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Definitions

Denote by N, R, and C the sets of natural, real and
complex numbers respectively.
Let S1,S2 ⊂ Rn, n ∈ N. Denote by
S1 + S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2} the Minkowski sum
of S1 and S2.
For S ⊂ Rn and x ∈ Rn, the set S + x := S + {x} is a
parallel translation, i. e. translate, of set S on the vector x .
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Vincensini–Klee–Edelstein Theorem
respectively, 1939, 1953, 1958

Theorem VKE.
Suppose S is a family of at least n + 1 convex sets in Rn,
C is a convex set in Rn, and S is finite or C and all
members of S are compact. Then the existence of some
translate of C which intersects [is contained in; contains]
all members of S is guaranteed by the existence of such a
translate for each n + 1 members of S.

This result is a corollary of Helly’s Theorem on intersection of
convex sets. Conversely, classical Helly’s Theorem follows from
Theorem VKE in the part “intersects”, if C := {0}.
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Again definitions

A vector y ∈ Rn is a direction of recession of the set
C ⊂ Rn iff for ∀c ∈ C , ∀λ > 0 we have c + λy ∈ C.
A vector y ∈ Rn is a direction of linearity of the set C ⊂ Rn

iff both y and −y are direction of recession.
A set C ⊂ Rn is polyhedral iff C is a intersection of a finite
number of the closed half-spaces.
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Helly’s Theorem
E. Helly, 1930, R. Rockafellar, 1965

Theorem HR
Let C := {Cα ⊂ Rn : α ∈ A} be a family of convex sets, where A
is an index set. If A is finite set or
(d) all set Cα, α ∈ A, are closed, there exists a finite subset

A0 ⊂ A such that all Cα are polyhedral for α ∈ A0, and
each common direction of recession for all Cα, α ∈ A, is
direction of linearity for Cα,∀α ∈ A \ A0,

and for every α0, α1, . . . , αn ∈ A the intersection
⋂n

k=0 Cαk

non-empty (6= ∅), then
⋂
α∈A Cα 6= ∅.
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Remark 1
If all set Cα, α ∈ A, are closed, and there exists A′ ⊂ A
such that the intresection

⋂
α∈A′ Cα is bounded, then the

condition (d) is fulfilled automatically because the
common directions of recession simply do not exist.
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Set-theoretic, vector, geometric differences.
And again definitions

For C,S ⊂ Rn,
the set-theoretic difference C \ S := {c ∈ C : c /∈ S};
the vector, or algebraic, difference
C − S := {c − s : c ∈ C, s ∈ S};
the geometrical difference, or Minkowski difference,
C −∗ S := {x ∈ Rn : S + x ⊂ C}.
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Problems

Let A and B are index sets. Let C := {Cα}α∈A, and
S := {Sβ}β∈B, are families of subsets in Rn. Let

C :=
⋂
α∈A

Cα, S :=
⋃
β∈B

Sβ.

We investigate the following problems. What relations will be
between C and S, if for every sets of indexes {α0, . . . , αn} ⊂ A,
{β0, . . . , βn} ⊂ B the intersection⋂n

k=0
(
Cαk −∗ Sβk

)
is non-empty set?⋂n

k=0
(
Cαk − Sβk

)
is non-empty set?⋂n

k=0 Cαk \ Sβk is non-empty set?
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Covering Theorem

Let all Cα are convex sets.
Suppose card A <∞ and card{β ∈ B : Sβ 6= ∅} <∞
or C = {Cα}α∈A the condition (d) from Helly’s Theorem is
fulfilled, but with additional restrictions A0 = ∅ or card B <∞.
Then following four statements are equivalent:
(T) a translate of C covers S;
(C) for every n + 1 members from C a translate of S contains

in the intersection of these n + 1 sets;
(S) for every n + 1 members from S a translate of C covers all

these n + 1 sets;
(CS) for every n + 1 indexes α0, . . . , αn ∈ A and β0, . . . , βn ∈ B

the intersection
⋂n

k=0
(
Cαk −∗ Sβk

)
6= ∅.
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Remarks

1 For S = {0}, S = {S}, the implication (C)⇒(T) of this
Theorem gives exactly Helly’s Theorem, i. e. Theorem HR.

2 Even if C consists exactly of one element, then implication
(S)⇒(T) of this Theorem generalizes Theorem VKE in the
part “contains”, where all Sβ are convex and closed (in our
version the sets Sβ are arbitrary).

3 If the family S consists exactly of one convex set S, then
implication (C)⇒(T) of this Theorem is Theorem VKE in
the part “is contained in”.
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Intersection Theorem
Let all vector differences Cα − Sβ are convex for all
α ∈ A, β ∈ B. Suppose card A + card B <∞ or
(id) each algebraic difference Cα − Sβ is closed, for a finite

subsets A0 ⊂ A, B0 ⊂ B differences Cα−Sβ are polyhedral
for all (α, β) ∈ A0 × B0, and each common direction of
recession for all Cα − Sβ, when (α, β) ∈ A× B, is direction
of linearity for Cα − Sβ ∀(α, β) ∈ (A× B) \ (A0 × B0)

Then the following statements equivalent:
(I) there is a uniform vector x ∈ Rn such that for each index

β ∈ B every translate Sβ + x meets all Cα from C;
(CSI) for every n + 1 indexes α0, . . . , αn ∈ A and β0, . . . , βn ∈ B

the intersection
⋂n

k=0
(
Cαk − Sβk

)
6= ∅.
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for all (α, β) ∈ A0 × B0, and each common direction of
recession for all Cα − Sβ, when (α, β) ∈ A× B, is direction
of linearity for Cα − Sβ ∀(α, β) ∈ (A× B) \ (A0 × B0)

Then the following statements equivalent:
(I) there is a uniform vector x ∈ Rn such that for each index

β ∈ B every translate Sβ + x meets all Cα from C;
(CSI) for every n + 1 indexes α0, . . . , αn ∈ A and β0, . . . , βn ∈ B

the intersection
⋂n

k=0
(
Cαk − Sβk

)
6= ∅.
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Remark 2
If card B = 1 and Sβ = {0}, then Intersection Theorem gives
exactly Helly’s Theorem, i. e. Theorem HR.

Corollary (intersection)

Let C ⊂ Rn be a non-empty and C − Sβ are convex for all
β ∈ B, where card B <∞ or all vector differences C − Sβ
closed and at least one of them is bounded.
If for every n + 1 indexes β0, . . . βn a translate of C intersects
simultaneously all sets Sβ0 , . . .Sβn , then a translate of C
intersets all members of family S.

Remark 3
This Corollary generalizes and involves the Theorem VKE in
the part “intersects”.
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Difference Theorem
Let all differences Cα \ Sβ are convex. Suppose
card A + card B <∞ or
(dd) each difference Cα \ Sβ is closed, for finite A0 ⊂ A, B0 ⊂ B

the differences Cα \ Sβ are polyhedral ∀(α, β) ∈ A0 × B0,
and each common direction of recession for all Cα \ Sβ
∀(α, β) ∈ A× B is direction of linearity for differences
Cα \ Sβ for all (α, β) ∈ (A× B) \ (A0 × B0).

The following statement are equivalent:
(D) the difference C \ S is non-empty;

(CSD) for every n + 1 indexes α0, . . . , αn ∈ A, β1, . . . , βn ∈ B the
intersection

⋂n
k=0
(
Cαk \ Sβk

)
6= ∅.

If card B = 1 and all Sβ = ∅, then this Theorem gives Helly’s
Theorem, i. e. Theorem HR.
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Covering by a translate and the support function

Support function

Let a = (a1, . . . ,an), s = (s1, . . . , sn) ∈ Rn and
< a, s >:=

∑n
k=1 aksk be the scalar product. Let S ⊂ Rn.

Denote by

HS : Rn → [−∞,+∞], HS(a) := sup
s∈S

< a, s >, a ∈ Rn,

the support function of the set S.
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Theorem on support functions

Let C ⊂ Rn be a convex bounded set, S be a family of sets from
Rn, and S :=

⋃
S∈S S. Suppose that C is closed or S is open.

Then the following four statements are equivalent.

1 A translate of C covers the set S.
2 For every S1, . . . ,Sn+1 ∈ S and for every closed

semispaces C1, . . .Cn+1 ⊃ C there is a vector x ∈ Rn such
that every translate Sk + x contains in Ck for all
k = 1, . . . ,n + 1.

3 For every S1, . . . ,Sn+1 ∈ S and for every vectors
a1, . . . ,an+1 ∈ Rn and numbers p1, . . . ,pn+1 > 0 the
condition

∑n+1
k=1 pkak = 0 implies inequality

n+1∑
k=1

pkHSk (ak ) 6
n+1∑
k=1

pkHC(ak ).
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Theorem on support functions (continuation)

4 For every S1, . . . ,Sn+1 ∈ S and for every system of vectors
a1 = (a11, . . . ,a1n) ∈ Rn,

. . . . . . . . . . . . . . . . . . . . ,

an+1 = (an+1,1, . . . ,an+1,n) ∈ Rn

of a rank r > 0 there exists a nonzero minor

∆ =

∣∣∣∣∣∣
ak1j1 · · · ak1jr
. . . . . . . . . . .
akr j1 · · · akr jr

∣∣∣∣∣∣
of r-th order such that
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for k = 1, . . . ,n + 1 the inequality

1
∆

∣∣∣∣∣∣∣∣
ak1j1 · · · ak1jr HSk1

(ak1)

. . . . . . . . . . . . . . . . . . .
akr j1 · · · akr jr HSkr

(akr )

akj1 · · · akjr HSk (ak )

∣∣∣∣∣∣∣∣ 6
1
∆

∣∣∣∣∣∣∣∣
ak1j1 · · · ak1jr HC(ak1)
. . . . . . . . . . . . . . . . . .
akr j1 · · · akr jr HC(akr )
akj1 · · · akjr HC(ak )

∣∣∣∣∣∣∣∣ .
is fulfilled.
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Case n = 2, i. e. R2 ↔ C

We adapt our results on the case of the complex plane. Let
S ⊂ C. Denote by

hS : R→ [−∞,+∞], hS(θ) := sup
s∈S

Re se−iθ, θ ∈ R,

the support function of the set S ⊂ C. The function hS is
2π-periodic.
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Covering Theorem for C
Let C be a convex bounded set in C and S be a family of
subsets S ⊂ C, S =

⋃
S∈S S. Suppose that C is closed or S is

open. Then the folloving four statements are equivalent.
1 A translate of C covers the set S.
2 For every S1,S2,S3 ∈ S and for each closed triangle

described around C there is a point z ∈ C such that all
three translates S1 + z,S2 + z,S3 + z contain in this
triangle.

3 for every S1,S2,S3 ∈ S and for every θ1, θ2, θ3 ∈ R and
numbers q1,q2,q3 > 0 the condition
q1eiθ1 + q2eiθ2 + q3eiθ3 = 0 implies inequality

q1hS1(θ1)+q2hS2(θ2)+q3hS3(θ3) 6 q1hC(θ1)+q2hC(θ2)+q3hC(θ3).
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Covering Theorem for C (continuation)

4 For every S1,S2,S3 ∈ S and for every numbers
θ1, θ2, θ3 ∈ R following conditions are fulfilled.

(a) If each diference of numbers θ1, θ2, θ3 is multiple to π, then
for each pair k , j ∈ {1,2,3} such that the difference θj − θk
is not multiple 2π the inequality
hS1 (θk ) + hS2 (θj ) 6 hC(θk ) + hC(θj ) is fulfilled.

(b) If the difference θ2 − θ1 is not multiple π, then the inequality

hS1 (θ1)
sin(θ3 − θ2)

sin(θ2 − θ1)
+ hS3 (θ3) + hS2 (θ2)

sin(θ1 − θ3)

sin(θ2 − θ1)

6hC(θ1)
sin(θ3 − θ2)

sin(θ2 − θ1)
+ hC(θ3) + hC(θ2)

sin(θ1 − θ3)

sin(θ2 − θ1)

is fulfilled.
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Theorem on support functions (for unbounded convex sets)

Let n ∈ N, C be a unbounded convex closed set in Rn, and S be
a family of subsets in Rn, and S be the union all members from
S. Suppose card S <∞, and the set C is polyhedral or each
direction of recession for C is direction of linearity for C.
Then the statements 1–4 from Theorem on support function are
equivalent.

Covering Theorem for C (for unbounded convex sets)

Let C be a unbounded convex closed polygon in C, and S be a
family of subsets in C, and S be the union all members from S.
Suppose card S <∞. Then the statements 1–4 from Covering
Theorem for C are equivalent.
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family of subsets in C, and S be the union all members from S.
Suppose card S <∞. Then the statements 1–4 from Covering
Theorem for C are equivalent.
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Definitions for unbounded sets

Let C ⊂ C. Let’s define as BC(θ) := hC(θ) + hC(θ + π) breadth
of B in direction θ, and bC := infθ BC(θ) a thickness of C.
If a vector eiθ is a direction of recession (resp. linearity) for C,
then we name as also θ.
For convex C, we set
0+C := {eiθ : θ is a direction of recession}. The set 0+C is a
arc of the unit circle.
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Suppose that a convex set S ⊂ C is bounded or has only one
direction of recession (for determinancy of θ = 0) to within
summand, multiple to 2π, and also contains a ray r1(s) := s + t
from the beginning at s ∈ S. Let’s define the cut-off upper and
lower width of the convex set S concerning point c by the
direction θ = 0:{

W ↑
S(x ; s) := sup{Im z − Im s : z ∈ S, Im z > Im s,Re z = x}, x ∈ R,

W ↓
S(x ; s) := sup{Im s − Im z : z ∈ S, Im z 6 Im s,Re z = x}, x ∈ R.
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Figure: To cut-off upper and lower width definitions.
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Theorem

Let C ⊂ C be a unbounded convex set, S ⊂ C.

If C has two directions of recession θ1, θ2 ∈ R and θ1 − θ2
isn’t multiple π, and S is bounded, then a translate of C
covers S.
If 0 < θ2 − θ1 6 π and the arc
^ (θ1, θ2) := {eiθ : θ1 < θ < θ2}, contains in 0+C, and S is
convex set such that an arc ^ (θ′1, θ

′
2) ⊃ 0+S, where

θ1 < θ′1 < θ′2 < θ2, then a translate of C covers S.

If closed C has only two different directions of recession
θ1, θ2 to within summand, multiple to 2π, and difference
θ2 − θ1 is multiple π, but isn’t multiple 2π (θ1 = 0, θ2 = π),
then C is a horizontal strip of finite thickness
bC = BC(π/2). A translate of C covers S iff BS(π/2) 6 bC .
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Theorem (continuation)

If closed set C has only one direction of recession θ = 0 to
within summand, multiple to 2π, then a translate of C
covers S iff S is bounded or has only one direction of
recession θ = 0 to within summand, multiple to 2π, and in
both cases there are s ∈ S, xS ∈ R such that inequalities{

W ↑
S(x ; s) 6 W ↑

C(x + xS; c), x ∈ R,
W ↓

S(x ; s) 6 W ↓
C(x + xS; c) x ∈ R.

is fulfilled.
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Remark 4
The case of arbitrary unbounded convex set C ⊂ Rn, n > 3, is
much more complicated. For this case it is necessary to use
new geometrical characteristics. Here these questions aren’t
discussed as they require the considerable additional
preparation.

Bulat N. Khabibullin Helly’s Theorem and translations of convex sets



Definitions, and known results
New results

Support function
Unbounded convex sets

Thank you
for your attention!
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