Random Unitary Matrices with Structure

Brendan Farrell

California Institute of Technology

June 2013

• We will consider several properties of a random unitary matrix \mathcal{U} .

 \bullet When ${\cal U}$ has uniform or Haar distribution, then these properties are very well understood.

• More general distributions yield very similar behavior, yet here there are few results.

• View generalizing as a form of universality.

• Many open questions.

Relationship to uncertainty principles

U - unitary matrix

 P_1 and P_2 - coordinate projections with support sets S_1 and S_2 .

Suppose there exists x such that support(x) $\subset S_1$ and support(Ux) $\subset S_2$. Then

$$||P_2UP_1x||_2 = ||P_2Ux||_2 = ||Ux||_2 = ||x||_2,$$

so that $||P_2UP_1|| = 1$.

If no such x exists, then $||P_2UP_1|| < 1$.

Thus, coordinate projections (very simple matrices) allow us to address an uncertainty principle.

Free Probability

• Area of operator algebras initiated by Dan-Virgil Voiculescu and very influential in random matrix theory.

• Studies noncommutative random variables.

• *Freeness* plays the role for noncommutative random variables that independence plays for commutative random variables.

• If X and Y are free, then there is a straightforward way to determine the laws of X + Y and XY from the individual laws of X and Y.

Definition

A noncommutative probability space is a pair (\mathcal{A}, ϕ) where \mathcal{A} is a unital algebra (over \mathbb{C}) and ϕ is a linear functional $\phi : \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$.

Definition

Subalgebras $\{A_i\}_{i \in \mathcal{I}}$ of (\mathcal{A}, ϕ) are *free* if for all $i_1, \ldots, i_n \in \mathcal{I}$, $a_{i_1} \in \mathcal{A}_{i_1}, \ldots, a_{i_n} \in \mathcal{A}_{i_n}$,

$$\phi(a_{i_1}\cdots a_{i_n})=0$$

whenever $i_j \neq i_{j+1}$, $i_1 \neq i_n$, $n \ge 2$ and $\phi(a_{i_j}) = 0$ for all $1 \le j \le n$.

Main (simplified) consequence: if a and b are elements of two *free* subalgebras, then the law of polynomials in a and b is determined soley by the individual laws of a and b.

Theorem (D.-V. Voiculescu, 1991)

Let $\mathcal{U}_{N}^{(1)}$ and $\mathcal{U}_{N}^{(2)}$ be independent, uniformly (Haar) distributed unitary matrices of size $N \times N$ and $\{A_N\}_{N=1}^{\infty}$ and $\{B_N\}_{N=1}^{\infty}$ sequences of (nonrandom) uniformly bounded self-adjoint matrices of size $N \times N$ with spectral measures converging to μ_A and μ_B . Then, as $N \to \infty$,

$$\mathcal{U}_N^{(1)} A_N \mathcal{U}_N^{(1)*}$$
 and $\mathcal{U}_N^{(2)} B_N \mathcal{U}_N^{(2)*}$

are asymptotically free.

Gives a limit law for
$$\mathcal{U}_N^{(1)} A_N \mathcal{U}_N^{(1)*} + \mathcal{U}_N^{(2)} B_N \mathcal{U}_N^{(2)*}$$

and

$$A_N \mathcal{U}_N^{(1)} B_N \mathcal{U}_N^{(1)*} A_N$$

in terms of μ_A and μ_B .

Note: theorem only stated for Haar distributed unitaries.

Voiculescu's theorem addresses $A_N U_N B_N U_N^* A_N$.

Simplest case:

$P_2\mathcal{U}_NP_1\mathcal{U}_N^*P_2,$

where P_1 and P_2 are orthogonal projections with ranks proportional to N.

This is the most common example for free multiplicative convolution.

Uncertainty principle formulation is *simplest* instance of a fact of free probability

Theorem (G. Anderson and B.F., 2013)

Let $W_N^{(1)}$ and $W_N^{(2)}$ be independent and uniformly distributed on the set of signed permutation matrices, and let H_N be a general Hadamard matrix, i.e. unitary with $|H_N(j,k)| = 1/\sqrt{N}$ for all j, kand N.

Let $\{A_N\}_{N=1}^\infty$ and $\{B_N\}_{N=1}^\infty$ be as in the previous theorem

$$\left(\sigma(A_N)
ightarrow \mu_A \text{ and } \sigma(B_N)
ightarrow \mu_B
ight)$$

and set

$$\mathcal{U}_N^{(j)} = W_N^{(j)} H_N W_N^{(j)*}, \ j = 1, 2.$$

Then as $N \to \infty$,

$$\mathcal{U}_N^{(1)} A_N \mathcal{U}_N^{(1)*}$$
 and $\mathcal{U}_N^{(2)} B_N \mathcal{U}_N^{(2)*}$

are asymptotically free.

Thus, in this setting,

 ${\mathcal U}$ and ${\it WHW}^*$

behave the same, where

W is a random signed permutation

H is a Hadamard matrix.

Technical approach For all N let $\left\{ U_N^{(i)} \right\}_{i \in I}$ be a set of independent copies of the random unitary constructed on the previous page.

We show that this sequence if *asymptotically liberating*:

for $i_1,\ldots,i_\ell\in I$ satisfying

$$\ell \ge 2, \ i_1 \ne i_2, \ \dots, \ i_{\ell-1} \ne i_\ell, \ i_\ell \ne i_1,$$
 (1)

there exists $c(i_1, \ldots, i_\ell)$ such that

 $\left| \mathbb{E} tr\left(U_{i_1}^{(N)} A_1 U_{i_1}^{(N)*} \cdots U_{i_{\ell}}^{(N)} A_{\ell} U_{i_{\ell}}^{(N)*} \right) \right| \le c(i_1, \ldots, i_{\ell}) \|A_1\| \cdots \|A_{\ell}\|$

for all constant matrices $A_1, \ldots, A_\ell \in \mathbb{C}^{N \times N}$ with trace zero.

Let's return to

$$A:=P_2\mathcal{U}_NP_1\mathcal{U}_N^*P_2,$$

where P_1 and P_2 are orthogonal projections with ranks pN and qN. Let

$$F(x) = \frac{1}{N} \sharp \{\lambda_i(A) \leq x\}.$$

Wachter showed in 1981 that when F(x) converges almost surely to the distribution function with density

$$egin{aligned} f_{\mathcal{M}}(x) &:= & rac{\sqrt{(\lambda_+ - x)(x - \lambda_-)}}{2\pi x(1 - x)} I_{[\lambda_-, \lambda_+]}(x) \ &+ (1 - \min(p, q)) \delta_0(x) + (\max(p + q - 1, 0)) \delta_1(x), \end{aligned}$$

where

$$\lambda_{\pm} := p + q - 2pq \pm \sqrt{4pq(1-p)(1-q)}.$$

See B. Collins (2005) for extensive results.

Ensemble	Matrix Form	Matrix Name	Law
Gaussian	$X = X^*$	Wigner	Semicircle law
Laguerre	XX*	Sample covariance	Marchenko-Pastur Law
Jacobi	$P_2 \mathcal{U} P_1 \mathcal{U}^* P_2$	MANOVA	(Kesten law)

Figure: Plots for f_M for parameter pairs p, q

<ロ> <同> < 同> < 目> < 目> < 目> < 目 > のへの

Toward Discrete Uncertainty Principles:

Let

 $\{\mathbf{e}_j\}_{j=1}^n$ denote the standard Euclidean basis vectors in \mathbb{C}^n $\{\mathbf{f}_j\}_{j=1}^n$ denote the Fourier basis vectors $(\mathbf{f}_j(k) = \frac{1}{\sqrt{n}}e^{-2\pi i j k/n})$

and for $T, \Omega \subset \{1 \dots n\}$, set

$$T = \{t_1, \ldots, t_k\}$$
 and $\Omega = \{\omega_1, \ldots, \omega_l\},\$

where

-
$$i \in T$$
 with probability $(1 - p)$

- $i \in \Omega$ with probability (1-q).

By the previous discussion, we want to study the eigenvalues of

$$U^* V V^* U = \underbrace{[\mathbf{e}_{t_1}, \dots, \mathbf{e}_{t_j}]^* [\mathbf{f}_{\omega_1}, \dots, \mathbf{f}_{\omega_k}]}_{F_{\Omega T}} \underbrace{[\mathbf{f}_{\omega_1}, \dots, \mathbf{f}_{\omega_k}]^* [\mathbf{e}_{t_1}, \dots, \mathbf{e}_{t_j}]}_{F_{\Omega T}^*}.$$

19

Key observation:

 $||F_{\Omega T}|| = 1$ if and only if there exists x with support

contained in T such that \hat{x} has support contained in Ω .

Using the previous theorem, we recover an earlier result.

Theorem (B.F., 2011)

The empirical eigenvalue distribution of $F_{\Omega_n T_n} F^*_{\Omega_n T_n}$ converges almost surely to f_M , reparametrized in terms of p and q:

$$f_{p,q}(x) = \frac{\sqrt{(x-r_-)(r_+-x)}}{2\pi x(1-x)(1-\max(p,q))} \cdot I_{(r_-,r_+)}(x) + \frac{\max(0,1-(p+q))}{1-\max(p,q)} \cdot \delta(x-1)$$

where

$$r_{\pm}=(\sqrt{p(1-q)}\pm\sqrt{q(1-p)})^2.$$

There is no support at 1 when p + q < 1.

Related work by: Tao, Meshulam, Donoho-Stark, Candès-Tao, Rudelson-Vershynin, Tropp.

Unanticipated instance of universality.

Let's return again to Voiculescu's theorem:

 $\mathcal{U}_{N}^{(1)}$ and $\mathcal{U}_{N}^{(2)}$ are independent, uniformly (Haar) distributed unitary matrices of size $N \times N$.

 $\{A_N\}_{N=1}^{\infty}$ and $\{B_N\}_{N=1}^{\infty}$ sequences of (nonrandom) uniformly bounded self-adjoint matrices of size $N \times N$ with spectral measures converging to μ_A and μ_B .

Then we can determine the law of

$$A_N \mathcal{U}_N^{(1)} B_N \mathcal{U}_N^{(1)*_N} A_N$$

in terms of μ_A and μ_B .

Other possibilities for \mathcal{U} ?

Further possibility:

$$U\otimes U$$
 or $U^{\otimes k}$.

If $U^{\otimes k}$ behaves in $\mathbb{C}^{n^k \times n^k}$ like $U \in \mathbb{C}^{n \times n}$, then the eigenvalue distributions of

 $P_2'U^{\otimes k}P_1'(U^{\otimes k})^*P_2'$ and $P_2UP_1U^*P_2$

should be close when P'_i and P_i have normalized ranks p and q.

Consider

$$P_2 U^{\otimes k} P_1 (U^{\otimes k})^* P_2, \qquad (2)$$

where U is uniformly distrubuted on $n \times n$ unitary matrices, rank $P_1 = pn^k$ and rank $P_2 = qn^k$.

Theorem (B.F. and R.R. Nadakuditi, 2013) For $E \in [\lambda_-, \lambda_+]$, let $\mathcal{N}(E, \eta)$ denote the number of eigenvalues of (2) in $[E - \frac{\eta}{2}, E + \frac{\eta}{2}]$. Assume that $0 < c_0 < \frac{1}{16}$ and $k \leq c_0 \log n$. There exist absolute constants $C, \rho > 0$ such that for all s > 0 and $\alpha, \beta > 0$ satisfying $\alpha + \beta = \frac{1}{2} - c_0$, if

$$\eta := \frac{\sqrt{\rho} \log^{\frac{s}{2}+4} n}{n^{\beta}},\tag{3}$$

then for all $\kappa > 0$

$$\mathbb{P}\left(\sup_{E\in[\lambda_{-}+\kappa,\lambda_{+}-\kappa]}\left|\frac{\mathcal{N}(E,\eta)}{\eta n^{k}}-f_{M}(E)\right|>\frac{C}{n^{\alpha}\kappa^{2}}\right)\leq 2n^{k+2}e^{-\log^{s}n}.$$
 (4)

Area	Results, Further Work	
Classical random matrix theory	Universality for the Jacobi ensemble	
Probability in high dimensions	Angles between subspaces	
	Extend beyond Haar distributed	
Free probability	unitaries	
Combinatorics/discrete harmonic	Uncertainty principles for finite	
analysis	Abelian groups	

$\mathsf{Universality}\longleftrightarrow\mathsf{Open}\ \mathsf{Territory}$