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Introduction

Dependence on n and ε in Dvoretzky’s theorem

Given n ∈ N and ε > 0, what is the largest m such that any
n-dimensional normed space contains a (1 + ε)-Euclidean subspace?

The right dependence of m on the dimension n was found by
V. Milman. The best known (so far) lower bound for m is due to
G. Schechtman:

Theorem [G. Schechtman]

m ≥ c ε
ln2(1/ε)

ln n, for an absolute constant c .
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Outline of the proof of the theorem of G. Schechtman

Assume that X = (Rn, ‖ · ‖) is a normed space with the unit ball
B‖·‖ in John’s position. Let g = (g1, g2, . . . , gn) be the standard
Gaussian vector. There are two possibilities:

X is “far from ln∞”. Precisely, E‖g‖ ≥ C
√

ln n
ε . Then from the

classical argument, it follows that X contains a (1 + ε)-Euclidean
subspace of dimension cε ln n/ ln 1

ε .

Otherwise, by applying certain argument (which involves James’

blocking), one can find a subspace E ⊂ X with dimE ≥ ncε/ ln
1
ε ,

which is (1 + ε)-isometric to ldimE
∞ . It is well known that lk∞

contains a (1 + ε)-Euclidean subspace of dimension c ln k
ln(1/ε) . Thus,

X contains a (1 + Cε)-Euclidean subspace of dimension

c
ln(nε/ ln(1/ε))

ln(1/ε)
= c

ε

ln2(1/ε)
ln n.
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What is done

In this talk, a modified proof of

the theorem of G. Schechtman is considered,

without the construction of l∞-subspaces

and not using James’ blocking.
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Motivation

The space ln∞ contains (1 + ε)-Euclidean subspaces of dimension
c ln n
ln(1/ε) . But how many almost Euclidean subspaces are there?

[G. Schechtman]

For any natural n and m, if the Haar measure of
“(1 + ε)-spherical” m-dimensional sections of ln∞ is greater than
1− n−Cε then with necessity m ≤ cε ln n.

In other words, in case of ln∞, if we put an additional restriction on
the Haar measure of almost Euclidean subspaces then the
dependence on ε becomes much worse.
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Motivation

In case of an arbitrary normed space (Rn, ‖ · ‖), the theorem of
G. Schechtman tells us that there always exists a (1 + ε)-Euclidean
subspace of dimension m = c ε

ln2(1/ε)
ln n.

But, as in the case of ln∞, we can also ask how many
(1 + ε)-spherical subspaces of dimension m the space contains.

?

For a normed space (Rn, ‖ · ‖), can we always find a bijective linear
operator T : Rn → Rn such that for the norm ‖T · ‖ defined as

‖T · ‖ : x ∈ Rn → ‖Tx‖,

the vast majority (with respect to the Haar measure) of subspaces
of (Rn, ‖T · ‖) of dimension c ε

ln2(1/ε)
ln n are (1 + ε)-Euclidean

(and even “(1 + ε)-spherical”)?
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The Result

A positive answer to the last question can be obtained if in the
original proof of G. Schechtman we replace the construction
of (1 + ε)-isometric l∞-sections by a different procedure.

The Result

Given any normed space (Rn, ‖ · ‖) and any ε > 0, there exists a
linear operator T : Rn → Rn (depending on ‖ · ‖ and ε) such that
the Haar measure of (1 + ε)-spherical sections of (Rn, ‖T · ‖) of

dimension c ε
ln2(1/ε)

ln n is greater than 1− n−cε/ ln
1
ε .
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The Proposition

Recall that g = (g1, g2, . . . , gn) is the standard Gaussian vector in
Rn. For any subspace E ⊂ Rn, let ProjE be the orthogonal
projection onto E . The Result follows from

Proposition

Let ‖ · ‖ be a norm in Rn with the unit ball in John’s position.
Then for any ε ∈ (0, 1/2] there is a subspace E = E (ε, ‖ · ‖) ⊂ Rn

of dimension at least
√
n such that

P {|‖ProjEg‖ −Med ‖ProjEg‖| > εMed ‖ProjEg‖}

≤ 2 exp
(
−cε ln n/ ln

1

ε

)
.
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Proof of the Proposition

So, we assume that ‖ · ‖ is a norm in Rn and the unit ball B‖·‖ is in
John’s position. As in the original proof of G. Schechtman, we
consider two possibilities:

* The space (Rn, ‖ · ‖) is “far” from ln∞, precisely,

Med‖g‖ ≥ C
√

ln n
ε . Then the standard concentration

inequality for Gaussians gives

P {|‖g‖ −Med ‖g‖| > εMed ‖g‖} ≤ 2 exp
(
−cε ln n

)
,

so in this case the Proposition holds with E = Rn.
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Proof of the Proposition

* Otherwise, Med‖g‖ ≤ C
√

ln n
ε . Without loss of generality

(rotation + Dvoretzky–Rogers), we can assume that the norm
of the first n/2 standard unit vectors

‖e1‖, ‖e2‖, . . . , ‖en/2‖ ≥ 1/4.

For any δ > 0 and any subset J ⊂ {1, 2, . . . , n}, let M(J, δ)
be the number such that

P{‖gχJ‖ > M(J, δ)} = δ.

Let k = exp
(
cε ln n/ ln 1

ε

)
. Next, we apply some procedure to

generate a subset A ⊂ {1, 2, . . . , n/2} of cardinality at least√
n such that there is a partition of A: {A1,A2, . . . ,Ak} such

that

M(Ai , k
−1/2) ≥ (1− ε)M(A, k−1/2) for all i = 1, 2, . . . , k .
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Proof of the Proposition

So, A is of cardinality at least
√
n and there is a partition

{A1,A2, . . . ,Ak} of A such that

M(Ai , k
−1/2) ≥ (1− ε)M(A, k−1/2) for all i = 1, 2, . . . , k ,

where for any subset J: P{‖gχJ‖ > M(J, k−1/2)} = k−1/2.

Claim

P
{
‖gχA‖ < (1− 2ε)M(A, k−1/2)

}
≤ exp(−

√
k) + k−1/2.

Proof of the claim is elementary when the norm ‖ · ‖ is
unconditional: Since A1,A2, . . . ,Ak are pairwise disjoint, the
random variables ‖gχA1‖, ‖gχA2‖, . . . , ‖gχAk

‖ are independent, so

P
{
‖gχA‖ < (1− ε)M(A, k−1/2)

}
≤ P

{
max

i
‖gχAi

‖ < ...

}
≤

k∏
i=1

P
{
‖gχAi

‖ < M(Ai , k
−1/2)

}
=
(

1− k−1/2
)k
≤ exp(−

√
k).

In fact, the unconditionality is unnecessary.
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Proof of the Proposition

Thus, A is a set of cardinality at least
√
n, and, by the claim,

P
{
‖gχA‖ < (1− 2ε)M(A, k−1/2)

}
≤ 2k−1/2.

On the other hand, by the definition of M(A, k−1/2),

P
{
‖gχA‖ > M(A, k−1/2)

}
= k−1/2.

Recall that we defined k as k = exp
(
cε ln n/ ln 1

ε

)
. Then from the

above estimates we get for L = (1− ε)M(A, k−1/2)

P
{
|‖gχA‖ − L| > εM(A, k−1/2)

}
≤ 3 exp

(
−cε ln n/ ln

1

ε

)
.

It is easy to derive from the last inequality

P {|‖gχA‖ −Med‖gχA‖| > CεMed‖gχA‖}

≤ 2 exp

(
−c̃ε ln n/ ln

1

ε

)
,

So the Proposition holds with E = span{ei : i ∈ A}.
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The Result

We’ve just proved

Proposition

Let ‖ · ‖ be a norm in Rn with the unit ball in John’s position.
Then for any ε ∈ (0, 1/2] there is a subspace E = E (ε, ‖ · ‖) ⊂ Rn

of dimension at least
√
n such that

P {|‖ProjEg‖ −Med ‖ProjEg‖| > εMed ‖ProjEg‖}

≤ 2 exp
(
−cε ln n/ ln

1

ε

)
.

Clearly, we can find a bijective linear transformation T : Rn → Rn

such that
‖Tx‖ ≈ ‖ProjEx‖, x ∈ Sn−1.

Then, in particular, we obtain

P {|‖Tg‖ −Med ‖Tg‖| > εMed ‖Tg‖} ≤ 2 exp
(
−cε ln n/ ln

1

ε

)
.
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The Result

The last identity implies The Result:

The Result

Given any normed space (Rn, ‖ · ‖) and any ε > 0, there exists a
linear operator T : Rn → Rn (depending on ‖ · ‖ and ε) such that
the Haar measure of (1 + ε)-spherical sections of (Rn, ‖T · ‖) of

dimension c ε
ln2(1/ε)

ln n is greater than 1− n−cε/ ln
1
ε .

The unit ball of the norm ‖T · ‖ —

{x ∈ Rn : ‖Tx‖ ≤ 1}

— looks like this:�� ��
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