Helly's Theorem and translates of convex sets.

Geometrical, vector and set-theoretic differences. Covers, intersections. Support function.

Bulat N. Khabibullin

Department of Mathematics and Information Technologies Bashkir State University, Ufa, Bashkortostan, RUSSIA

June, 2013 / Saint-Petersburg, The Euler International Mathematical Institute, "Asymptotic Geometric Analysis II"

Outline

(1) Definitions, and known results

- Vincensini-Edelstein-Klee Theorem
- Helly's Theorem
- Set-theoretic, vector, geometric differences
- Problems
(2) New results
- Covering Theorem
- Intersection Theorem
- Difference Theorem
(3) Support function
- Theorem on support functions
- The complex plane
- Covering Theorem for \mathbb{C}

4. Unbounded convex sets

Definitions

- Denote by \mathbb{N}, \mathbb{R}, and \mathbb{C} the sets of natural, real and complex numbers respectively.

Definitions

- Denote by \mathbb{N}, \mathbb{R}, and \mathbb{C} the sets of natural, real and complex numbers respectively.
- Let $S_{1}, S_{2} \subset \mathbb{R}^{n}, n \in \mathbb{N}$. Denote by $S_{1}+S_{2}:=\left\{s_{1}+s_{2}: s_{1} \in S_{1}, s_{2} \in S_{2}\right\}$ the Minkowski sum of S_{1} and S_{2}.
- For $S \subset \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$, the set $S+x:=S+\{x\}$ is a
parallel translation, i. e. translate, of set S on the vector x.

Definitions

- Denote by \mathbb{N}, \mathbb{R}, and \mathbb{C} the sets of natural, real and complex numbers respectively.
- Let $S_{1}, S_{2} \subset \mathbb{R}^{n}, n \in \mathbb{N}$. Denote by $S_{1}+S_{2}:=\left\{s_{1}+s_{2}: s_{1} \in S_{1}, s_{2} \in S_{2}\right\}$ the Minkowski sum of S_{1} and S_{2}.
- For $S \subset \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$, the set $S+x:=S+\{x\}$ is a parallel translation, i.e. translate, of set S on the vector x.

Vincensini-Klee-Edelstein Theorem

 respectively, 1939, 1953, 1958
Theorem VKE.

Suppose \mathcal{S} is a family of at least $n+1$ convex sets in \mathbb{R}^{n}, C is a convex set in \mathbb{R}^{n}, and S is finite or C and all members of \mathcal{S} are compact. Then the existence of some translate of C which intersects [is contained in; contains] all members of \mathcal{S} is guaranteed by the existence of such a translate for each $n+1$ members of S.

> This result is a corollary of Helly's Theorem on intersection of convex sets. Conversely, classical Helly's Theorem follows from Theorem VKE in the part "intersects", if $C:=\{0\}$.

Vincensini-Klee-Edelstein Theorem

 respectively, 1939, 1953, 1958> Theorem VKE.
> Suppose \mathcal{S} is a family of at least $n+1$ convex sets in \mathbb{R}^{n}, C is a convex set in \mathbb{R}^{n}, and S is finite or C and all members of \mathcal{S} are compact. Then the existence of some translate of C which intersects [is contained in; contains] all members of \mathcal{S} is guaranteed by the existence of such a translate for each $n+1$ members of S.

This result is a corollary of Helly's Theorem on intersection of convex sets. Conversely, classical Helly's Theorem follows from Theorem VKE in the part "intersects", if $C:=\{0\}$.

Again definitions

- A vector $y \in \mathbb{R}^{n}$ is a direction of recession of the set $C \subset \mathbb{R}^{n}$ iff for $\forall c \in C, \forall \lambda>0$ we have $c+\lambda y \in C$.
- A vector $y \in \mathbb{R}^{n}$ is a direction of linearity of the set $C \subset \mathbb{R}^{n}$ iff both y and $-y$ are direction of recession.
- A set $C \subset \mathbb{R}^{n}$ is polyhedral iff C is a intersection of a finite number of the closed half-spaces.

Again definitions

- A vector $y \in \mathbb{R}^{n}$ is a direction of recession of the set $C \subset \mathbb{R}^{n}$ iff for $\forall c \in C, \forall \lambda>0$ we have $c+\lambda y \in C$.
- A vector $y \in \mathbb{R}^{n}$ is a direction of linearity of the set $C \subset \mathbb{R}^{n}$ iff both y and $-y$ are direction of recession.
- A set $C \subset \mathbb{R}^{n}$ is polyhedral iff C is a intersection of a finite number of the closed half-spaces.

Again definitions

- A vector $y \in \mathbb{R}^{n}$ is a direction of recession of the set $C \subset \mathbb{R}^{n}$ iff for $\forall c \in C, \forall \lambda>0$ we have $c+\lambda y \in C$.
- A vector $y \in \mathbb{R}^{n}$ is a direction of linearity of the set $C \subset \mathbb{R}^{n}$ iff both y and $-y$ are direction of recession.
- A set $C \subset \mathbb{R}^{n}$ is polyhedral iff C is a intersection of a finite number of the closed half-spaces.

Helly's Theorem

E. Helly, 1930, R. Rockafellar, 1965

Theorem HR

Let $\mathcal{C}:=\left\{C_{\alpha} \subset \mathbb{R}^{n}: \alpha \in \mathrm{A}\right\}$ be a family of convex sets, where A is an index set. If A is finite set or
(d) all set $C_{\alpha}, \alpha \in \mathrm{A}$, are closed, there exists a finite subset $\mathrm{A}_{0} \subset \mathrm{~A}$ such that all C_{α} are polyhedral for $\alpha \in \mathrm{A}_{0}$, and each common direction of recession for all $C_{\alpha}, \alpha \in \mathrm{A}$, is direction of linearity for $C_{\alpha}, \forall \alpha \in \mathrm{A} \backslash \mathrm{A}_{0}$,
and for every $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \in \mathrm{~A}$ the intersection $\bigcap_{k=0}^{n} C_{\alpha_{k}}$ non-empty $(\neq \varnothing)$, then $\bigcap_{\alpha \in \mathrm{A}} C_{\alpha} \neq \varnothing$.

Remark 1

If all set $C_{\alpha}, \alpha \in \mathrm{A}$, are closed, and there exists $\mathrm{A}^{\prime} \subset \mathrm{A}$ such that the intresection $\bigcap_{\alpha \in \mathrm{A}^{\prime}} C_{\alpha}$ is bounded, then the condition (d) is fulfilled automatically because the common directions of recession simply do not exist.

Vincensini-Edelstein-Klee Theorem

Set-theoretic, vector, geometric differences. And again definitions

For $C, S \subset \mathbb{R}^{n}$,

- the set-theoretic difference $C \backslash S:=\{c \in C: c \notin S\}$;
- the vector, or algebraic, difference

- the geometrical difference, or Minkowski difference,

Set-theoretic, vector, geometric differences. And again definitions

For $C, S \subset \mathbb{R}^{n}$,

- the set-theoretic difference $C \backslash S:=\{c \in C: c \notin S\}$;
- the vector, or algebraic, difference

$$
C-S:=\{c-s: c \in C, s \in S\} ;
$$

- the geometrical difference, or Minkowski difference,

Set-theoretic, vector, geometric differences. And again definitions

For $C, S \subset \mathbb{R}^{n}$,

- the set-theoretic difference $C \backslash S:=\{c \in C: c \notin S\}$;
- the vector, or algebraic, difference

$$
C-S:=\{c-s: c \in C, s \in S\} ;
$$

- the geometrical difference, or Minkowski difference, $C * S:=\left\{x \in \mathbb{R}^{n}: S+x \subset C\right\}$.

Problems

Let A and B are index sets. Let $\mathcal{C}:=\left\{\boldsymbol{C}_{\alpha}\right\}_{\alpha \in \mathrm{A}}$, and $\mathcal{S}:=\left\{S_{\beta}\right\}_{\beta \in \mathrm{B}}$, are families of subsets in \mathbb{R}^{n}. Let

$$
C:=\bigcap_{\alpha \in \mathrm{A}} C_{\alpha}, \quad S:=\bigcup_{\beta \in \mathrm{B}} S_{\beta} .
$$

We investigate the following problems. What relations will be between C and S, if for every sets of indexes $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\} \subset \mathrm{A}$, $\left\{\beta_{0}, \ldots, \beta_{n}\right\} \subset \mathrm{B}$ the intersection
 $S_{\beta_{k}}$) is non-empty set?
 $S_{\beta_{k}}$) is non-empty set?

$S_{\beta_{k}}$ is non-empty set?

Problems

Let A and B are index sets. Let $\mathcal{C}:=\left\{C_{\alpha}\right\}_{\alpha \in \mathrm{A}}$, and $\mathcal{S}:=\left\{S_{\beta}\right\}_{\beta \in \mathrm{B}}$, are families of subsets in \mathbb{R}^{n}. Let

$$
C:=\bigcap_{\alpha \in \mathrm{A}} C_{\alpha}, \quad S:=\bigcup_{\beta \in \mathrm{B}} S_{\beta} .
$$

We investigate the following problems. What relations will be between C and S, if for every sets of indexes $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\} \subset \mathrm{A}$, $\left\{\beta_{0}, \ldots, \beta_{n}\right\} \subset \mathrm{B}$ the intersection

Problems

Let A and B are index sets. Let $\mathcal{C}:=\left\{C_{\alpha}\right\}_{\alpha \in \mathrm{A}}$, and $\mathcal{S}:=\left\{S_{\beta}\right\}_{\beta \in \mathrm{B}}$, are families of subsets in \mathbb{R}^{n}. Let

$$
C:=\bigcap_{\alpha \in \mathrm{A}} C_{\alpha}, \quad S:=\bigcup_{\beta \in \mathrm{B}} S_{\beta} .
$$

We investigate the following problems. What relations will be between C and S, if for every sets of indexes $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\} \subset \mathrm{A}$, $\left\{\beta_{0}, \ldots, \beta_{n}\right\} \subset \mathrm{B}$ the intersection

- $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}}{ }^{*} S_{\beta_{k}}\right)$ is non-empty set?

Problems

Let A and B are index sets. Let $\mathcal{C}:=\left\{\boldsymbol{C}_{\alpha}\right\}_{\alpha \in \mathrm{A}}$, and $\mathcal{S}:=\left\{S_{\beta}\right\}_{\beta \in \mathrm{B}}$, are families of subsets in \mathbb{R}^{n}. Let

$$
C:=\bigcap_{\alpha \in \mathrm{A}} C_{\alpha}, \quad S:=\bigcup_{\beta \in \mathrm{B}} S_{\beta} .
$$

We investigate the following problems. What relations will be between C and S, if for every sets of indexes $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\} \subset \mathrm{A}$, $\left\{\beta_{0}, \ldots, \beta_{n}\right\} \subset \mathrm{B}$ the intersection

- $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}}{ }^{*} S_{\beta_{k}}\right)$ is non-empty set?
- $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}}-S_{\beta_{k}}\right)$ is non-empty set?
- $\cap_{k=0}^{n} C_{\alpha_{k}} \backslash S_{\beta_{k}}$ is non-empty set?

Problems

Let A and B are index sets. Let $\mathcal{C}:=\left\{\boldsymbol{C}_{\alpha}\right\}_{\alpha \in \mathrm{A}}$, and $\mathcal{S}:=\left\{S_{\beta}\right\}_{\beta \in \mathrm{B}}$, are families of subsets in \mathbb{R}^{n}. Let

$$
C:=\bigcap_{\alpha \in \mathrm{A}} C_{\alpha}, \quad S:=\bigcup_{\beta \in \mathrm{B}} S_{\beta} .
$$

We investigate the following problems. What relations will be between C and S, if for every sets of indexes $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\} \subset \mathrm{A}$, $\left\{\beta_{0}, \ldots, \beta_{n}\right\} \subset \mathrm{B}$ the intersection

- $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}}{ }^{*} S_{\beta_{k}}\right)$ is non-empty set?
- $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}}-S_{\beta_{k}}\right)$ is non-empty set?
- $\bigcap_{k=0}^{n} C_{\alpha_{k}} \backslash S_{\beta_{k}}$ is non-empty set?

Covering Theorem

Let all C_{α} are convex sets.

Suppose card $\mathrm{A}<\infty$ and $\operatorname{card}\left\{\beta \in \mathrm{B}: \boldsymbol{S}_{\beta} \neq \varnothing\right\}<\infty$

Covering Theorem

Let all C_{α} are convex sets.
Suppose card A $<\infty$ and $\operatorname{card}\left\{\beta \in \mathrm{B}: S_{\beta} \neq \varnothing\right\}<\infty$ or $\mathrm{C}=\left\{C_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ the condition (d) from Helly's Theorem is fulfilled, but with additional restrictions $\mathrm{A}_{0}=\varnothing$ or card $\mathrm{B}<\infty$. Then following four statements are equivalent:

Covering Theorem

Let all C_{α} are convex sets.
Suppose card $\mathrm{A}<\infty$ and $\operatorname{card}\left\{\beta \in \mathrm{B}: S_{\beta} \neq \varnothing\right\}<\infty$ or $\mathcal{C}=\left\{C_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ the condition (d) from Helly's Theorem is fulfilled, but with additional restrictions $\mathrm{A}_{0}=\varnothing$ or card $\mathrm{B}<\infty$. Then following four statements are equivalent:
(T) a translate of C covers S;

Covering Theorem

Let all C_{α} are convex sets.
Suppose card $\mathrm{A}<\infty$ and $\operatorname{card}\left\{\beta \in \mathrm{B}: S_{\beta} \neq \varnothing\right\}<\infty$ or $\mathcal{C}=\left\{C_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ the condition (d) from Helly's Theorem is fulfilled, but with additional restrictions $\mathrm{A}_{0}=\varnothing$ or card $\mathrm{B}<\infty$. Then following four statements are equivalent:
(T) a translate of C covers S;
(C) for every $n+1$ members from \mathcal{C} a translate of S contains in the intersection of these $n+1$ sets;
for every $n+1$ members from S a translate of C covers all these $n+1$ sets;
for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in A$ and $\beta_{0}, \ldots, \beta_{n} \in B$ the intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}}\right.$

Covering Theorem

Let all C_{α} are convex sets.
Suppose card A $<\infty$ and $\operatorname{card}\left\{\beta \in \mathrm{B}: S_{\beta} \neq \varnothing\right\}<\infty$ or $\mathrm{C}=\left\{C_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ the condition (d) from Helly's Theorem is fulfilled, but with additional restrictions $\mathrm{A}_{0}=\varnothing$ or card $\mathrm{B}<\infty$. Then following four statements are equivalent:
(T) a translate of C covers S;
(C) for every $n+1$ members from \mathcal{C} a translate of S contains in the intersection of these $n+1$ sets;
(S) for every $n+1$ members from \mathcal{S} a translate of C covers all these $n+1$ sets;
for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in \mathrm{~A}$ and $\beta_{0}, \ldots, \beta_{n} \in \mathrm{~B}$ the intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}}\right.$

Covering Theorem

Let all C_{α} are convex sets.
Suppose card A $<\infty$ and card $\left\{\beta \in \mathrm{B}: \boldsymbol{S}_{\beta} \neq \varnothing\right\}<\infty$ or $\mathrm{C}=\left\{C_{\alpha}\right\}_{\alpha \in \mathrm{A}}$ the condition (d) from Helly's Theorem is fulfilled, but with additional restrictions $\mathrm{A}_{0}=\varnothing$ or card $\mathrm{B}<\infty$. Then following four statements are equivalent:
(T) a translate of C covers S;
(C) for every $n+1$ members from \mathcal{C} a translate of S contains in the intersection of these $n+1$ sets;
(S) for every $n+1$ members from \mathcal{S} a translate of C covers all these $n+1$ sets;
(CS) for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in \mathrm{~A}$ and $\beta_{0}, \ldots, \beta_{n} \in \mathrm{~B}$ the intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}} \stackrel{*}{ } S_{\beta_{k}}\right) \neq \varnothing$.

Remarks

(1) For $S=\{0\}, S=\{S\}$, the implication $(\mathrm{C}) \Rightarrow(\mathrm{T})$ of this Theorem gives exactly Helly's Theorem, i. e. Theorem HR.
(2) Even if C consists exactly of one element, then implication $(S) \Rightarrow(T)$ of this Theorem generalizes Theorem VKE in the part "contains", where all S_{β} are convex and closed (in our version the sets S_{β} are arbitrary).
(3) If the family \mathcal{S} consists exactly of one convex set S, then implication $(\mathrm{C}) \Rightarrow(\mathrm{T})$ of this Theorem is Theorem VKE in the part "is contained in".

Remarks

(1) For $S=\{0\}, S=\{S\}$, the implication $(\mathrm{C}) \Rightarrow(\mathrm{T})$ of this Theorem gives exactly Helly's Theorem, i. e. Theorem HR.
(2) Even if \mathcal{C} consists exactly of one element, then implication $(S) \Rightarrow(T)$ of this Theorem generalizes Theorem VKE in the part "contains", where all S_{β} are convex and closed (in our version the sets S_{β} are arbitrary).

©If the family S consists exactly of one convex set S, then
implication $(C) \Rightarrow(T)$ of this Theorem is Theorem VKE in
the part "is contained in".

Remarks

(1) For $S=\{0\}, S=\{S\}$, the implication $(\mathrm{C}) \Rightarrow(\mathrm{T})$ of this Theorem gives exactly Helly's Theorem, i. e. Theorem HR.
(2) Even if \mathcal{C} consists exactly of one element, then implication $(S) \Rightarrow(T)$ of this Theorem generalizes Theorem VKE in the part "contains", where all S_{β} are convex and closed (in our version the sets S_{β} are arbitrary).
(3) If the family \mathcal{S} consists exactly of one convex set \mathcal{S}, then implication $(\mathrm{C}) \Rightarrow(\mathrm{T})$ of this Theorem is Theorem VKE in the part "is contained in".

Intersection Theorem

Let all vector differences $C_{\alpha}-S_{\beta}$ are convex for all $\alpha \in \mathrm{A}, \beta \in \mathrm{B}$. Suppose card $\mathrm{A}+\operatorname{card} \mathrm{B}<\infty$ each algebraic difference $C_{\alpha}-S_{\beta}$ is closed, for a finite subsets $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ differences $C_{\alpha}-S_{\beta}$ are polyhedral for all $(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha}-S_{\beta}$, when $(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$, is direction of linearity for $C_{\alpha}-S_{\beta} \forall(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$
Then the following statements equivalent: there is a uniform vector $x \in \mathbb{R}^{n}$ such that for each index $\beta \in \mathrm{B}$ every translate $S_{\beta}+x$ meets all C_{α} from C ; for every $n+1$ indexes $\alpha_{0} \ldots, \alpha_{n} \in \mathrm{~A}$ and $\beta_{0} \ldots, \beta_{n} \in \mathrm{~B}$ the intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}}-S_{\beta_{k}}\right) \neq \varnothing$

Intersection Theorem

Let all vector differences $C_{\alpha}-S_{\beta}$ are convex for all
$\alpha \in \mathrm{A}, \beta \in \mathrm{B}$. Suppose card $\mathrm{A}+\operatorname{card} \mathrm{B}<\infty$ or
(id) each algebraic difference $C_{\alpha}-S_{\beta}$ is closed, for a finite subsets $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ differences $C_{\alpha}-S_{\beta}$ are polyhedral for all $(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha}-S_{\beta}$, when $(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$, is direction of linearity for $C_{\alpha}-S_{\beta} \forall(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$
Then the following statements equivalent:

Intersection Theorem

Let all vector differences $C_{\alpha}-S_{\beta}$ are convex for all
$\alpha \in \mathrm{A}, \beta \in \mathrm{B}$. Suppose card $\mathrm{A}+\operatorname{card} \mathrm{B}<\infty$ or
(id) each algebraic difference $C_{\alpha}-S_{\beta}$ is closed, for a finite subsets $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ differences $C_{\alpha}-S_{\beta}$ are polyhedral for all $(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha}-S_{\beta}$, when $(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$, is direction of linearity for $C_{\alpha}-S_{\beta} \forall(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$
Then the following statements equivalent:

Intersection Theorem

Let all vector differences $C_{\alpha}-S_{\beta}$ are convex for all
$\alpha \in \mathrm{A}, \beta \in \mathrm{B}$. Suppose card $\mathrm{A}+\operatorname{card} \mathrm{B}<\infty$ or
(id) each algebraic difference $C_{\alpha}-S_{\beta}$ is closed, for a finite subsets $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ differences $C_{\alpha}-S_{\beta}$ are polyhedral for all $(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha}-S_{\beta}$, when $(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$, is direction of linearity for $C_{\alpha}-S_{\beta} \forall(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$
Then the following statements equivalent:
(I) there is a uniform vector $x \in \mathbb{R}^{n}$ such that for each index $\beta \in \mathrm{B}$ every translate $S_{\beta}+x$ meets all C_{α} from \mathcal{C};

Intersection Theorem

Let all vector differences $C_{\alpha}-S_{\beta}$ are convex for all
$\alpha \in \mathrm{A}, \beta \in \mathrm{B}$. Suppose card $\mathrm{A}+\operatorname{card} \mathrm{B}<\infty$ or
(id) each algebraic difference $C_{\alpha}-S_{\beta}$ is closed, for a finite subsets $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ differences $C_{\alpha}-S_{\beta}$ are polyhedral for all $(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha}-S_{\beta}$, when $(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$, is direction of linearity for $C_{\alpha}-S_{\beta} \forall(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$
Then the following statements equivalent:
(I) there is a uniform vector $x \in \mathbb{R}^{n}$ such that for each index $\beta \in \mathrm{B}$ every translate $S_{\beta}+x$ meets all C_{α} from \mathcal{C};
(CSI) for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in \mathrm{~A}$ and $\beta_{0}, \ldots, \beta_{n} \in \mathrm{~B}$ the intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}}-S_{\beta_{k}}\right) \neq \varnothing$.

Remark 2

If card $\mathrm{B}=1$ and $S_{\beta}=\{0\}$, then Intersection Theorem gives exactly Helly's Theorem, i. e. Theorem HR.

Corollary (intersection)
Let $C \subset \mathbb{R}^{n}$ be a non-empty and $C-S_{\beta}$ are convex for all $\beta \in \mathrm{B}$, where card $\mathrm{B}<\infty$ or all vector differences $C-S_{\beta}$ closed and at least one of them is bounded.
 simultaneously all sets $S_{\beta_{0}}, \ldots S_{\beta_{n}}$, then a translate of C intersets all members of family \mathcal{S}.

> Remark 3
> This Corollary generalizes and involves the Theorem VKE in the part "intersects"

Remark 2

If card $\mathrm{B}=1$ and $S_{\beta}=\{0\}$, then Intersection Theorem gives exactly Helly's Theorem, i. e. Theorem HR.

Corollary (intersection)

Let $C \subset \mathbb{R}^{n}$ be a non-empty and $C-S_{\beta}$ are convex for all $\beta \in \mathrm{B}$, where card $\mathrm{B}<\infty$ or all vector differences $\mathrm{C}-\mathrm{S}_{\beta}$ closed and at least one of them is bounded.

> If for every $n+1$ indexes $\beta_{0}, \ldots \beta_{n}$ a translate of C intersects simultaneously all sets $S_{\beta_{0}}, \ldots S_{\beta_{n}}$, then a translate of C intersets all members of family \mathcal{S}.

> Remark 3
> This Corollary generalizes and involves the Theorem VKE in the part "intersects"

Remark 2

If card $\mathrm{B}=1$ and $S_{\beta}=\{0\}$, then Intersection Theorem gives exactly Helly's Theorem, i. e. Theorem HR.

Corollary (intersection)

Let $C \subset \mathbb{R}^{n}$ be a non-empty and $C-S_{\beta}$ are convex for all $\beta \in \mathrm{B}$, where card $\mathrm{B}<\infty$ or all vector differences $C-S_{\beta}$ closed and at least one of them is bounded. If for every $n+1$ indexes $\beta_{0}, \ldots \beta_{n}$ a translate of C intersects simultaneously all sets $S_{\beta_{0}}, \ldots S_{\beta_{n}}$, then a translate of C intersets all members of family \mathcal{S}.

Remark 2

If card $\mathrm{B}=1$ and $S_{\beta}=\{0\}$, then Intersection Theorem gives exactly Helly's Theorem, i. e. Theorem HR.

Corollary (intersection)

Let $C \subset \mathbb{R}^{n}$ be a non-empty and $C-S_{\beta}$ are convex for all $\beta \in \mathrm{B}$, where card $\mathrm{B}<\infty$ or all vector differences $C-S_{\beta}$ closed and at least one of them is bounded. If for every $n+1$ indexes $\beta_{0}, \ldots \beta_{n}$ a translate of C intersects simultaneously all sets $S_{\beta_{0}}, \ldots S_{\beta_{n}}$, then a translate of C intersets all members of family \mathcal{S}.

Remark 3

This Corollary generalizes and involves the Theorem VKE in the part "intersects".

Difference Theorem

Let all differences $C_{\alpha} \backslash S_{\beta}$ are convex. Suppose $\operatorname{card} \mathrm{A}+\operatorname{card} \mathrm{B}<\infty$ or

each difference $C_{\alpha} \backslash S_{\beta}$ is closed, for finite $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ the differences $C_{\alpha} \backslash S_{\beta}$ are polyhedral $\forall(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha} \backslash S_{\beta}$ $\forall(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$ is direction of linearity for differences $C_{\alpha} \backslash S_{\beta}$ for all $(\alpha, \beta) \in(\mathrm{A}$ B) (A_{0} B_{0}).
The following statement are equi valent: (D) the difference $C \backslash S$ is non-empty; for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in \mathrm{~A}, \beta_{1}, \ldots, \beta_{n} \in \mathrm{~B}$ the intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}} \backslash S_{\beta_{k}}\right) \neq \varnothing$.

If card $\mathrm{B}=1$ and all $S_{\beta}=\varnothing$, then this Theorem gives Helly's

 Theorem, i. e. Theorem HR
Difference Theorem

Let all differences $C_{\alpha} \backslash S_{\beta}$ are convex. Suppose
card A + card B $<\infty$ or
(dd) each difference $C_{\alpha} \backslash S_{\beta}$ is closed, for finite $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ the differences $C_{\alpha} \backslash S_{\beta}$ are polyhedral $\forall(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha} \backslash S_{\beta}$ $\forall(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$ is direction of linearity for differences $C_{\alpha} \backslash S_{\beta}$ for all $(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$.
The following statement are equivalent:
the difference $C \backslash S$ is non-empty;
for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in A, \beta_{1}, \ldots, \beta_{n} \in B$ the
intersection $\cap_{k=0}^{n}\left(C_{\alpha_{k}} \backslash S_{\beta}\right.$

If card $\mathrm{B}=1$ and all $S_{\beta}=\varnothing$, then this Theorem gives Helly's

Difference Theorem

Let all differences $C_{\alpha} \backslash S_{\beta}$ are convex. Suppose
card A $+\operatorname{card} \mathrm{B}<\infty$ or
(dd) each difference $C_{\alpha} \backslash S_{\beta}$ is closed, for finite $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ the differences $C_{\alpha} \backslash S_{\beta}$ are polyhedral $\forall(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha} \backslash S_{\beta}$ $\forall(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$ is direction of linearity for differences $C_{\alpha} \backslash S_{\beta}$ for all $(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$.
The following statement are equivalent:
the difference $C \backslash S$ is non-empty;
for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in \mathrm{~A}, \beta_{1}, \ldots, \beta_{n} \in \mathrm{~B}$ the
intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}} \backslash S_{\beta_{k}}\right) \neq \varnothing$.

If card $\mathrm{B}=1$ and all S_{β}

 Theorem, i. e. Theorem HR.
Difference Theorem

Let all differences $C_{\alpha} \backslash S_{\beta}$ are convex. Suppose
card A $+\operatorname{card} \mathrm{B}<\infty$ or
(dd) each difference $C_{\alpha} \backslash S_{\beta}$ is closed, for finite $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ the differences $C_{\alpha} \backslash S_{\beta}$ are polyhedral $\forall(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha} \backslash S_{\beta}$ $\forall(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$ is direction of linearity for differences $C_{\alpha} \backslash S_{\beta}$ for all $(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$.
The following statement are equivalent:
(D) the difference $C \backslash S$ is non-empty;
for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in \mathrm{~A}, \beta_{1}, \ldots, \beta_{n} \in \mathrm{~B}$ the
intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}} \backslash S_{\beta_{k}}\right) \neq \varnothing$.
If card $\mathrm{B}=1$ and all $S_{\beta}=\varnothing$, then this Theorem gives Helly's

Difference Theorem

Let all differences $C_{\alpha} \backslash S_{\beta}$ are convex. Suppose
card A + card B $<\infty$ or
(dd) each difference $C_{\alpha} \backslash S_{\beta}$ is closed, for finite $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ the differences $C_{\alpha} \backslash S_{\beta}$ are polyhedral $\forall(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha} \backslash S_{\beta}$ $\forall(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$ is direction of linearity for differences $C_{\alpha} \backslash S_{\beta}$ for all $(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$.
The following statement are equivalent:
(D) the difference $C \backslash S$ is non-empty;
(CSD) for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in \mathrm{~A}, \beta_{1}, \ldots, \beta_{n} \in \mathrm{~B}$ the intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}} \backslash S_{\beta_{k}}\right) \neq \varnothing$.

> If card $\mathrm{B}=1$ and all $S_{\beta}=\varnothing$, then this Theorem gives Helly's

Difference Theorem

Let all differences $C_{\alpha} \backslash S_{\beta}$ are convex. Suppose
card A + card B $<\infty$ or
(dd) each difference $C_{\alpha} \backslash S_{\beta}$ is closed, for finite $\mathrm{A}_{0} \subset \mathrm{~A}, \mathrm{~B}_{0} \subset \mathrm{~B}$ the differences $C_{\alpha} \backslash S_{\beta}$ are polyhedral $\forall(\alpha, \beta) \in \mathrm{A}_{0} \times \mathrm{B}_{0}$, and each common direction of recession for all $C_{\alpha} \backslash S_{\beta}$ $\forall(\alpha, \beta) \in \mathrm{A} \times \mathrm{B}$ is direction of linearity for differences $C_{\alpha} \backslash S_{\beta}$ for all $(\alpha, \beta) \in(\mathrm{A} \times \mathrm{B}) \backslash\left(\mathrm{A}_{0} \times \mathrm{B}_{0}\right)$.
The following statement are equivalent:
(D) the difference $C \backslash S$ is non-empty;
(CSD) for every $n+1$ indexes $\alpha_{0}, \ldots, \alpha_{n} \in \mathrm{~A}, \beta_{1}, \ldots, \beta_{n} \in \mathrm{~B}$ the intersection $\bigcap_{k=0}^{n}\left(C_{\alpha_{k}} \backslash S_{\beta_{k}}\right) \neq \varnothing$.

If card $\mathrm{B}=1$ and all $S_{\beta}=\varnothing$, then this Theorem gives Helly's Theorem, i. e. Theorem HR.

Covering by a translate and the support function

Support function

Let $a=\left(a_{1}, \ldots, a_{n}\right), s=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n}$ and $<a, s\rangle:=\sum_{k=1}^{n} a_{k} s_{k}$ be the scalar product. Let $S \subset \mathbb{R}^{n}$.
Denote by

$$
H_{S}: \mathbb{R}^{n} \rightarrow[-\infty,+\infty], \quad H_{S}(a):=\sup _{s \in S}<a, s>, \quad a \in \mathbb{R}^{n},
$$

the support function of the set S.

Theorem on support functions

Let $C \subset \mathbb{R}^{n}$ be a convex bounded set, \mathcal{S} be a family of sets from \mathbb{R}^{n}, and $\mathcal{S}:=\cup_{S \in S} S$. Suppose that C is closed or \mathcal{S} is open. Then the following four statements are equivalent.

Theorem on support functions

Let $C \subset \mathbb{R}^{n}$ be a convex bounded set, \mathcal{S} be a family of sets from \mathbb{R}^{n}, and $\mathcal{S}:=\bigcup_{S \in S} S$. Suppose that C is closed or \mathcal{S} is open. Then the following four statements are equivalent.
(1) A translate of C covers the set \mathcal{S}.

Theorem on support functions

Let $C \subset \mathbb{R}^{n}$ be a convex bounded set, \mathcal{S} be a family of sets from \mathbb{R}^{n}, and $\mathcal{S}:=\bigcup_{S \in S} S$. Suppose that C is closed or \mathcal{S} is open. Then the following four statements are equivalent.
(1) A translate of C covers the set \mathcal{S}.
(2) For every $S_{1}, \ldots, S_{n+1} \in \mathcal{S}$ and for every closed semispaces $C_{1}, \ldots C_{n+1} \supset C$ there is a vector $x \in \mathbb{R}^{n}$ such that every translate $S_{k}+x$ contains in C_{k} for all $k=1, \ldots, n+1$.

Theorem on support functions

Let $C \subset \mathbb{R}^{n}$ be a convex bounded set, \mathcal{S} be a family of sets from \mathbb{R}^{n}, and $\mathcal{S}:=\cup_{S \in \mathcal{S}} S$. Suppose that C is closed or \mathcal{S} is open. Then the following four statements are equivalent.
(1) A translate of C covers the set \mathcal{S}.
(2) For every $S_{1}, \ldots, S_{n+1} \in S$ and for every closed semispaces $C_{1}, \ldots C_{n+1} \supset C$ there is a vector $x \in \mathbb{R}^{n}$ such that every translate $S_{k}+x$ contains in C_{k} for all $k=1, \ldots, n+1$.
(3) For every $S_{1}, \ldots, S_{n+1} \in \mathcal{S}$ and for every vectors $a_{1}, \ldots, a_{n+1} \in \mathbb{R}^{n}$ and numbers $p_{1}, \ldots, p_{n+1} \geqslant 0$ the condition $\sum_{k=1}^{n+1} p_{k} a_{k}=0$ implies inequality

$$
\sum^{n+1} p_{k} H_{S_{k}}\left(a_{k}\right) \leqslant \sum^{n+1} p_{k} H_{C}\left(a_{k}\right) .
$$

Theorem on support functions (continuation)

4 For every $S_{1}, \ldots, S_{n+1} \in \mathcal{S}$ and for every system of vectors

$$
\left\{\begin{array}{l}
a_{1}=\left(a_{11}, \ldots, a_{1 n}\right) \in \mathbb{R}^{n}, \\
\ldots \ldots \ldots \ldots \ldots \ldots, \\
a_{n+1}=\left(a_{n+1,1}, \ldots, a_{n+1, n}\right) \in \mathbb{R}^{n}
\end{array}\right.
$$

of a rank $r>0$ there exists a nonzero minor

$$
\Delta=\left|\begin{array}{ccc}
a_{k_{1} j_{1}} & \cdots & a_{k_{1} j_{r}} \\
\cdots & \cdots & \cdots \\
a_{k_{r} j_{1}} & \cdots & a_{k_{r} j_{r}}
\end{array}\right|
$$

of r-th order such that

Theorem on support functions (continuation)

$$
\text { for } k=1, \ldots, n+1 \text { the inequality }
$$

is fulfilled.

Case $n=2$, i. e. $\mathbb{R}^{2} \leftrightarrow \mathbb{C}$

We adapt our results on the case of the complex plane. Let $S \subset \mathbb{C}$. Denote by

$$
h_{S}: \mathbb{R} \rightarrow[-\infty,+\infty], \quad h_{S}(\theta):=\sup _{s \in S} \operatorname{Re} s e^{-i \theta}, \theta \in \mathbb{R},
$$

the support function of the set $S \subset \mathbb{C}$. The function h_{S} is 2π-periodic.

Covering Theorem for \mathbb{C}

Let C be a convex bounded set in \mathbb{C} and \mathcal{S} be a family of subsets $S \subset \mathbb{C}, \mathcal{S}=\bigcup_{S \in S} S$. Suppose that C is closed or \mathcal{S} is open. Then the folloving four statements are equivalent.
(1) A translate of C covers the set \mathcal{S}.
(2) For every $S_{1}, S_{2}, S_{3} \in S$ and for each closed triangle described around C there is a point $z \in \mathbb{C}$ such that all three translates $S_{1}+z, S_{2}+z, S_{3}+z$ contain in this triangle.
(3) for every $S_{1}, S_{2}, S_{3} \in S$ and for every $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ and
numbers $q_{1}, q_{2}, q_{3} \geqslant 0$ the condition
$q_{1} e^{i \theta_{1}}+q_{2} e^{i \theta_{2}}+q_{3} e^{i \theta_{3}}=0$ implies inequality

Covering Theorem for \mathbb{C}

Let C be a convex bounded set in \mathbb{C} and \mathcal{S} be a family of subsets $S \subset \mathbb{C}, \mathcal{S}=\bigcup_{S \in S} S$. Suppose that C is closed or \mathcal{S} is open. Then the folloving four statements are equivalent.
(1) A translate of C covers the set \mathcal{S}.

Covering Theorem for \mathbb{C}

Let C be a convex bounded set in \mathbb{C} and \mathcal{S} be a family of subsets $S \subset \mathbb{C}, \mathcal{S}=\bigcup_{S \in S} S$. Suppose that C is closed or \mathcal{S} is open. Then the folloving four statements are equivalent.
(1) A translate of C covers the set \mathcal{S}.
(2) For every $S_{1}, S_{2}, S_{3} \in \mathcal{S}$ and for each closed triangle described around C there is a point $z \in \mathbb{C}$ such that all three translates $S_{1}+z, S_{2}+z, S_{3}+z$ contain in this triangle.
(3) for every $S_{1}, S_{2}, S_{3} \in \mathcal{S}$ and for every $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ and numbers $q_{1}, q_{2}, q_{3} \geqslant 0$ the condition $q_{1} e^{i \theta_{1}}+q_{2} e^{i \theta_{2}}+q_{3} e^{i \theta_{3}}=0$ implies inequality
\square

Covering Theorem for \mathbb{C}

Let C be a convex bounded set in \mathbb{C} and S be a family of subsets $S \subset \mathbb{C}, \mathcal{S}=\cup_{S \in S} S$. Suppose that C is closed or \mathcal{S} is open. Then the folloving four statements are equivalent.
(1) A translate of C covers the set \mathcal{S}.
(2) For every $S_{1}, S_{2}, S_{3} \in \mathcal{S}$ and for each closed triangle described around C there is a point $z \in \mathbb{C}$ such that all three translates $S_{1}+z, S_{2}+z, S_{3}+z$ contain in this triangle.
(3) for every $S_{1}, S_{2}, S_{3} \in \mathcal{S}$ and for every $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ and numbers $q_{1}, q_{2}, q_{3} \geqslant 0$ the condition $q_{1} e^{i \theta_{1}}+q_{2} e^{i \theta_{2}}+q_{3} e^{i \theta_{3}}=0$ implies inequality
$q_{1} h_{S_{1}}\left(\theta_{1}\right)+q_{2} h_{S_{2}}\left(\theta_{2}\right)+q_{3} h_{S_{3}}\left(\theta_{3}\right) \leqslant q_{1} h_{C}\left(\theta_{1}\right)+q_{2} h_{C}\left(\theta_{2}\right)+q_{3} h_{C}\left(\theta_{3}\right)$.

Covering Theorem for \mathbb{C} (continuation)

4 For every $S_{1}, S_{2}, S_{3} \in \mathcal{S}$ and for every numbers $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ following conditions are fulfilled.

If each diference of numbers $\theta_{1}, \theta_{2}, \theta_{3}$ is multiple to π, then for each pair $k, j \in\{1,2,3\}$ such that the difference $\theta_{j}-\theta_{k}$ is not multiple 2π the inequality $h_{S_{1}}\left(\theta_{k}\right)+h_{S_{2}}\left(\theta_{j}\right) \leqslant h_{C}\left(\theta_{k}\right)+h_{C}\left(\theta_{j}\right)$ is fulfilled. (b) If the difference $\theta_{2}-\theta_{1}$ is not multiple π, then the inequality

is fulfilled.

Covering Theorem for \mathbb{C} (continuation)

4 For every $S_{1}, S_{2}, S_{3} \in \mathcal{S}$ and for every numbers $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ following conditions are fulfilled.
(a) If each diference of numbers $\theta_{1}, \theta_{2}, \theta_{3}$ is multiple to π, then for each pair $k, j \in\{1,2,3\}$ such that the difference $\theta_{j}-\theta_{k}$ is not multiple 2π the inequality $h_{S_{1}}\left(\theta_{k}\right)+h_{S_{2}}\left(\theta_{j}\right) \leqslant h_{C}\left(\theta_{k}\right)+h_{C}\left(\theta_{j}\right)$ is fulfilled.
(b) If the difference $\theta_{2}-\theta_{1}$ is not multiple π, then the inequality

Covering Theorem for \mathbb{C} (continuation)

4 For every $S_{1}, S_{2}, S_{3} \in \mathcal{S}$ and for every numbers $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{R}$ following conditions are fulfilled.
(a) If each diference of numbers $\theta_{1}, \theta_{2}, \theta_{3}$ is multiple to π, then for each pair $k, j \in\{1,2,3\}$ such that the difference $\theta_{j}-\theta_{k}$ is not multiple 2π the inequality

$$
h_{S_{1}}\left(\theta_{k}\right)+h_{S_{2}}\left(\theta_{j}\right) \leqslant h_{C}\left(\theta_{k}\right)+h_{C}\left(\theta_{j}\right) \text { is fulfilled. }
$$

(b) If the difference $\theta_{2}-\theta_{1}$ is not multiple π, then the inequality

$$
\begin{aligned}
& h_{S_{1}}\left(\theta_{1}\right) \frac{\sin \left(\theta_{3}-\theta_{2}\right)}{\sin \left(\theta_{2}-\theta_{1}\right)}+h_{S_{3}}\left(\theta_{3}\right)+h_{S_{2}}\left(\theta_{2}\right) \frac{\sin \left(\theta_{1}-\theta_{3}\right)}{\sin \left(\theta_{2}-\theta_{1}\right)} \\
\leqslant & h_{C}\left(\theta_{1}\right) \frac{\sin \left(\theta_{3}-\theta_{2}\right)}{\sin \left(\theta_{2}-\theta_{1}\right)}+h_{C}\left(\theta_{3}\right)+h_{C}\left(\theta_{2}\right) \frac{\sin \left(\theta_{1}-\theta_{3}\right)}{\sin \left(\theta_{2}-\theta_{1}\right)}
\end{aligned}
$$

is fulfilled.

Theorem on support functions (for unbounded convex sets)

Let $n \in \mathbb{N}$, C be a unbounded convex closed set in \mathbb{R}^{n}, and S be a family of subsets in \mathbb{R}^{n}, and \mathcal{S} be the union all members from δ. Suppose card $\delta<\infty$, and the set C is polyhedral or each direction of recession for C is direction of linearity for C. Then the statements 1-4 from Theorem on support function are equivalent.

Covering Theorem for \mathbb{C} (for unbounded convex sets)
Let C be a unbounded convex closed polygon in \mathbb{C}, and S be a family of subsets in \mathbb{C}, and \mathcal{S} be the union all members from \mathcal{S}. Suppose card $\mathcal{S}<\infty$. Then the statements 1-4 from Covering Theorem for \mathbb{C} are equivalent.

> Theorem on support functions (for unbounded convex sets)
> Let $n \in \mathbb{N}$, C be a unbounded convex closed set in \mathbb{R}^{n}, and \mathcal{S} be a family of subsets in \mathbb{R}^{n}, and \mathcal{S} be the union all members from \mathcal{S}. Suppose card $S<\infty$, and the set C is polyhedral or each direction of recession for C is direction of linearity for C. Then the statements 1-4 from Theorem on support function are equivalent.

Covering Theorem for \mathbb{C} (for unbounded convex sets)
Let C be a unbounded convex closed polygon in \mathbb{C}, and S be a family of subsets in \mathbb{C}, and \mathcal{S} be the union all members from \mathcal{S}. Suppose card $\mathcal{S}<\infty$. Then the statements 1-4 from Covering Theorem for \mathbb{C} are equivalent.

Definitions for unbounded sets

Let $C \subset \mathbb{C}$. Let's define as $B_{C}(\theta):=h_{C}(\theta)+h_{C}(\theta+\pi)$ breadth of B in direction θ, If a vector $e^{i \theta}$ is a direction of recession (resp. linearity) for C, then we name as also θ.
For convex C, we set
$0^{+} C:=\left\{e^{i \theta}: \theta\right.$ is a direction of recession $\}$. The set $0+C$ is a arc of the unit circle.

Definitions for unbounded sets

Let $C \subset \mathbb{C}$. Let's define as $B_{C}(\theta):=h_{C}(\theta)+h_{C}(\theta+\pi)$ breadth of B in direction θ, and $b_{C}:=\inf _{\theta} B_{C}(\theta)$ a thickness of C. If a vector $e^{i \theta}$ is a direction of recession (resp. linearity) for C, then we name as also θ.
For convex C, we set
$0^{+} C:=\left\{e^{i \theta}: \theta\right.$ is a direction of recession $\}$. The set $0^{+} C$ is a arc of the unit circle.

Definitions for unbounded sets

Let $C \subset \mathbb{C}$. Let's define as $B_{C}(\theta):=h_{C}(\theta)+h_{C}(\theta+\pi)$ breadth of B in direction θ, and $b_{C}:=\inf _{\theta} B_{C}(\theta)$ a thickness of C. If a vector $e^{i \theta}$ is a direction of recession (resp. linearity) for C, then we name as also θ.
For convex C, we set
$0^{+} C:=\left\{e^{i \theta}: \theta\right.$ is a direction of recession $\}$. The set $0^{+} C$ is a
arc of the unit circle.

Definitions for unbounded sets

Let $C \subset \mathbb{C}$. Let's define as $B_{C}(\theta):=h_{\mathcal{C}}(\theta)+h_{C}(\theta+\pi)$ breadth of B in direction θ, and $b_{C}:=\inf _{\theta} B_{C}(\theta)$ a thickness of C. If a vector $e^{i \theta}$ is a direction of recession (resp. linearity) for C, then we name as also θ.
For convex C, we set
$0^{+} C:=\left\{e^{i \theta}: \theta\right.$ is a direction of recession $\}$. The set $0^{+} C$ is a arc of the unit circle.

Suppose that a convex set $S \subset \mathbb{C}$ is bounded or has only one direction of recession (for determinancy of $\theta=0$) to within summand, multiple to 2π, and also contains a ray $r_{1}(s):=s+t$ from the beginning at $s \in S$. Let's define the cut-off upper and lower width of the convex set S concerning point c by the direction $\theta=0$:

$$
\begin{cases}W_{S}^{\uparrow}(x ; s):=\sup \{\operatorname{Im} z-\operatorname{Im} s: z \in S, \operatorname{Im} z \geqslant \operatorname{Im} s, \operatorname{Re} z=x\}, & x \in \mathbb{R}, \\ W_{S}^{\downarrow}(x ; s):=\sup \{\operatorname{Im} s-\operatorname{Im} z: z \in S, \operatorname{Im} z \leqslant \operatorname{Im} s, \operatorname{Re} z=x\}, & x \in \mathbb{R} .\end{cases}
$$

Unbounded convex sets

Theorem

Let $C \subset \mathbb{C}$ be a unbounded convex set, $S \subset \mathbb{C}$.

- If C has two directions of recession $\theta_{1}, \theta_{2} \in \mathbb{R}$ and $\theta_{1}-\theta_{2}$ isn't multiple π, and S is bounded, then a translate of C covers S.
- If $0<\theta_{2}-\theta_{1} \leqslant \pi$ and the arc $\smile\left(\theta_{1}, \theta_{2}\right):=\left\{e^{i \theta}: \theta_{1}<\theta<\theta_{2}\right\}$, contains in $0^{+} C$, and S is convex set such that an arc $\smile\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right) \supset 0^{+} S$, where $\theta_{1}<\theta_{1}^{\prime}<\theta_{2}^{\prime}<\theta_{2}$, then a translate of C covers S.
- If closed C has only two different directions of recession θ_{1}, θ_{2} to within summand, multiple to 2π, and difference $\theta_{2}-\theta_{1}$ is multiple π, but isn't multiple $2 \pi\left(\theta_{1}=0, \theta_{2}=\pi\right)$, then C is a horizontal strip of finite thickness $b_{C}=B_{C}(\pi / 2)$. A translate of C covers S iff $B_{S}(\pi / 2)$

Theorem

Let $C \subset \mathbb{C}$ be a unbounded convex set, $S \subset \mathbb{C}$.

- If C has two directions of recession $\theta_{1}, \theta_{2} \in \mathbb{R}$ and $\theta_{1}-\theta_{2}$ isn't multiple π, and S is bounded, then a translate of C covers S.
- If $0<\theta_{2}-\theta_{1} \leqslant \pi$ and the arc

convex set such that an arc $\smile\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right) \supset 0^{+} S$, where $\theta_{1}<\theta_{1}^{\prime}<\theta_{2}^{\prime}<\theta_{2}$, then a translate of C covers S.
- If closed C has only two different directions of recession θ_{1}, θ_{2} to within summand, multiple to 2π, and difference $\theta_{2}-\theta_{1}$ is multiple π, but isn't multiple $2 \pi\left(\theta_{1}=0, \theta_{2}=\pi\right)$, then C is a horizontal strip of finite thickness $b_{C}=B_{C}(\pi / 2)$. A translate of C covers S iff $B_{S}(\pi / 2) \leqslant b_{C}$

Theorem

Let $C \subset \mathbb{C}$ be a unbounded convex set, $S \subset \mathbb{C}$.

- If C has two directions of recession $\theta_{1}, \theta_{2} \in \mathbb{R}$ and $\theta_{1}-\theta_{2}$ isn't multiple π, and S is bounded, then a translate of C covers S.
- If $0<\theta_{2}-\theta_{1} \leqslant \pi$ and the arc $\smile\left(\theta_{1}, \theta_{2}\right):=\left\{\boldsymbol{e}^{i \theta}: \theta_{1}<\theta<\theta_{2}\right\}$, contains in $0^{+} C$, and S is convex set such that an arc $\smile\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right) \supset 0^{+} S$, where $\theta_{1}<\theta_{1}^{\prime}<\theta_{2}^{\prime}<\theta_{2}$, then a translate of C covers S.
- If closed C has only two different directions of recession θ_{1}, θ_{2} to within summand, multiple to 2π, and difference $\theta_{2}-\theta_{1}$ is multiple π, but isn't multiple $2 \pi\left(\theta_{1}=0, \theta_{2}=\pi\right)$,
then C is a horizontal strip of finite thickness
$b_{C}=B_{C}(\pi / 2)$. A translate of C covers S iff $B_{S}(\pi / 2) \leqslant b_{C}$

Theorem

Let $C \subset \mathbb{C}$ be a unbounded convex set, $S \subset \mathbb{C}$.

- If C has two directions of recession $\theta_{1}, \theta_{2} \in \mathbb{R}$ and $\theta_{1}-\theta_{2}$ isn't multiple π, and S is bounded, then a translate of C covers S.
- If $0<\theta_{2}-\theta_{1} \leqslant \pi$ and the arc $\smile\left(\theta_{1}, \theta_{2}\right):=\left\{\boldsymbol{e}^{i \theta}: \theta_{1}<\theta<\theta_{2}\right\}$, contains in $0^{+} C$, and S is convex set such that an arc $\smile\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right) \supset 0^{+} S$, where $\theta_{1}<\theta_{1}^{\prime}<\theta_{2}^{\prime}<\theta_{2}$, then a translate of C covers S.
- If closed C has only two different directions of recession θ_{1}, θ_{2} to within summand, multiple to 2π, and difference $\theta_{2}-\theta_{1}$ is multiple π, but isn't multiple $2 \pi\left(\theta_{1}=0, \theta_{2}=\pi\right)$, then C is a horizontal strip of finite thickness $b_{C}=B_{C}(\pi / 2)$. A translate of C covers S iff $B_{S}(\pi / 2) \leqslant b_{C}$.

Theorem (continuation)

- If closed set C has only one direction of recession $\theta=0$ to within summand, multiple to 2π, then a translate of C covers S iff S is bounded or has only one direction of recession $\theta=0$ to within summand, multiple to 2π, and in both cases there are $s \in S, x_{S} \in \mathbb{R}$ such that inequalities

$$
\begin{cases}W_{S}^{\uparrow}(x ; s) \leqslant W_{C}^{\uparrow}\left(x+x_{S} ; c\right), & x \in \mathbb{R} \\ W_{S}^{\downarrow}(x ; s) \leqslant W_{C}^{\downarrow}\left(x+x_{S} ; c\right) & x \in \mathbb{R}\end{cases}
$$

is fulfilled.

Remark 4

The case of arbitrary unbounded convex set $C \subset \mathbb{R}^{n}, n \geqslant 3$, is much more complicated. For this case it is necessary to use new geometrical characteristics. Here these questions aren't discussed as they require the considerable additional preparation.

Thank you for your attention!

