Random almost spherical sections of centrally-symmetric convex sets

Konstantin Tikhomirov

University of Alberta

June 21, 2013

Dependence on n and ϵ in Dvoretzky's theorem

Given $n \in \mathbb{N}$ and $\epsilon > 0$, what is the largest m such that any n-dimensional normed space contains a $(1 + \epsilon)$ -Euclidean subspace?

The right dependence of m on the dimension n was found by V. Milman. The best known (so far) lower bound for m is due to G. Schechtman:

Theorem [G. Schechtman]

 $m \geq c rac{\epsilon}{\ln^2(1/\epsilon)} \ln n$, for an absolute constant c.

Outline of the proof of the theorem of G. Schechtman

Assume that $X = (\mathbb{R}^n, \|\cdot\|)$ is a normed space with the unit ball $B_{\|\cdot\|}$ in John's position. Let $g = (g_1, g_2, \ldots, g_n)$ be the standard Gaussian vector. There are two possibilities:

X is "far from l_{∞}^{n} ". Precisely, $\mathbb{E}||g|| \ge C\sqrt{\frac{\ln n}{\epsilon}}$. Then from the classical argument, it follows that X contains a $(1 + \epsilon)$ -Euclidean subspace of dimension $c\epsilon \ln n / \ln \frac{1}{\epsilon}$.

Otherwise, by applying certain argument (which involves James' blocking), one can find a subspace $E \subset X$ with dim $E \ge n^{c\epsilon/\ln \frac{1}{\epsilon}}$, which is $(1 + \epsilon)$ -isometric to $l_{\infty}^{\dim E}$. It is well known that l_{∞}^{k} contains a $(1 + \epsilon)$ -Euclidean subspace of dimension $c \frac{\ln k}{\ln(1/\epsilon)}$. Thus, X contains a $(1 + C\epsilon)$ -Euclidean subspace of dimension

$$crac{\ln(n^{\epsilon/\ln(1/\epsilon)})}{\ln(1/\epsilon)} = crac{\epsilon}{\ln^2(1/\epsilon)}\ln n.$$

In this talk, a modified proof of

the theorem of G. Schechtman is considered,

without the construction of I_{∞} -subspaces

and not using James' blocking.

The space l_{∞}^n contains $(1 + \epsilon)$ -Euclidean subspaces of dimension $c \frac{\ln n}{\ln(1/\epsilon)}$. But how *many* almost Euclidean subspaces are there?

[G. Schechtman]

For any natural *n* and *m*, if the Haar measure of " $(1 + \epsilon)$ -spherical" *m*-dimensional sections of I_{∞}^n is greater than $1 - n^{-C\epsilon}$ then with necessity $m \le c\epsilon \ln n$.

In other words, in case of l_{∞}^n , if we put an additional restriction on the Haar measure of almost Euclidean subspaces then the dependence on ϵ becomes much worse.

Motivation

In case of an arbitrary normed space $(\mathbb{R}^n, \|\cdot\|)$, the theorem of G. Schechtman tells us that there always exists a $(1 + \epsilon)$ -Euclidean subspace of dimension $m = c \frac{\epsilon}{\ln^2(1/\epsilon)} \ln n$.

But, as in the case of I_{∞}^n , we can also ask how many $(1 + \epsilon)$ -spherical subspaces of dimension *m* the space contains.

For a normed space $(\mathbb{R}^n, \|\cdot\|)$, can we always find a bijective linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ such that for the norm $\|T \cdot\|$ defined as

$$||T \cdot || : x \in \mathbb{R}^n \to ||Tx||,$$

the vast majority (with respect to the Haar measure) of subspaces of $(\mathbb{R}^n, ||T \cdot ||)$ of dimension $c \frac{\epsilon}{\ln^2(1/\epsilon)} \ln n$ are $(1 + \epsilon)$ -Euclidean (and even " $(1 + \epsilon)$ -spherical")?

A positive answer to the last question can be obtained if in the original proof of G. Schechtman we replace the construction of $(1 + \epsilon)$ -isometric l_{∞} -sections by a different procedure.

The Result

Given any normed space $(\mathbb{R}^n, \|\cdot\|)$ and any $\epsilon > 0$, there exists a linear operator $\mathcal{T} : \mathbb{R}^n \to \mathbb{R}^n$ (depending on $\|\cdot\|$ and ϵ) such that the Haar measure of $(1 + \epsilon)$ -spherical sections of $(\mathbb{R}^n, \|\mathcal{T}\cdot\|)$ of dimension $c \frac{\epsilon}{\ln^2(1/\epsilon)} \ln n$ is greater than $1 - n^{-c\epsilon/\ln \frac{1}{\epsilon}}$.

Recall that $g = (g_1, g_2, \dots, g_n)$ is the standard Gaussian vector in \mathbb{R}^n . For any subspace $E \subset \mathbb{R}^n$, let Proj_E be the orthogonal projection onto E. The Result follows from

Proposition

Let $\|\cdot\|$ be a norm in \mathbb{R}^n with the unit ball in John's position. Then for any $\epsilon \in (0, 1/2]$ there is a subspace $E = E(\epsilon, \|\cdot\|) \subset \mathbb{R}^n$ of dimension at least \sqrt{n} such that

 $\mathbb{P}\left\{ |\|\operatorname{Proj}_{E}g\| - \operatorname{Med} \|\operatorname{Proj}_{E}g\|| > \epsilon \operatorname{Med} \|\operatorname{Proj}_{E}g\|\right\}$ $\leq 2\exp\left(-c\epsilon \ln n / \ln \frac{1}{\epsilon}\right).$

So, we assume that $\|\cdot\|$ is a norm in \mathbb{R}^n and the unit ball $B_{\|\cdot\|}$ is in John's position. As in the original proof of G. Schechtman, we consider two possibilities:

* The space $(\mathbb{R}^n, \|\cdot\|)$ is "far" from l_{∞}^n , precisely, $\operatorname{Med} \|g\| \ge C \sqrt{\frac{\ln n}{\epsilon}}$. Then the standard concentration inequality for Gaussians gives

 $\mathbb{P}\left\{|\|g\| - \operatorname{Med} \|g\|| > \epsilon \operatorname{Med} \|g\|\right\} \le 2 \exp(-c\epsilon \ln n),$

so in this case the Proposition holds with $E = \mathbb{R}^n$.

Proof of the Proposition

* Otherwise, $\operatorname{Med} \|g\| \leq C \sqrt{\frac{\ln n}{\epsilon}}$. Without loss of generality (rotation + Dvoretzky–Rogers), we can assume that the norm of the first n/2 standard unit vectors

$$\|e_1\|, \|e_2\|, \dots, \|e_{n/2}\| \ge 1/4.$$

For any $\delta > 0$ and any subset $J \subset \{1, 2, ..., n\}$, let $M(J, \delta)$ be the number such that

$$\mathbb{P}\{\|g\chi_J\| > M(J,\delta)\} = \delta.$$

Let $k = \exp\left(c\epsilon \ln n / \ln \frac{1}{\epsilon}\right)$. Next, we apply some procedure to generate a subset $A \subset \{1, 2, \dots, n/2\}$ of cardinality at least \sqrt{n} such that there is a partition of A: $\{A_1, A_2, \dots, A_k\}$ such that

$$M(A_i, k^{-1/2}) \ge (1 - \epsilon)M(A, k^{-1/2})$$
 for all $i = 1, 2, ..., k$.

Proof of the Proposition

So, A is of cardinality at least \sqrt{n} and there is a partition $\{A_1, A_2, \ldots, A_k\}$ of A such that

$$M(A_i, k^{-1/2}) \ge (1 - \epsilon)M(A, k^{-1/2})$$
 for all $i = 1, 2, \dots, k$,

where for any subset *J*: $\mathbb{P}\{\|g\chi_J\| > M(J, k^{-1/2})\} = k^{-1/2}$.

Claim

$$\mathbb{P}\left\{\|g\chi_{\mathcal{A}}\| < (1-2\epsilon)\mathcal{M}(\mathcal{A},k^{-1/2})\right\} \le \exp(-\sqrt{k}) + k^{-1/2}$$

Proof of the claim is elementary when the norm $\|\cdot\|$ **is unconditional:** Since A_1, A_2, \ldots, A_k are pairwise disjoint, the random variables $\|g\chi_{A_1}\|, \|g\chi_{A_2}\|, \ldots, \|g\chi_{A_k}\|$ are independent, so

$$\mathbb{P}\left\{\|g\chi_A\| < (1-\epsilon)M(A,k^{-1/2})\right\} \le \mathbb{P}\left\{\max_i \|g\chi_{A_i}\| < \dots\right\}$$
$$\le \prod_{i=1}^k \mathbb{P}\left\{\|g\chi_{A_i}\| < M(A_i,k^{-1/2})\right\} = \left(1-k^{-1/2}\right)^k \le \exp(-\sqrt{k}).$$

In fact, the unconditionality is unnecessary.

Proof of the Proposition

Thus, A is a set of cardinality at least \sqrt{n} , and, by the claim,

$$\mathbb{P}\left\{\|g\chi_A\| < (1-2\epsilon)M(A,k^{-1/2})\right\} \le 2k^{-1/2}$$

On the other hand, by the definition of $M(A, k^{-1/2})$,

$$\mathbb{P}\left\{\|g\chi_A\| > M(A, k^{-1/2})\right\} = k^{-1/2}$$

Recall that we defined k as $k = \exp(c\epsilon \ln n / \ln \frac{1}{\epsilon})$. Then from the above estimates we get for $L = (1 - \epsilon)M(A, k^{-1/2})$

$$\mathbb{P}\left\{|\|g\chi_A\|-L|>\epsilon M(A,k^{-1/2})\right\}\leq 3\exp\left(-c\epsilon\ln n/\ln\frac{1}{\epsilon}\right)$$

It is easy to derive from the last inequality

$$\mathbb{P}\left\{ |\|g\chi_{A}\| - \operatorname{Med}\|g\chi_{A}\| | > C\epsilon \operatorname{Med}\|g\chi_{A}\| \right\} \le 2 \exp\left(-\tilde{c}\epsilon \ln n / \ln \frac{1}{\epsilon}\right),$$

So the Proposition holds with $E = \operatorname{span}\{e_i : i \in A\}$.

The Result

We've just proved

Proposition

Let $\|\cdot\|$ be a norm in \mathbb{R}^n with the unit ball in John's position. Then for any $\epsilon \in (0, 1/2]$ there is a subspace $E = E(\epsilon, \|\cdot\|) \subset \mathbb{R}^n$ of dimension at least \sqrt{n} such that

$$\mathbb{P}\left\{|\|\operatorname{Proj}_{E}g\| - \operatorname{Med} \|\operatorname{Proj}_{E}g\|\right\} \le 2\exp\left(-c\epsilon \ln n / \ln \frac{1}{\epsilon}\right).$$

Clearly, we can find a bijective linear transformation $\,\mathcal{T}:\mathbb{R}^n\to\mathbb{R}^n\,$ such that

$$\|Tx\| \approx \|\operatorname{Proj}_E x\|, \ x \in S^{n-1}.$$

Then, in particular, we obtain

$$\mathbb{P}\left\{\left|\left|\left|Tg\right|\right|-\operatorname{Med}\left|\left|Tg\right|\right|\right|>\epsilon\operatorname{Med}\left|\left|Tg\right|\right|\right\}\leq 2\exp\left(-c\epsilon\ln n/\ln\frac{1}{\epsilon}\right).$$

The Result

The last identity implies The Result:

The Result

Given any normed space $(\mathbb{R}^n, \|\cdot\|)$ and any $\epsilon > 0$, there exists a linear operator $\mathcal{T} : \mathbb{R}^n \to \mathbb{R}^n$ (depending on $\|\cdot\|$ and ϵ) such that the Haar measure of $(1 + \epsilon)$ -spherical sections of $(\mathbb{R}^n, \|\mathcal{T}\cdot\|)$ of dimension $c \frac{\epsilon}{\ln^2(1/\epsilon)} \ln n$ is greater than $1 - n^{-c\epsilon/\ln \frac{1}{\epsilon}}$.

The unit ball of the norm $||T \cdot ||$ —

$$\{x \in \mathbb{R}^n : \|Tx\| \le 1\}$$

looks like this: