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subsets of R” with nonempty interior). As metric we choose the
Hausdorff metric.
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A convex body is more symmetric if it has fewer different affine invariant
points.
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A convex body is more symmetric if it has fewer different affine invariant
points.

p(K) = Text(KY] extl(K)| > veext(k) v K is a polytope
g(K) K is not a polytope
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o P, is the set of all affine invariant points.
@ P, is an affine subspace of C(K,,R")

o Grinbaum: Is P, infinite dimensional?

Yes.

Intuitively, there should be a lot of affine invariant points. Griinbaum lists
only a few. For the proof of the theorem we have to construct enough
affine invariant points.
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o The convex floating body
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o The convex floating body

K= (] H'
|H=NK|<3|K|
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o The convex floating body

Ks = ﬂ Ht
|H=NK|<6|K|

o Affine invariant point

8(K) = g(K\ Ks)
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We introduce a norm on VP, =P, — g

Ivilp = sup  [[v(K)l}2.
KeK,
BYCKCnBg
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We introduce a norm on VP, =P, — g
[vlp="sup [[v(K)l2.
KeK,
BJCKCnBy
For § > 0 we consider the shifted, affine invariant points

Vo =8 — 8-

This set of shifted, affine invariant points is bounded. We show that there
is a sequence d;, j € N, such that for all j # k

< [lvs; — v, -

Bl
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R
We introduce a norm on VP, =P, — g
[vlp="sup [[v(K)l2.
KeK,
BJCKCnBy
For § > 0 we consider the shifted, affine invariant points

Vs =85 — 8-
This set of shifted, affine invariant points is bounded. We show that there
is a sequence d;, j € N, such that for all j # k

1
2 = vy = va .

By compactness VP, cannot be finite dimensional.
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In order to show
< lvs; = vs, Il p-

N

we find for every pair j # k a convex body K such that

< [lve; (K) = v5, (K)l2-

FNJN
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° D=[-1,1] x By !
o C(h) is a cap with height h of a Euclidean ball with radius ™
Qo

h?

K(h) = DU C(h)

K(h)

May 2013



We have the two equations

lim vs(K(h)) = vs(D) = 0
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We have the two equations

lim vs(K(h)) = vs(D) = 0

lim vs(K (h)) = g(9C(h)) — g(K(h))
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Let K be a convex body in R"”. Then one has

K| — |K
M :/ Kzﬁ(X) dpk ().
oK

where ¢, = 2 ('Bn_ll)"_“.
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Griinbaum: Is there a convex body K such that

Pn(K) ={p(K)lp € Pn} =R"?
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Griinbaum: Is there a convex body K such that

Pn(K) ={p(K)lp € P} =R"?

These convex bodies are actually dense in C,, with respect to the
Hausdorff metric.
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big arc of a circle

small arc of a circle
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Let K be a convex body and let T : R” — R” be an affine map with
T(K)=K.
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Let K be a convex body and let T : R” — R” be an affine map with
T(K) = K. Then we have for all affine invariant points p

° Fo(K)={xeR"WT, T(K)=K: Tx = x}
° Pn(K) = {p(K)|p € Pn}
° Pn(K) C Fn(K)

Griinbaum: Do we have F,(K) = Pn(K) ?
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If dim(P,(K)) = n— 1 then we have F,(K) = Pn(K).
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If dim(P,(K)) = n— 1 then we have F,(K) = Pn(K).

If dim(P,(K)) = n— 1 then there is a hyperplane H and a reflection R at
this hyperplane that leaves K invariant, i.e. there is £ € R" with £ ¢ H
such that

R(h+ t€) = h— t&

and

R(K) = K.

We have
H = Pa(K) € € Po(K°)*
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A map A: K, = K, is called an affine invariant set mapping, if A is
continuous and if for every nonsingular affine map T of R”, one has

A(TK) = T(A(K)).

We then call A(K), or simply the map A, an affine invariant set mappings.
We denote by G, the set of affine invariant set mappings,

S, ={A:K,— IC,,|A is affine invariant and continuous}.

If peB,and A< S, then po A€ B,
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Let p € B, and let g be the centroid. For 0 < € < 1, define
Ape : Kn— Ky by

{(x; p((K — &(K))*)) = Su,|3<y,P((K —&(K))°)) - 6}-

Apo(K) = {x €K
ye

Then Ap.c is an affine invariant set map.
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Let K € K, and let P : R" — R" be the orthogonal projection onto
PBr((K — g(K))°). Then the restriction of P to the subspace
Bn(K — g(K)) is an isomorphismn between B ,(K — g(K)) and
Pn((K — &(K))°).

In particular,

dim(PBa(K — g(K))) = dim(Ba((K — g(K)))°)-
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