Random almost spherical sections of centrally-symmetric convex sets

Konstantin Tikhomirov
University of Alberta
June 21, 2013

Introduction

Dependence on n and ϵ in Dvoretzky's theorem

Given $n \in \mathbb{N}$ and $\epsilon>0$, what is the largest m such that any n-dimensional normed space contains a $(1+\epsilon)$-Euclidean subspace?

The right dependence of m on the dimension n was found by V. Milman. The best known (so far) lower bound for m is due to
G. Schechtman:

Theorem [G. Schechtman]

$m \geq c \frac{\epsilon}{\ln ^{2}(1 / \epsilon)} \ln n$, for an absolute constant c.

Outline of the proof of the theorem of G . Schechtman

Assume that $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ is a normed space with the unit ball $B_{\|\cdot\|}$ in John's position. Let $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ be the standard Gaussian vector. There are two possibilities:
X is "far from l_{∞}^{n} ". Precisely, $\mathbb{E}\|g\| \geq C \sqrt{\frac{\ln n}{\epsilon}}$. Then from the classical argument, it follows that X contains a $(1+\epsilon)$-Euclidean subspace of dimension $c \epsilon \ln n / \ln \frac{1}{\epsilon}$.

Otherwise, by applying certain argument (which involves James' blocking), one can find a subspace $E \subset X$ with $\operatorname{dim} E \geq n^{c \epsilon / \ln \frac{1}{\epsilon}}$, which is $(1+\epsilon)$-isometric to $I_{\infty}^{\operatorname{dim} E}$. It is well known that I_{∞}^{k} contains a $(1+\epsilon)$-Euclidean subspace of dimension $c \frac{\ln k}{\ln (1 / \epsilon)}$. Thus, X contains a $(1+C \epsilon)$-Euclidean subspace of dimension

$$
c \frac{\ln \left(n^{\epsilon / \ln (1 / \epsilon)}\right)}{\ln (1 / \epsilon)}=c \frac{\epsilon}{\ln ^{2}(1 / \epsilon)} \ln n .
$$

What is done

In this talk, a modified proof of

the theorem of G. Schechtman is considered,
without the construction of I_{∞}-subspaces
and not using James' blocking.

Motivation

The space I_{∞}^{n} contains $(1+\epsilon)$-Euclidean subspaces of dimension $c \frac{\ln n}{\ln (1 / \epsilon)}$. But how many almost Euclidean subspaces are there?

[G. Schechtman]

For any natural n and m, if the Haar measure of
" $(1+\epsilon)$-spherical" m-dimensional sections of I_{∞}^{n} is greater than
$1-n^{-C \epsilon}$ then with necessity $m \leq c \epsilon \ln n$.

In other words, in case of I_{∞}^{n}, if we put an additional restriction on the Haar measure of almost Euclidean subspaces then the dependence on ϵ becomes much worse.

Motivation

In case of an arbitrary normed space $\left(\mathbb{R}^{n},\|\cdot\|\right)$, the theorem of
G. Schechtman tells us that there always exists a $(1+\epsilon)$-Euclidean subspace of dimension $m=c \frac{\epsilon}{\ln ^{2}(1 / \epsilon)} \ln n$.

But, as in the case of I_{∞}^{n}, we can also ask how many $(1+\epsilon)$-spherical subspaces of dimension m the space contains.

?

For a normed space $\left(\mathbb{R}^{n},\|\cdot\|\right)$, can we always find a bijective linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that for the norm $\|T \cdot\|$ defined as

$$
\|T \cdot\|: x \in \mathbb{R}^{n} \rightarrow\|T x\|
$$

the vast majority (with respect to the Haar measure) of subspaces of $\left(\mathbb{R}^{n},\|T \cdot\|\right)$ of dimension $c \frac{\epsilon}{\ln ^{2}(1 / \epsilon)} \ln n$ are $(1+\epsilon)$-Euclidean (and even " $(1+\epsilon)$-spherical")?

The Result

A positive answer to the last question can be obtained if in the original proof of G. Schechtman we replace the construction of $(1+\epsilon)$-isometric I_{∞}-sections by a different procedure.

The Result

Given any normed space $\left(\mathbb{R}^{n},\|\cdot\|\right)$ and any $\epsilon>0$, there exists a linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (depending on $\|\cdot\|$ and ϵ) such that the Haar measure of $(1+\epsilon)$-spherical sections of $\left(\mathbb{R}^{n},\|T \cdot\|\right)$ of dimension $c \frac{\epsilon}{\ln ^{2}(1 / \epsilon)} \ln n$ is greater than $1-n^{-c \epsilon / \ln \frac{1}{\epsilon}}$.

The Proposition

Recall that $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ is the standard Gaussian vector in \mathbb{R}^{n}. For any subspace $E \subset \mathbb{R}^{n}$, let Proj_{E} be the orthogonal projection onto E. The Result follows from

Proposition

Let $\|\cdot\|$ be a norm in \mathbb{R}^{n} with the unit ball in John's position. Then for any $\epsilon \in(0,1 / 2]$ there is a subspace $E=E(\epsilon,\|\cdot\|) \subset \mathbb{R}^{n}$ of dimension at least \sqrt{n} such that

$$
\begin{aligned}
& \mathbb{P}\left\{\left|\left\|\operatorname{Proj}_{E} g\right\|-\operatorname{Med}\left\|\operatorname{Proj}_{E} g\right\|\right|>\epsilon \operatorname{Med}\left\|\operatorname{Proj}_{E} g\right\|\right\} \\
& \leq 2 \exp \left(-c \epsilon \ln n / \ln \frac{1}{\epsilon}\right) .
\end{aligned}
$$

Proof of the Proposition

So, we assume that $\|\cdot\|$ is a norm in \mathbb{R}^{n} and the unit ball $B_{\|\cdot\|}$ is in John's position. As in the original proof of G. Schechtman, we consider two possibilities:

* The space $\left(\mathbb{R}^{n},\|\cdot\|\right)$ is "far" from I_{∞}^{n}, precisely,
$\operatorname{Med}\|g\| \geq C \sqrt{\frac{\ln n}{\epsilon}}$. Then the standard concentration inequality for Gaussians gives

$$
\mathbb{P}\{\mid\|g\|-\operatorname{Med}\|g\|\|>\epsilon \operatorname{Med}\| g \|\} \leq 2 \exp (-c \epsilon \ln n)
$$

so in this case the Proposition holds with $E=\mathbb{R}^{n}$.

* Otherwise, Med $\|g\| \leq C \sqrt{\frac{\ln n}{\epsilon}}$. Without loss of generality (rotation + Dvoretzky-Rogers), we can assume that the norm of the first $n / 2$ standard unit vectors

$$
\left\|e_{1}\right\|,\left\|e_{2}\right\|, \ldots,\left\|e_{n / 2}\right\| \geq 1 / 4
$$

For any $\delta>0$ and any subset $J \subset\{1,2, \ldots, n\}$, let $M(J, \delta)$ be the number such that

$$
\mathbb{P}\left\{\left\|g \chi_{J}\right\|>M(J, \delta)\right\}=\delta
$$

Let $k=\exp \left(c \epsilon \ln n / \ln \frac{1}{\epsilon}\right)$. Next, we apply some procedure to generate a subset $A \subset\{1,2, \ldots, n / 2\}$ of cardinality at least \sqrt{n} such that there is a partition of $A:\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ such that

$$
M\left(A_{i}, k^{-1 / 2}\right) \geq(1-\epsilon) M\left(A, k^{-1 / 2}\right) \text { for all } i=1,2, \ldots, k
$$

Proof of the Proposition

So, A is of cardinality at least \sqrt{n} and there is a partition $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ of A such that

$$
M\left(A_{i}, k^{-1 / 2}\right) \geq(1-\epsilon) M\left(A, k^{-1 / 2}\right) \text { for all } i=1,2, \ldots, k,
$$

where for any subset $J: \mathbb{P}\left\{\left\|g \chi_{J}\right\|>M\left(J, k^{-1 / 2}\right)\right\}=k^{-1 / 2}$.

Claim

$\mathbb{P}\left\{\left\|g \chi_{A}\right\|<(1-2 \epsilon) M\left(A, k^{-1 / 2}\right)\right\} \leq \exp (-\sqrt{k})+k^{-1 / 2}$.
Proof of the claim is elementary when the norm $\|\cdot\|$ is unconditional: Since $A_{1}, A_{2}, \ldots, A_{k}$ are pairwise disjoint, the random variables $\left\|g \chi_{A_{1}}\right\|,\left\|g \chi_{A_{2}}\right\|, \ldots,\left\|g \chi_{A_{k}}\right\|$ are independent, so $\mathbb{P}\left\{\left\|g \chi_{A}\right\|<(1-\epsilon) M\left(A, k^{-1 / 2}\right)\right\} \leq \mathbb{P}\left\{\max _{i}\left\|g \chi_{A_{i}}\right\|<\ldots\right\}$

$$
\leq \prod_{i=1}^{k} \mathbb{P}\left\{\left\|g \chi_{A_{i}}\right\|<M\left(A_{i}, k^{-1 / 2}\right)\right\}=\left(1-k^{-1 / 2}\right)^{k} \leq \exp (-\sqrt{k})
$$

In fact, the unconditionality is unnecessary.

Thus, A is a set of cardinality at least \sqrt{n}, and, by the claim,

$$
\mathbb{P}\left\{\left\|g \chi_{A}\right\|<(1-2 \epsilon) M\left(A, k^{-1 / 2}\right)\right\} \leq 2 k^{-1 / 2}
$$

On the other hand, by the definition of $M\left(A, k^{-1 / 2}\right)$,

$$
\mathbb{P}\left\{\left\|g \chi_{A}\right\|>M\left(A, k^{-1 / 2}\right)\right\}=k^{-1 / 2}
$$

Recall that we defined k as $k=\exp \left(c \epsilon \ln n / \ln \frac{1}{\epsilon}\right)$. Then from the above estimates we get for $L=(1-\epsilon) M\left(A, k^{-1 / 2}\right)$

$$
\mathbb{P}\left\{\left|\left\|g \chi_{A}\right\|-L\right|>\epsilon M\left(A, k^{-1 / 2}\right)\right\} \leq 3 \exp \left(-c \epsilon \ln n / \ln \frac{1}{\epsilon}\right) .
$$

It is easy to derive from the last inequality

$$
\begin{aligned}
& \mathbb{P}\left\{\mid\left\|g \chi_{A}\right\|-\operatorname{Med}\left\|g \chi_{A}\right\|\|>C \epsilon \operatorname{Med}\| g \chi_{A} \|\right\} \\
& \leq 2 \exp \left(-\tilde{c} \epsilon \ln n / \ln \frac{1}{\epsilon}\right),
\end{aligned}
$$

So the Proposition holds with $E=\operatorname{span}\left\{e_{i}: i \in A\right\}$.

We've just proved

Proposition

Let $\|\cdot\|$ be a norm in \mathbb{R}^{n} with the unit ball in John's position.
Then for any $\epsilon \in(0,1 / 2]$ there is a subspace $E=E(\epsilon,\|\cdot\|) \subset \mathbb{R}^{n}$ of dimension at least \sqrt{n} such that

$$
\begin{aligned}
& \mathbb{P}\left\{\left|\left\|\operatorname{Proj}_{E} g\right\|-\operatorname{Med}\left\|\operatorname{Proj}_{E} g\right\|\right|>\epsilon \operatorname{Med}\left\|\operatorname{Proj}_{E} g\right\|\right\} \\
& \leq 2 \exp \left(-c \epsilon \ln n / \ln \frac{1}{\epsilon}\right) .
\end{aligned}
$$

Clearly, we can find a bijective linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
\|T x\| \approx\left\|\operatorname{Proj}_{E} x\right\|, \quad x \in S^{n-1}
$$

Then, in particular, we obtain

$$
\mathbb{P}\{|\|T g\|-\operatorname{Med}\|T g\||>\epsilon \operatorname{Med}\|T g\|\} \leq 2 \exp \left(-c \epsilon \ln n / \ln \frac{1}{\epsilon}\right)
$$

The Result

The last identity implies The Result:

The Result

Given any normed space $\left(\mathbb{R}^{n},\|\cdot\|\right)$ and any $\epsilon>0$, there exists a linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (depending on $\|\cdot\|$ and ϵ) such that the Haar measure of $(1+\epsilon)$-spherical sections of $\left(\mathbb{R}^{n},\|T \cdot\|\right)$ of dimension $c \frac{\epsilon}{\ln ^{2}(1 / \epsilon)} \ln n$ is greater than $1-n^{-c \epsilon / \ln \frac{1}{\epsilon}}$.

The unit ball of the norm $\|T \cdot\|$ -

$$
\left\{x \in \mathbb{R}^{n}:\|T x\| \leq 1\right\}
$$

- looks like this:

