Affine invariant points

Mathieu Meyer, Carsten Schütt and Elisabeth Werner

Mathematisches Seminar CAU Kiel

May 2013

Mathieu Meyer, Carsten Schütt and Elisabeth

New measures of symmetry

New measures of symmetry

Let K_n be the set of all convex bodies in ℝⁿ (i.e., compact convex subsets of ℝⁿ with nonempty interior). As metric we choose the Hausdorff metric.

 $d(C,K) = \inf\{\rho > 0 | C \subseteq K + \rho B_2^n \text{ and } K \subseteq C + \rho B_2^n\}$

New measures of symmetry

Let K_n be the set of all convex bodies in ℝⁿ (i.e., compact convex subsets of ℝⁿ with nonempty interior). As metric we choose the Hausdorff metric.

$$d(C,K) = \inf\{\rho > 0 | C \subseteq K + \rho B_2^n \text{ and } K \subseteq C + \rho B_2^n\}$$

• Then a map $p : \mathcal{K}_n \to \mathbb{R}^n$ is called an affine invariant point, if p is continuous and if for every nonsingular affine map $T : \mathbb{R}^n \to \mathbb{R}^n$ one has,

$$p(T(K)) = T(p(K)).$$

New measures of symmetry

Let K_n be the set of all convex bodies in ℝⁿ (i.e., compact convex subsets of ℝⁿ with nonempty interior). As metric we choose the Hausdorff metric.

$$d(C,K) = \inf\{\rho > 0 | C \subseteq K + \rho B_2^n \text{ and } K \subseteq C + \rho B_2^n\}$$

• Then a map $p : \mathcal{K}_n \to \mathbb{R}^n$ is called an affine invariant point, if p is continuous and if for every nonsingular affine map $T : \mathbb{R}^n \to \mathbb{R}^n$ one has,

$$p(T(K)) = T(p(K)).$$

• Examples: centroid, Santaló point, center of the ellipsoid of maximal volume

New measures of symmetry

Let K_n be the set of all convex bodies in ℝⁿ (i.e., compact convex subsets of ℝⁿ with nonempty interior). As metric we choose the Hausdorff metric.

$$d(C,K) = \inf\{\rho > 0 | C \subseteq K + \rho B_2^n \text{ and } K \subseteq C + \rho B_2^n\}$$

• Then a map $p : \mathcal{K}_n \to \mathbb{R}^n$ is called an affine invariant point, if p is continuous and if for every nonsingular affine map $T : \mathbb{R}^n \to \mathbb{R}^n$ one has,

$$p(T(K)) = T(p(K)).$$

• Examples: centroid, Santaló point, center of the ellipsoid of maximal volume

A convex body is more symmetric if it has fewer different affine invariant points.

A convex body is more symmetric if it has fewer different affine invariant points.

A point that is affine invariant, but not continuous

$$p(K) = \begin{cases} \frac{1}{|\operatorname{ext}(K)|} \sum_{v \in \operatorname{ext}(K)} v & K \text{ is a polytope} \\ g(K) & K \text{ is not a polytope} \end{cases}$$

Mathieu Meyer, Carsten Schütt and Elisabeth

• \mathcal{P}_n is the set of all affine invariant points.

- \mathcal{P}_n is the set of all affine invariant points.
- \mathcal{P}_n is an affine subspace of $\mathcal{C}(\mathcal{K}_n, \mathbb{R}^n)$

- \mathcal{P}_n is the set of all affine invariant points.
- \mathcal{P}_n is an affine subspace of $\mathcal{C}(\mathcal{K}_n, \mathbb{R}^n)$
- Grünbaum: Is \mathcal{P}_n infinite dimensional?

- \mathcal{P}_n is the set of all affine invariant points.
- \mathcal{P}_n is an affine subspace of $\mathcal{C}(\mathcal{K}_n, \mathbb{R}^n)$
- Grünbaum: Is \mathcal{P}_n infinite dimensional?

Yes.

- \mathcal{P}_n is the set of all affine invariant points.
- \mathcal{P}_n is an affine subspace of $\mathcal{C}(\mathcal{K}_n,\mathbb{R}^n)$
- Grünbaum: Is \mathcal{P}_n infinite dimensional?

Theorem Yes.

Intuitively, there should be a lot of affine invariant points. Grünbaum lists only a few. For the proof of the theorem we have to construct enough affine invariant points.

• The convex floating body

• The convex floating body

$$K_{\delta} = igcap_{|H^- \cap K| \leq \delta|K|} H^+$$

• The convex floating body

$$K_{\delta} = \bigcap_{|H^- \cap K| \le \delta|K|} H^+$$

• Affine invariant point

$$g_{\delta}(K) = g(K \setminus K_{\delta})$$

$$\|v\|_{\mathcal{P}} = \sup_{\substack{K \in \mathcal{K}_n \\ B_2^n \subseteq K \subseteq nB_2^n}} \|v(K)\|_2.$$

$$\|v\|_{\mathcal{P}} = \sup_{\substack{K \in \mathcal{K}_n \\ B_2^n \subseteq K \subseteq nB_2^n}} \|v(K)\|_2.$$

For $\delta > 0$ we consider the shifted, affine invariant points

$$v_{\delta} = g_{\delta} - g.$$

$$\|v\|_{\mathcal{P}} = \sup_{\substack{K \in \mathcal{K}_n \\ B_2^n \subseteq K \subseteq nB_2^n}} \|v(K)\|_2.$$

For $\delta > 0$ we consider the shifted, affine invariant points

$$v_{\delta} = g_{\delta} - g.$$

This set of shifted, affine invariant points is bounded.

$$\|v\|_{\mathcal{P}} = \sup_{\substack{K \in \mathcal{K}_n \\ B_2^n \subseteq K \subseteq nB_2^n}} \|v(K)\|_2.$$

For $\delta > 0$ we consider the shifted, affine invariant points

$$v_{\delta} = g_{\delta} - g.$$

This set of shifted, affine invariant points is bounded. We show that there is a sequence δ_j , $j \in \mathbb{N}$, such that for all $j \neq k$

$$\frac{1}{4} \leq \|\mathbf{v}_{\delta_j} - \mathbf{v}_{\delta_k}\|_{\mathcal{P}}.$$

$$\|v\|_{\mathcal{P}} = \sup_{\substack{K \in \mathcal{K}_n \\ B_2^n \subseteq K \subseteq nB_2^n}} \|v(K)\|_2.$$

For $\delta > 0$ we consider the shifted, affine invariant points

$$v_{\delta} = g_{\delta} - g.$$

This set of shifted, affine invariant points is bounded. We show that there is a sequence δ_j , $j \in \mathbb{N}$, such that for all $j \neq k$

$$rac{1}{4} \leq \| oldsymbol{v}_{\delta_j} - oldsymbol{v}_{\delta_k} \|_{\mathcal{P}}.$$

By compactness $V\mathcal{P}_n$ cannot be finite dimensional.

In order to show

$$\frac{1}{4} \leq \|\mathbf{v}_{\delta_j} - \mathbf{v}_{\delta_k}\|_{\mathcal{P}}.$$

we find for every pair $j \neq k$ a convex body K such that

$$rac{1}{4} \leq \| extsf{v}_{\delta_j}(K) - extsf{v}_{\delta_k}(K) \|_2.$$

•
$$D = [-1,1] \times B_2^{n-1}$$

•
$$D = [-1,1] \times B_2^{n-1}$$

• C(h) is a cap with height h of a Euclidean ball with radius $\frac{1+h^2}{2h}$

•
$$D = [-1,1] \times B_2^{n-1}$$

• C(h) is a cap with height h of a Euclidean ball with radius $\frac{1+h^2}{2h}$

$$K(h) = D \cup C(h)$$

•
$$D = [-1,1] \times B_2^{n-1}$$

• C(h) is a cap with height h of a Euclidean ball with radius $\frac{1+h^2}{2h}$

 $K(h) = D \cup C(h)$

We have the two equations

$$\lim_{h\to 0} v_{\delta}(K(h)) = v_{\delta}(D) = 0$$

We have the two equations

$$\lim_{h\to 0} v_{\delta}(K(h)) = v_{\delta}(D) = 0$$

$$\lim_{\delta\to 0} v_{\delta}(K(h)) = g(\partial C(h)) - g(K(h))$$

Schütt and Werner

Let K be a convex body in \mathbb{R}^n . Then one has

$$c_n \lim_{\delta \to 0} \frac{|\mathcal{K}| - |\mathcal{K}_{\delta}|}{(\delta|\mathcal{K}|)^{\frac{2}{n+1}}} = \int_{\partial \mathcal{K}} \kappa^{\frac{1}{n+1}}(x) \ d\mu_{\mathcal{K}}(x).$$

where
$$c_n = 2\left(\frac{|B^{n-1}|}{n+1}\right)^{\frac{2}{n+1}}$$
.

Grünbaum: Is there a convex body K such that

$$\mathcal{P}_n(K) = \{p(K) | p \in \mathcal{P}_n\} = \mathbb{R}^n$$
 ?

Grünbaum: Is there a convex body K such that

$$\mathcal{P}_n(K) = \{p(K) | p \in \mathcal{P}_n\} = \mathbb{R}^n$$
?

Theorem

Yes.

Grünbaum: Is there a convex body K such that

$$\mathcal{P}_n(K) = \{p(K) | p \in \mathcal{P}_n\} = \mathbb{R}^n$$
?

Theorem

Yes.

Theorem

These convex bodies are actually dense in \mathcal{K}_n with respect to the Hausdorff metric.

Let K be a convex body and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be an affine map with T(K) = K.

T(p(K)) = p(K).

$$T(p(K))=p(K).$$

$$\mathcal{F}_n(K) = \{x \in \mathbb{R}^n | \forall T, T(K) = K : Tx = x\}$$

٠

$$T(p(K))=p(K).$$

•
$$\mathcal{F}_n(K) = \{x \in \mathbb{R}^n | \forall T, T(K) = K : Tx = x\}$$

• $\mathcal{P}_n(K) = \{p(K) | p \in \mathcal{P}_n\}$

$$T(p(K))=p(K).$$

•
$$\mathcal{F}_n(K) = \{x \in \mathbb{R}^n | \forall T, T(K) = K : Tx = x\}$$

• $\mathcal{P}_n(K) = \{p(K) | p \in \mathcal{P}_n\}$
• $\mathcal{P}_n(K) \subseteq \mathcal{F}_n(K)$

$$T(p(K))=p(K).$$

•
$$\mathcal{F}_n(K) = \{x \in \mathbb{R}^n | \forall T, T(K) = K : Tx = x\}$$

•
$$\mathcal{P}_n(K) = \{p(K) | p \in \mathcal{P}_n\}$$

•
$$\mathcal{P}_n(K) \subseteq \mathcal{F}_n(K)$$

Grünbaum: Do we have $\mathcal{F}_n(K) = \mathcal{P}_n(K)$?

If dim $(\mathcal{P}_n(K)) = n - 1$ then we have $\mathcal{F}_n(K) = \mathcal{P}_n(K)$.

If dim
$$(\mathcal{P}_n(K)) = n - 1$$
 then we have $\mathcal{F}_n(K) = \mathcal{P}_n(K)$.

Theorem

If dim $(\mathcal{P}_n(K)) = n - 1$ then there is a hyperplane H and a reflection R at this hyperplane that leaves K invariant,

If dim
$$(\mathcal{P}_n(K)) = n - 1$$
 then we have $\mathcal{F}_n(K) = \mathcal{P}_n(K)$.

Theorem

If dim $(\mathcal{P}_n(K)) = n - 1$ then there is a hyperplane H and a reflection R at this hyperplane that leaves K invariant, i.e. there is $\xi \in \mathbb{R}^n$ with $\xi \notin H$ such that

$$R(h+t\xi)=h-t\xi$$

and

$$R(K) = K.$$

If dim
$$(\mathcal{P}_n(\mathcal{K})) = n - 1$$
 then we have $\mathcal{F}_n(\mathcal{K}) = \mathcal{P}_n(\mathcal{K})$.

Theorem

If dim $(\mathcal{P}_n(K)) = n - 1$ then there is a hyperplane H and a reflection R at this hyperplane that leaves K invariant, i.e. there is $\xi \in \mathbb{R}^n$ with $\xi \notin H$ such that

$$R(h+t\xi)=h-t\xi$$

and

$$R(K) = K.$$

We have

$$H = \mathcal{P}_n(K) \qquad \qquad \xi \in \mathcal{P}_n(K^\circ)^{\perp}$$

Definition

A map $A : \mathcal{K}_n \to \mathcal{K}_n$ is called an affine invariant set mapping, if A is continuous and if for every nonsingular affine map \mathcal{T} of \mathbb{R}^n , one has

$$A(TK) = T(A(K)).$$

We then call A(K), or simply the map A, an affine invariant set mappings. We denote by \mathfrak{S}_n the set of affine invariant set mappings,

 $\mathfrak{S}_n = \{A : \mathcal{K}_n \to \mathcal{K}_n | A \text{ is affine invariant and continuous} \}.$

If $p \in \mathfrak{P}_n$ and $A \in \mathfrak{S}_n$, then $p \circ A \in \mathfrak{P}_n$.

Lemma

Let $p \in \mathfrak{P}_n$ and let g be the centroid. For $0 < \varepsilon < 1$, define $A_{p,\epsilon} : \mathcal{K}_n \to \mathcal{K}_n$ by

$$egin{aligned} \mathcal{A}_{p,\epsilon}(\mathcal{K}) &= \left\{ x \in \mathcal{K} \left| \langle x, p((\mathcal{K} - g(\mathcal{K}))^\circ)
angle \geq \sup_{y \in \mathcal{K}} \langle y, p((\mathcal{K} - g(\mathcal{K}))^\circ)
angle - arepsilon
ight\}. \end{aligned} \end{aligned}$$

Then $A_{p,\epsilon}$ is an affine invariant set map.

Lemma

Let $K \in \mathcal{K}_n$ and let $P : \mathbb{R}^n \to \mathbb{R}^n$ be the orthogonal projection onto $\mathfrak{P}_n((K - g(K))^\circ)$. Then the restriction of P to the subspace $\mathfrak{P}_n(K - g(K))$ is an isomorphism between $\mathfrak{P}_n(K - g(K))$ and $\mathfrak{P}_n((K - g(K))^\circ)$. In particular,

$$\dim(\mathfrak{P}_n(\mathcal{K}-g(\mathcal{K})))=\dim(\mathfrak{P}_n((\mathcal{K}-g(\mathcal{K})))^\circ).$$