “measure of randomness”

• N is an (inexact) analogue of volume: if UA is uniformly distributed on
a bounded Borel set A,

h(UA) = log |A| or N(UA) = |A|2/n



Entropy power

The entropy power of X is N(X) = e
2h(X)

n

Remarks

• The reason we don’t define entropy power by eh(X) (which would give
|A| for Unif(A)) is that the “correct” comparison is not to uniforms but
to Gaussians

• Just as Euclidean balls are special among subsets of Rn, Gaussians are
special among distributions on Rn

• If Z is N(0, �2I), the entropy power of Z is

N(Z) = (2⇡e)�2

Thus the entropy power of X is (up to a universal constant) the variance
of the (isotropic) normal that has the same entropy as X :

N(X) = N(Z) = (2⇡e)�2
Z

• entropy power: random variables :: volume
1
n : sets

since |A| 1n is (up to a universal constant) the radius of the ball that has
the same volume as A



Brunn-Minkowski inequality and entropy power
inequality

The Inequalities

• Let A,B be any Borel-measurable sets in Rn. Write A + B =

�
x + y :

x 2 A, y 2 B
 
for the Minkowski sum, and |A| for the n-dimensional

volume. The Brunn-Minkowski inequality says that
��A + B

��1/n � |A|1/n + |B|1/n [BM ]

• For a random vector X in Rn, the entropy power is N(X) = e2h(X)/n.
For any two independent random vectors X and Y in Rn,

N(X + Y ) � N(X) +N(Y ) [EPI ]

Remarks

• BM was proved by [Brunn 1887, Minkowski 1890s, Lusternik ’35]

• EPI was proved by [Shannon ’48, Stam ’59]; equality holds i↵X, Y are normal
with proportional covariances



Sidenote: Two kinds of functional versions

For the goal of embedding the geometry of convex sets in a more analytic
setting, several approaches are possible:

• Replace sets by functions, and convex sets by log-concave or s-concave
functions. Replace volume by integral. E.g. [Klartag-Milman ’05, Milman-

Rotem ’13]

• Replace sets by random variables, and convex sets by random variables
with log-concave or s-concave distributions. Replace volume by entropy
(actually entropy power). E.g. [Dembo-Cover-Thomas ’91, Lutwak-Yang-Zhang

’04-’13, Bobkov-Madiman ’11-’13]



Another example: Blaschke-Santaló inequality

The Inequalities

• If K,L are compact sets in Rn, then

|K| · |L|  !2
n max

x2K,y2L
|hx, yi|n

• For any two independent random vectors X and Y in Rn, there is an
(explicit) universal constant c such that

N(X) ·N(Y )  cE
⇥|hX, Y i|2⇤ [Lutwak-Yang-Zhang ’04]

Remarks

• The first inequality implies the Blaschke-Santaló inequality by taking K
to be a symmetric convex body, and L to be the polar of K

• Functional versions of the other kind also exist [Artstein-Klartag-Milman ’05,

Fradelizi-Meyer ’07, Lehec ’09]



Reverse Brunn-Minkowski inequality

Given two convex bodies A and B in Rn, one can find an a�ne volume-
preserving map u : Rn ! Rn such that with some absolute constant C,

�� eA + B
��1/n  C

⇣
|A|1/n + |B|1/n

⌘

where eA = u(A)

Remarks

• The reverse Brunn-Minkowski inequality was proved by [V. Milman ’86],
with other proofs in [Milman ’88, Pisier ’89]

• Seminal result in convex geometry/asymptotic theory of Banach spaces;
closely connected to the hyperplane conjecture

• Is there a reverse EPI under some “convexity” assumption?



Reverse entropy power inequality

If X and Y are independent and have log-concave densities, then for some
linear entropy-preserving map u : Rn ! Rn,

N
� eX + Y

�  C (N(X) +N(Y )), [Bobkov–M.’11, CRAS]

where eX = u(X) and C is an absolute constant

Remarks

• Recall that a probability density function f on Rn is log-concave (or LC)
if

f (↵x + (1� ↵)y) � f (x)↵f (y)1�↵,

for each x, y 2 Rn and each 0  ↵  1

• Can recover reverse BM inequality as a special case, though this is not
immediately obvious

• Question: Can we generalize to a larger class of measures?



Convex measures

Fix a parameter � � n. A density f on Rn is �-concave if

f (x) = V (x)��, x 2 Rn

where V is a positive convex function on Rn

Remarks

• Probability measures µ on Rn with �-concave densities satisfy the geo-
metric inequality

µ
�
tA + (1� t)B

� � ⇥
tµ(A) + (1� t)µ(B)


⇤1/

for all t 2 (0, 1) and for all Borel measurable sets A,B ⇢ Rn, with
negative power  = � 1

��n

• For growing �, the families of �-concave densities shrink and converge
in the limit as � ! +1 to the family of log-concave densities

• The largest class is thus the class of n-concave densities; the correspond-
ing class of measures is said to be “convex”

• One main reason to consider �-concave densities is that they allow heavy
tails, unlike log-concave densities (e.g., Cauchy density on R is 2-concave)



Reverse EPI for �-concave class

Let X and Y be independent random vectors in Rn with densities, for
� � max{2n+1, �0n} with �0 > 2. There exists a linear entropy-preserving
map u : Rn ! Rn such that

N
� eX + Y

�  C�0 (N(X) +N(Y )), [Bobkov–M.’12, JFA]

where eX = u(X), and C�0 is a constant depending on �0 only

Remarks

• Question: Is it possible to relax the assumption on the range of �, or
even to remove any convexity hypotheses?



No reverse EPI for convex measures

This is impossible already for the class of all one-dimensional convex proba-
bility distributions (note that for n = 1, there are only two admissible linear
transformations, eX = X and eX = �X)

Theorem: [Bobkov–M.’13] For any constant C, there is a convex proba-
bility distribution µ on the real line with a finite entropy, such that

min{N(X + Y ), N(X � Y )} � C N(X),

where X and Y are i.i.d. random variables drawn from µ

Intuition: A main reason for N(X +Y ) and N(X �Y ) to be much larger
than N(X) is that the distributions of the sum X + Y and the di↵erence
X � Y may lose convexity properties, when the distribution µ of X is not
“su�ciently convex”

Question: Is it possible to say anything about the relationship between
N(X + Y ), N(X � Y ) and N(X), N(Y ) in general (i.e., no convexity
hypotheses at all)?
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Motivation: The additive side of number theory

A lot of modern problems in number theory have to do with inherently
“additive structure”. E.g.:

• van der Corput’s theorem (1939):
The set of prime numbers contains infinitely many arithmetic progressions
(AP’s) of size 3

• Szemerédi’s theorem (1975):
Any set A of integers such that

lim sup

n!1
|A \ {1, . . . , n}|

n
> 0

contains an AP of length k, for all k � 2

• Green-Tao theorem (2008):
For each k � 2, the set of prime numbers contains an arithmetic pro-
gression of length k



Additive combinatorics

In all three results above, the problem is to count the number of occurrences
of a certain additive pattern in a given set

Classical “multiplicative” combinatorial results are insu�cient for these pur-
poses

The theory of additive combinatorics, and in particular the so-called sumset

inequalities, provides a set of very e↵ective tools

Sumset inequalities

• “sumset” A + B = {a + b : a 2 A, b 2 B}, where A,B are finite sets
in some group G

• “sumset inequality”: inequalities for the cardinalities of sumsets under a
variety of conditions

Simplest (trivial) example of a sumset inequality:
For any discrete subset A of an additive group (G,+) [WLOG think of
G = Z],

|A|  |A + A|  |A|2



Classical Sumset inequalities

Examples from the Plünnecke-Ruzsa (direct) theory

• Ruzsa triangle inequality

|A� C|  |A� B| · |B � C|
|B|

• Plünnecke-Ruzsa inequality: Although it is not true in general that

|A + B + C| · |B|  |A + B| · |B + C|,
it is true under appropriate conditions on the pair (A,B)

There is also the so-called Freiman or inverse theory, which deduces struc-
tural information about sets from the fact that their sumset is small. We
will not discuss this much today



Reminder: Discrete Entropy

For a discrete random variable X with probability mass function p, i.e.,
P{X = x} = p(x),
entropy H(X) = H(p) = �P

x p(x) log p(x)

Key Properties

• If X is supported on a finite set A, then

0  H(X)  log |A|
with the first being equality i↵ X is deterministic, and the second being
equality i↵ X ⇠ Unif(A)

• The entropy is the “minimum number of bits needed to represent X”,
and so can be thought of as the amount of information in X



Combinatorics and Entropy

Natural connection: For a finite set A,

H(Unif(A)) = log |A|
is the maximum entropy of any distribution supported on A

Applications of entropy in combinatorics

• Intersection families [Chung-Graham-Frankl-Shearer ’86]

• New proof of Bregman’s theorem, etc. [Radhakrishnan ’97-’03]

• Various counting problems [Kahn ’01, Friedgut-Kahn ’98, Brightwell-Tetali ’03,

Galvin-Tetali ’04, M.-Tetali ’07, Johnson-Kontoyiannis-M.’09]

Entropy in Additive Combinatorics?

Natural question: Can sumset inequalities be derived via entropy inequali-
ties? Even more interestingly, are sumset inequalities special cases of entropy
inequalities for sums of group-valued discrete random variables?

The answer to this question was developed by Ruzsa ’09, M.-Marcus-Tetali ’09,
and Tao ’10 in the discrete setting, and partially generalized to continuous
settings by Kontoyiannis-M.’12, ’13



Doubling and di↵erence constants (sets)

Let A and B be arbitrary subsets of the integers (or discrete subsets of any
commutative group).

A classical inequality in additive combinatorics

The di↵erence set A� B = {a� b : a 2 A, b 2 B}
Define the doubling constant of A by

�[A] =
|A + A|
|A|

and the di↵erence constant of A by

�[A] =
|A� A|
|A| .

Then �[A] 1
2  �[A]  �[A]2

May be rewritten as
1
2

⇥
log |A� A|� log |A|⇤  log |A + A|� log |A|  2

⇥
log |A� A|� log |A|⇤



Doubling and di↵erence constants (RV’s)

Formal translation procedure

• Replace discrete sets by independent discrete random variables

• Replace the log-cardinality of a set by the discrete entropy function

Translation of the previous inequality

Let Y, Y 0 be i.i.d. discrete random variables. Define the doubling constant

of Y by

�+(Y ) = H(Y + Y 0
)�H(Y )

and the di↵erence constant of Y by

��(Y ) = H(Y � Y 0
)�H(Y )

where H(·) denotes the discrete entropy function. Then the entropy analog
of the doubling–di↵erence sumset inequality is

1
2��(Y )  �+(Y )  2��(Y )

Upper bound proved by Ruzsa ’09, Tao ’10, lower bound by M.-Marcus-Tetali ’09
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A Unified Setting

Let G be a Hausdor↵ topological group that is abelian and locally compact,
and � be a Haar measure on G. If µ ⌧ � is a probability measure on G,
the entropy of X ⇠ µ is defined by

h(X) = �
Z

dµ

d�
(x) log

dµ

d�
(x)�(dx)

Remarks

• In general, h(X) may or may not exist; if it does, it takes values in the
extended real line [�1,+1]

• If G is compact and � is the Haar (“uniform”) probability measure on G,
then h(X) = �D(µk�)  0 for every RV X

• Covers both the classical cases: G discrete with counting measure, and
G = Rn with Lebesgue measure



Reminder: Entropy in General Setting

For random element X , entropy h(X) = h(p) = E[� log p(X)]

Key cases

• If X is discrete, p is the p.m.f of X , and H is denoted H

• If X is continuous, p is the p.d.f of X , and H is denoted h



A Question and an Answer

Setup: Let Y and Y 0 be i.i.d. random variables (with density f). As usual,
the entropy is h(Y ) = E[� log f (Y )]

Question

How di↵erent can h(Y + Y 0
) and h(Y � Y 0

) be?

First answer [Lapidoth–Pete ’08]

The entropies of the sum and di↵erence of two i.i.d. random variables can
di↵er by an arbitrarily large amount

Precise formulation: Let G = R or G = Z. Given any M > 0, there exist
i.i.d. G-valued random variables Y, Y 0 of finite entropy, such that

h(Y � Y 0
)� h(Y + Y 0

) > M (Ans. 1)



A Question and another Answer

Question

If Y and Y 0 are i.i.d. G-valued random variables, how di↵erent can
h(Y + Y 0

) and h(Y � Y 0
) be?

Our answer [Kontoyiannis–M.’12]

The entropies of the sum and di↵erence of two i.i.d. random variables are
not too di↵erent

Precise formulation: For any two i.i.d. G-valued random variables Y, Y 0

with finite entropy:

1

2

 h(Y + Y 0
)� h(Y )

h(Y � Y 0
)� h(Y )

 2 (Ans. 2)



What do the two Answers tell us?

Together, they suggests that the natural quantities to consider are the dif-
ferences

�+ = h(Y + Y 0
)� h(Y ) and �� = h(Y � Y 0

)� h(Y )

Then (Ans. 1) states that the di↵erence �+ ��� can be arbitrarily large,
while (Ans. 2) asserts that the ratio �+/�� must always lie between 1

2 and
2

Why is this interesting?

• Seems rather intriguing in its own right

• Observe that �+ and �� are a�ne-invariant; so these facts are related
to the shape of the density

• This statement for discrete random variables (one half of which follows
from [Ruzsa ’09, Tao ’10], and the other half of which follows from [M.-

Marcus-Tetali ’12]) is the exact analogue of the inequality relating doubling
and di↵erence constants of sets in additive combinatorics

• This and possible extensions may be relevant for studies of “polarization”
phenomena and/or interference alignment in information theory



Proof outline

We obtain the desired inequality from two more general facts:

Fact 1: [Entropy analogue of the Plünnecke-Ruzsa inequality] If Y, Y 0, Z
are independent random variables, then the Submodularity Lemma says

h(Y + Y 0
+ Z) + h(Z)  h(Y + Z) + h(Y 0

+ Z) [M. ’08]

Fact 2: [Entropy analogue of the Ruzsa triangle inequality] If Y, Y 0, Z
are independent random variables, then

h(Y�Y 0
) + h(Z)  h(Y + Z) + h(Y 0

+ Z)

Proof of Upper Bound Since h(Y + Y 0
)  h(Y + Y 0

+ Z), Fact 1 implies

h(Y + Y 0
) + h(Z)  h(Y + Z) + h(Y 0

+ Z) (1)

Taking now Y, Y 0 to be i.i.d. and Z to be an independent copy of �Y ,

h(Y + Y 0
) + h(Y )  2h(Y � Y 0

)

or h(Y + Y 0
)� h(Y )  2[h(Y � Y 0

)� h(Y )]

Proof of Lower Bound The other half follows similarly from Fact 2
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An e↵ective reverse EPI

Let X and Y be i.i.d. random vectors in Rn with a LC density. Then

H(X � Y )  e2H(X)

and
H(X + Y )  4H(X)

Remarks

• Proof of first part is an easy consequence of a Gaussian comparison in-
equality of



Continuous Plünnecke-Ruzsa inequality

Let A and B1, . . . , Bm be convex bodies in Rn, such that
����A + Bi

����

1
n

 ci|A| 1n

for each i 2 [m]. Then
����A +

X

i2[m]

Bi

����

1
n


 Y

i2[m]

ci

�
|A| 1n

Remarks

• Proved in [Bobkov-M.’12]; seem to be the first such upper bounds for vol-
umes of Minkowski sums that do not use non-volumetric information and
do not require invoking a�ne transformation

• This is the exact analogue of the discrete Plünnecke-Ruzsa inequality

• Unclear if such an inequality extends to larger classes of sets



The Submodularity Lemma

Given independent G-valued RVs X1, X2, X3 with finite entropies,

h(X1 +X2 +X3) + h(X2)  h(X1 +X2) + h(X3 +X2) [M. ’08]

Remarks

• For discrete groups, the Lemma is implicit in Kăımanovich-Vershik ’83, but was redis-
covered and significantly generalized by M.-Marcus-Tetali ’12 en route to proving some
conjectures of Ruzsa

• Discrete entropy is subadditive; trivially,

H(X1 +X2)  H(X1, X2)  H(X1) +H(X2)

This corresponds to putting X2 = 0 in discrete form of the Lemma

• Continuous entropy is not subadditive; it is easy to construct examples with

h(X1 +X2) > h(X1) + h(X2)

Note that putting X2 = 0 in the Lemma is no help since h(const.) = �1



Proof of Submodularity Lemma

Lemma A: (“Data processing inequality”) The mutual information cannot
increase when one looks at functions of the random variables:

I(g(Z);Y )  I(Z;Y ).

Lemma B: If Xi are independent RVs, then

I(X1 +X2;X1) = H(X1 +X2)�H(X2).

Proof of Lemma B

Since conditioning reduces entropy,

h(X1 +X2)� h(X2) = h(X1 +X2)� h(X2|X1) [independence of Xi]

= h(X1 +X2)� h(X1 +X2|X1) [translation-invariance]

= I(X1 +X2;X1)

Proof of Submodularity Lemma

I(X1 +X2 +X3;X1)
(a)
 I(X1 +X2, X3;X1)

(b)
= I(X1 +X2;X1)

where (a) follows from Lemma A and (b) follows from independence

By Lemma B, this is the same as

h(X1 +X2 +X3) + h(X2)  h(X1 +X2) + h(X2 +X3)



Applications in Convex Geometry

Continuous Plünnecke-Ruzsa inequality: Let A and B1, . . . , Bn be convex
bodies in Rd, such that for each i,

����A + Bi

����

1
d

 ci|A|1d.

Then ����A +

X

i2[n]
Bi

����

1
d


 nY

i=1

ci

�
|A|1d

The proof combines the Submodularity Lemma with certain reverse Hölder-
type inequalities developed in [Bobkov-M.’12]

Reverse Entropy Power Inequality: The Submodularity Lemma is one in-
gredient (along with a deep theorem of V. Milman on the existence of
“M -ellipsoids”) used in Bobkov-M.’11, ’12 to prove a reverse entropy power
inequality for convex measures (generalizing the reverse Brunn-Minkowski
inequality)



An elementary observation

If Xi are independent,

h(X1) + h(X2) = h(X1, X2)

= h

✓
X1 +X2p

2

,
X1 �X2p

2

◆

 h

✓
X1 +X2p

2

◆
+ h

✓
X1 �X2p

2

◆

When X1 and X2 are IID. . .

• If X1 has a symmetric (even) density, this immediately yields h(S2) �
h(S1) in the CLT

• If h(X1 �X2) < h(X1 +X2)� C, then

h(Z) � h

✓
X1 +X2p

2

◆
> h(X1) +

C

2

so that D(X1) >
C
2

• Thus any distribution of X for which |h(X1�X2)�h(X1+X2)| is large
must be far from Gaussianity



What does small doubling mean?

Let X be a R-valued RV with finite (continuous) entropy and variance �2.
The EPI implies h(X+X 0

)�h(X) � 1
2 log 2, with equality i↵ X is Gaussian

A (Conditional) Freiman theorem in Rn

If X has finite Poincaré constant R = R(X), and

h(X +X 0
)� h(X)  1

2 log 2 + C, (2)

then X is approximately Gaussian in the sense that

D(X) 
⇣
2R

�2
+ 1

⌘
C

Remarks

• Follows from a convergence rate result in the entropic CLT obtained independently by
[Johnson-Barron ’04] and [Artstein-Ball-Barthe-Naor ’04]

• A construction of [Bobkov-Chistyakov-Götze ’11] implies that in general such a result
does not hold

• A su�cient condition for small doubling is log-concavity: in this case, h(X + X 0
) 

h(X) + log 2 and h(X �X 0
)  h(X) + 1

• There are still structural conclusions to be drawn just from (2). . .



Summary

• Almost complete characterization of when a reverse EPI can hold

• Along the way, developed tools of independent interest:

– Exponential concentration of information content for LC random vec-
tors

– A Gaussian comparison inequality for entropy of LC random vectors

– Submodularity of entropy of convolutions

• Reverse EPI with explicit constants in IID case

• Beginnings of a probabilistic study of additive combinatorics on Rn

Thank you for your attention!

� � � � �
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Reminder: Three Useful Facts about Entropy

• Shannon’s Chain Rule:

h(X, Y ) = h(Y ) + h(X|Y )

• The conditional mutual information I(X ;Y |Z) represents the infor-
mation shared between X and Y given that Z is already known; since it
is non-negative and can be written as

I(X ;Y |Z) = h(X|Z)� h(X|Y, Z),
consequently h(X|Z) � h(X|Y, Z) (“conditioning reduces entropy”)

• Things that we can rely on only in the discrete case:

–H(X|Y ) � 0 and H(X) � 0

–H(X|Y ) = 0 if and only if X is a function of Y

Consequences: A plethora of entropy inequalities



The Submodularity Lemma

Given independent G-valued RVs X1, X2, X3 with finite entropies,

h(X1 +X2 +X3) + h(X2)  h(X1 +X2) + h(X3 +X2)

Remarks

• For discrete groups, the Lemma is implicit in Kăımanovich-Vershik ’83, but was redis-
covered and significantly generalized by M.-Marcus-Tetali ’12 en route to proving some
conjectures of Ruzsa

• For general locally compact abelian groups, it is due to M.’08, Kontoyiannis-M.’13

• Discrete entropy is subadditive; trivially,

H(X1 +X2)  H(X1, X2)  H(X1) +H(X2)

This corresponds to putting X2 = 0 in discrete form of the Lemma

• Di↵erential entropy (G = R) is not subadditive; it is easy to construct examples with

h(X1 +X2) > h(X1) + h(X2)

Note that putting X2 = 0 in the Lemma is no help since h(const.) = �1



Proof of Submodularity Lemma

Lemma A: (“Data processing inequality”) The mutual information cannot
increase when one looks at functions of the random variables:

I(g(Z);Y )  I(Z;Y ).

Lemma B: If Xi are independent RVs, then

I(X1 +X2;X1) = H(X1 +X2)�H(X2).

Proof of Lemma B

Since conditioning reduces entropy,

h(X1 +X2)� h(X2) = h(X1 +X2)� h(X2|X1) [independence of Xi]

= h(X1 +X2)� h(X1 +X2|X1) [translation-invariance]

= I(X1 +X2;X1)

Proof of Submodularity Lemma

I(X1 +X2 +X3;X1)
(a)
 I(X1 +X2, X3;X1)

(b)
= I(X1 +X2;X1)

where (a) follows from Lemma A and (b) follows from independence

By Lemma B, this is the same as

h(X1 +X2 +X3) + h(X2)  h(X1 +X2) + h(X2 +X3)



The entropy analogue of Ruzsa triangle inequality

Goal: If X, Y, Z are independent,

h(X � Z)  h(X � Y ) + h(Y � Z)� h(Y )

Proof

Note RHS � h(X � Y, Y � Z) + h(X,Z)� h(X, Y, Z)

But h(X, Y, Z) = h(X � Y, Y � Z,X)

= h(X � Y, Y � Z) + h(X|X � Y, Y � Z).
so

RHS � h(X,Z)� h(X|X � Y, Y � Z)

= h(X)� h(X|X � Y, Y � Z) + h(Z)

= I(X ;X � Y, Y � Z) + h(Z)

� I(X ;X � Z) + h(Z)

= h(X � Z)� h(X � Z|X) + h(Z)

= h(X � Z)� h(�Z|X) + h(Z)

= h(X � Z)
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A Gaussian Comparison Inequality

If a random vector X in Rn has a log-concave density f , let Z in Rn be any
normally distributed random vector with maximum density being the same
as that of X . Then

1

n
h(Z)� 1

2 
1

n
h(X)  1

n
h(Z) + 1

2

Equality holds in LB i↵ X ⇠ Unif(A), for a convex set A with non-empty in-
terior. Equality holds in UB if X has coordinates that are i.i.d. exponentially
distributed.

Remarks

• Suppose “amount of randomness” is measured by entropy per coordinate.
Then any LC random vector of any dimension contains randomness
that di↵ers from that in the normal random variable with the same max-
imal density value by at most 1/2



A Gaussian comparison inequality

Write kfk = ess supxf (x). If a random vector X in Rn has density f , then
1

n
h(X) � log kfk�1/n.

If, in addition, f is log-concave, then
1

n
h(X)  1 + log kfk�1/n,

with equality for the n-dimensional exponential distribution, concentrated
on the positive orthant with density f (x) = e�(x1+···+xn), xi > 0.

Remarks

• The lower bound is trivial and holds without any assumption on the density: h(X) �R
Rn f (x) log

1
kfk dx = log

1
kfk

• Observe that the maximum density of the N(0, �2I) distribution is (2⇡�2
)

�n/2. Thus
matching the maximum density of f and the isotropic normal Z leads to (2⇡�2

)

1/2
=

kfk�1/n, and 1
nh(Z) =

1
2 log(2⇡e�

2
) =

1
2 + log kfk�1/n. Thus the above inequality

may be written as ��h(X)� h(Z)
��

n
 1

2



Proof of upper bound

By definition of log-concavity, for any x, y 2 Rn,

f (tx + sy) � f (x)t f (y)s, t, s > 0, t + s = 1.

Integrating with respect to x,

t�n

Z
f (x) dx � f (y)s

Z
f (x)t dx.

Using the fact that
R
f = 1 and maximizing over y, we obtain

t�n � kfk1�t

Z
f (x)t dx

Observe that the left and right sides are equal for t = 1, and the left side
dominates the right side for 0 < t  1. Thus we can compare derivatives in
t of the two sides at t = 1. Specifically,

�n  � log kfk +
Z

f (x) log f (x) dx,

which yields the desired inequality. It is easy to check that a product of
exponentials is an instance of equality.



Sidenote: EPI and Central Limit Theorem

For a random vector X in Rn, the entropy power is H(X) = e2h(X)/n. For
any two independent random vectors X and Y in Rn,

H(X + Y ) � H(X) +H(Y ) [EPI ]

Connection to Entropic CLT (say, on R)

• N(0, �2
) has maximum entropy among all densities with variance �2

• If X1 and X2 are i.i.d., then H(X1 +X2) � 2H(X1) implies

H

✓
X1 +X2p

2

◆
� H(X1)

using the scaling property H(aX) = a2H(X)

• Entropic CLT: Let Xi be i.i.d. with EX1 = 0 and EX2
1 = �2, and

SM =

1p
M

MX

i=1

Xi

Then under minimal conditions, as M ! 1, h(SM) " h(N(0, �2
))

[Barron ’86, Artstein–Ball–Barthe–Naor ’04, Barron–M.’07]



Entropy: reminder

When random vector X 2 Rn has density f (x), the entropy of X is

h(X) = h(f ) := �
Z

f (x) log f (x)dx = E[� log f (X)]

Remarks

• The relative entropy between the distributions of X ⇠ f and Y ⇠ g is

D(fkg) =
Z

f (x) log
f (x)

g(x)
dx

For any f, g, D(fkg) � 0 with equality i↵ f = g

• For X ⇠ f in Rn, its relative entropy from Gaussianity is

D(f ) := D(fkfG
),

where fG is the Gaussian with the same mean and covar. matrix as X

• Fact: For any f , D(f ) = h(fG
)� h(f )

Implies: Under the variance constraint Var(X)  �2,

X has maximum entropy if X ⇠ N(0, �2
)



Log-concavity and Gaussianity

For X ⇠ f in Rn, let h(X) or h(f ) denote its di↵erential entropy, and let
D(f ) denote its relative entropy from Gaussianity, i.e.,

D(f ) = D(fkg) = h(g)� h(f ),

where g is the Gaussian with the same mean and covariance matrix as X

Theorem 2: [Log-concave densities are Gaussian-like]

Let f be any log-concave (LC) density on Rn. Then

D(f )  1

4

n log n +O(n) =: Cn uniformly over all LC f

Remarks

• Quantifies the intuition
• Based on a result of [Klartag ’06] in convex geometry

• In fact, we conjecture that something much stronger is true



Entropic Form of Hyperplane Conjecture

Conjecture 1’: For any LC density f on Rn and some universal constant c,

D(f )

n
 c.

Remarks

• Theorem: Conjectures 1 and 1’ are equivalent

• Pleasing formulation: The slicing problem is a statement about the
(dimension-free) closeness of an arbitrary log-concave measure to a Gaus-
sian measure



Another Entropic Form of Hyperplane Conjecture

For a random vector X = (X1, . . . , Xn) in Rn with density f (x), let I(f )
denote its relative entropy from independence, i.e.,

I(f ) = D(fkf1 ⌦ f2 ⌦ . . .⌦ fn)

where fi denotes the i-th marginal of f

Conjecture 1”: For any LC density f with identity covariance matrix on Rn

and some universal constant c,

I(f )

n
 c.

Remarks

• Theorem: Conjectures 1, 1’ and 1” are equivalent

• Pleasing formulation: The slicing problem is a statement about the
(dimension-free) closeness of an uncorrelated log-concave measure to a
product measure



Conjecture 1’ () Conjecture 1”

The following identity is often used in information theory: if f is an arbitrary
density on Rn and f (0) is the density of some product distribution (i.e., of a
random vector with independent components), then

D(fkf0) =
nX

i=1

D(fikf (0)
i ) + I(f ),

where fi and f (0)
i denote the i-th marginals of f and f (0) respectively.

Now Conjecture 1’ is equivalent to its restriction to those log-concave
measures with zero mean and identity covariance (since D(f ) is an a�ne
invariant). Applying the above identity to such measures,

D(f ) =
nX

i=1

D(fi) + I(f ),

since the standard normal is a product measure. By Theorem 2, each D(fi)
is bounded from above by some universal constant since these are one-
dimensional LC distributions. ThusD(f ) being uniformly O(n) is equivalent
to I(f ) being uniformly O(n).
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Entropy and Information Content

Let X = (X1, . . . , Xn) be a random vector in Rn, with (joint) density f .
The random variable

eh(X) = � log f (X)

may be thought of as the information content of X

Discrete case: eh(X) is the number of bits needed to represent X by an optimal
coding scheme [Shannon ’48]

Continuous case: No coding interpretation, but may think of it as the

log likelihood function in a nonparametric model

The entropy of X is defined by

h(X) = �
Z

f (x) log f (x) dx = E

eh(X)

Remarks

• In general, h(X) may or may not exist (in the Lebesgue sense); if it does,
it takes values in the extended real line [�1,+1]

• h always exists and is finite for LC random vectors



Background: Shannon-McMillan-Breiman Theorem

Let X be a stationary, ergodic process, with X (n)
= (X1, . . . , Xn) 2 Rn

having joint density f (n) w.r.t Lebesgue measure on Rn. Then

eh(X (n)
)

n
:= �1

n
log f (n)

(X (n)
) ! h(X) w.p. 1

History

• If X is stationary, the limit h(X) = limn!1
h(X(n))

n typically exists,
and is called the entropy rate of the process X

• IID case is a simple instance of the Law of Large Numbers: if Xi ⇠ f ,

�1

n
log f (n)

(X (n)
) = �1

n

nX

i=1

log f (Xi) ! h(X1) w.p. 1

• Has been called “the basic theorem of information theory”

• [Shannon ’48, McMillan ’53, Breiman ’57] for discrete case; [Moy ’61, Perez ’64, Kie↵er ’74]

partially for the continuous case; [Barron ’85, Orey ’85] for definitive version



A Motivation

The SMB theorem says

eh(X (n)
)

n
:= �1

n
log f (n)

(X (n)
) ! h(X) w.p. 1

Asymptotic Equipartition Property: With high probability, the distribu-
tion of X (n) is e↵ectively the uniform distribution on the class of typical
observables, or the “typical set”
IID case: For some small fixed " > 0, let

A = {(x1, . . . , xn) 2 Rn
: f (x1, . . . , xn) 2 [e�n[h(X1)+"], e�n[h(X1)�"]

]

Then Pr(X (n) 2 A) ! 1, and distribution of X (n) on A is close to uniform

Applications

• Likelihood: Since the SMB Theorem describes the asymptotic behavior of the likelihood function, it
and its relatives have strong implications for consistency of maximum likelihood estimators, etc.

• Coding: Just encode the typical set. . .



Concentration of Information Content

Given a random vector X in Rn with log-concave density f ,

P

⇢ �����
1

n
log f (X))� h(X)

n

���� � s

�
 4e�cns2, 0  s  2

where c � 1/16 is a universal constant

Remarks

•When X has i.i.d. components, the CLT suggests a Gaussian bound of
this type. The theorem extends this for the special function log f to a
large class with dependence, with a universal constant

•With high probability, the distribution ofX itself is e↵ectively the uniform
distribution on the class of typical observables, or the “"-typical set”

{x 2 Rn
: f (x) 2 [e�h(X)�n", e�h(X)+n"

]}
• Bound can be extended to all s > 0 at the cost of an e�O(

p
ns) bound



Proof of Reverse EPI

Let Z ⇠ Unif(D), where D is the centered Euclidean ball with volume one.
Since H(Z) = 0, Theorem 5 implies

H(X + Y )  H(X + Y + Z)  H(X + Z) + H(Y + Z),

for random vectors X and Y in Rn independent of each other and of Z.
Let X and Y have LC densities. Due to homogeneity of the reverse EPI,

assume w.l.o.g. that kfk � 1 and kgk � 1. Then, our task reduces to
showing that both H(X + Z) and H(Y + Z) can be bounded from above
by universal constants.
For some a�ne volume preserving map u : Rn ! Rn, the distribution eµ

of eX = u(X) satisfies
eµ(D)

1/n � c0

with a universal constant c0 > 0. Let ˜f denote the density of eX = u(X).
Then the density p of S =

eX + Z, given by p(x) =

R
D

˜f (x � z) dz =

eµ(D � x), satisfies

kpk � p(0) � cn0

Applying Theorem 3’ to the random vector S,

H(S)  C kpk�2/n  C · c�2
0


