Random Unitary Matrices with Structure

Brendan Farrell

California Institute of Technology
June 2013

- We will consider several properties of a random unitary matrix \mathcal{U}.
- When \mathcal{U} has uniform or Haar distribution, then these properties are very well understood.
- More general distributions yield very similar behavior, yet here there are few results.
- View generalizing as a form of universality.
- Many open questions.

Relationship to uncertainty principles
U - unitary matrix
P_{1} and P_{2} - coordinate projections with support sets S_{1} and S_{2}.
Suppose there exists x such that support $(x) \subset S_{1}$ and support $(U x) \subset S_{2}$. Then

$$
\left\|P_{2} U P_{1} x\right\|_{2}=\left\|P_{2} U x\right\|_{2}=\|U x\|_{2}=\|x\|_{2}
$$

so that $\left\|P_{2} U P_{1}\right\|=1$.
If no such x exists, then $\left\|P_{2} \cup P_{1}\right\|<1$.
Thus, coordinate projections (very simple matrices) allow us to address an uncertainty principle.

Free Probability

- Area of operator algebras initiated by Dan-Virgil Voiculescu and very influential in random matrix theory.
- Studies noncommutative random variables.
- Freeness plays the role for noncommutative random variables that independence plays for commutative random variables.
- If X and Y are free, then there is a straightforward way to determine the laws of $X+Y$ and $X Y$ from the individual laws of X and Y.

Definition

A noncommutative probability space is a pair (\mathcal{A}, ϕ) where \mathcal{A} is a unital algebra (over \mathbb{C}) and ϕ is a linear functional $\phi: \mathcal{A} \rightarrow \mathbb{C}$ satisfying $\phi\left(1_{\mathcal{A}}\right)=1$.

Definition

Subalgebras $\left\{\mathcal{A}_{i}\right\}_{i \in \mathcal{I}}$ of (\mathcal{A}, ϕ) are free if for all $i_{1}, \ldots, i_{n} \in \mathcal{I}$, $a_{i_{1}} \in \mathcal{A}_{i_{1}}, \ldots, a_{i_{n}} \in \mathcal{A}_{i_{n}}$,

$$
\phi\left(a_{i_{1}} \cdots a_{i_{n}}\right)=0
$$

whenever $i_{j} \neq i_{j+1}, i_{1} \neq i_{n}, n \geq 2$ and $\phi\left(a_{i_{j}}\right)=0$ for all $1 \leq j \leq n$.

Main (simplified) consequence: if a and b are elements of two free subalgebras, then the law of polynomials in a and b is determined soley by the individual laws of a and b.

Theorem (D.-V. Voiculescu, 1991)
Let $\mathcal{U}_{N}^{(1)}$ and $\mathcal{U}_{N}^{(2)}$ be independent, uniformly (Haar) distributed unitary matrices of size $N \times N$ and $\left\{A_{N}\right\}_{N=1}^{\infty}$ and $\left\{B_{N}\right\}_{N=1}^{\infty}$ sequences of (nonrandom) uniformly bounded self-adjoint matrices of size $N \times N$ with spectral measures converging to μ_{A} and μ_{B}. Then, as $N \rightarrow \infty$,

$$
\mathcal{U}_{N}^{(1)} A_{N} \mathcal{U}_{N}^{(1) *} \quad \text { and } \quad \mathcal{U}_{N}^{(2)} B_{N} \mathcal{U}_{N}^{(2) *}
$$

are asymptotically free.

Gives a limit law for $\quad \mathcal{U}_{N}^{(1)} A_{N} \mathcal{U}_{N}^{(1) *}+\mathcal{U}_{N}^{(2)} B_{N} \mathcal{U}_{N}^{(2) *}$
and

$$
A_{N} \mathcal{U}_{N}^{(1)} B_{N} \mathcal{U}_{N}^{(1) *} A_{N}
$$

in terms of μ_{A} and μ_{B}.
Note: theorem only stated for Haar distributed unitaries.

Voiculescu's theorem addresses $A_{N} \mathcal{U}_{N} B_{N} \mathcal{U}_{N}^{*} A_{N}$.
Simplest case:

$$
P_{2} \mathcal{U}_{N} P_{1} \mathcal{U}_{N}^{*} P_{2},
$$

where P_{1} and P_{2} are orthogonal projections with ranks proportional to N.

This is the most common example for free multiplicative convolution.

Uncertainty principle formulation is simplest instance of a fact of free probability

Theorem (G. Anderson and B.F., 2013)
Let $W_{N}^{(1)}$ and $W_{N}^{(2)}$ be independent and uniformly distributed on the set of signed permutation matrices, and let H_{N} be a general Hadamard matrix, i.e. unitary with $\left|H_{N}(j, k)\right|=1 / \sqrt{N}$ for all j, k and N.

Let $\left\{A_{N}\right\}_{N=1}^{\infty}$ and $\left\{B_{N}\right\}_{N=1}^{\infty}$ be as in the previous theorem

$$
\left(\sigma\left(A_{N}\right) \rightarrow \mu_{A} \text { and } \sigma\left(B_{N}\right) \rightarrow \mu_{B}\right)
$$

and set

$$
\mathcal{U}_{N}^{(j)}=W_{N}^{(j)} H_{N} W_{N}^{(j) *}, j=1,2
$$

Then as $N \rightarrow \infty$,

$$
\mathcal{U}_{N}^{(1)} A_{N} \mathcal{U}_{N}^{(1) *} \quad \text { and } \quad \mathcal{U}_{N}^{(2)} B_{N} \mathcal{U}_{N}^{(2) *}
$$

are asymptotically free.

Thus, in this setting,

\mathcal{U} and $W H W^{*}$

behave the same, where
W is a random signed permutation
H is a Hadamard matrix.

Technical approach
For all N let $\left\{U_{N}^{(i)}\right\}_{i \in I}$ be a set of independent copies of the random unitary constructed on the previous page.

We show that this sequence if asymptotically liberating:
for $i_{1}, \ldots, i_{\ell} \in I$ satisfying

$$
\begin{equation*}
\ell \geq 2, \quad i_{1} \neq i_{2}, \quad \ldots, \quad i_{\ell-1} \neq i_{\ell}, \quad i_{\ell} \neq i_{1} \tag{1}
\end{equation*}
$$

there exists $c\left(i_{1}, \ldots, i_{\ell}\right)$ such that
$\left|\mathbb{E} \operatorname{tr}\left(U_{i_{1}}^{(N)} A_{1} U_{i_{1}}^{(N) *} \cdots U_{i_{\ell}}^{(N)} A_{\ell} U_{i_{\ell}}^{(N) *}\right)\right| \leq c\left(i_{1}, \ldots, i_{\ell}\right)\left\|A_{1}\right\| \cdots\left\|A_{\ell}\right\|$
for all constant matrices $A_{1}, \ldots, A_{\ell} \in \mathbb{C}^{N \times N}$ with trace zero.

Let's return to

$$
A:=P_{2} \mathcal{U}_{N} P_{1} \mathcal{U}_{N}^{*} P_{2}
$$

where P_{1} and P_{2} are orthogonal projections with ranks $p N$ and $q N$. Let

$$
F(x)=\frac{1}{N} \sharp\left\{\lambda_{i}(A) \leq x\right\} .
$$

Wachter showed in 1981 that when $F(x)$ converges almost surely to the distribution function with density

$$
\begin{aligned}
f_{M}(x):= & \frac{\sqrt{\left(\lambda_{+}-x\right)\left(x-\lambda_{-}\right)}}{2 \pi x(1-x)} I_{\left[\lambda_{-}, \lambda_{+}\right]}(x) \\
& +(1-\min (p, q)) \delta_{0}(x)+(\max (p+q-1,0)) \delta_{1}(x)
\end{aligned}
$$

where

$$
\lambda_{ \pm}:=p+q-2 p q \pm \sqrt{4 p q(1-p)(1-q)}
$$

See B. Collins (2005) for extensive results.

Ensemble	Matrix Form	Matrix Name	Law
Gaussian	$X=X^{*}$	Wigner	Semicircle law
Laguerre	$X X^{*}$	Sample covariance	Marchenko-Pastur Law
Jacobi	$P_{2} \mathcal{U} P_{1} \mathcal{U}^{*} P_{2}$	MANOVA	(Kesten law)

Figure: Plots for f_{M} for parameter pairs p, q

Toward Discrete Uncertainty Principles:

Let
$\left\{\mathbf{e}_{j}\right\}_{j=1}^{n}$ denote the standard Euclidean basis vectors in \mathbb{C}^{n} $\left\{\mathbf{f}_{j}\right\}_{j=1}^{n}$ denote the Fourier basis vectors $\left(\mathbf{f}_{j}(k)=\frac{1}{\sqrt{n}} e^{-2 \pi i j k / n}\right)$
and for $T, \Omega \subset\{1 \ldots n\}$, set

$$
T=\left\{t_{1}, \ldots, t_{k}\right\} \text { and } \Omega=\left\{\omega_{1}, \ldots, \omega_{l}\right\},
$$

where

- $i \in T$ with probability $(1-p)$
- $i \in \Omega$ with probability $(1-q)$.

By the previous discussion, we want to study the eigenvalues of

$$
U^{*} V V^{*} U=\underbrace{\left[\mathbf{e}_{t_{1}}, \ldots \mathbf{e}_{t_{j}}\right]^{*}\left[\mathbf{f}_{\omega_{1}}, \ldots, \mathbf{f}_{\omega_{k}}\right.}_{F_{\Omega T}} \underbrace{\left[\mathbf{f}_{\omega_{1}}, \ldots, \mathbf{f}_{\omega_{k}}\right]^{*}\left[\mathbf{e}_{t_{1}}, \ldots \mathbf{e}_{t_{j}}\right]}_{F_{\Omega T}^{*}} .
$$

Key observation:
$\left\|F_{\Omega T}\right\|=1$ if and only if there exists x with support
contained in T such that \hat{x} has support contained in Ω.

Using the previous theorem, we recover an earlier result.

Theorem (B.F., 2011)
The empirical eigenvalue distribution of $F_{\Omega_{n} T_{n}} F_{\Omega_{n} T_{n}}^{*}$ converges almost surely to f_{M}, reparametrized in terms of p and q :

$$
f_{p, q}(x)=\frac{\sqrt{\left(x-r_{-}\right)\left(r_{+}-x\right)}}{2 \pi x(1-x)(1-\max (p, q))} \cdot I_{\left(r_{-}, r_{+}\right)}(x)+\frac{\max (0,1-(p+q))}{1-\max (p, q)} \cdot \delta(x-1)
$$

where

$$
r_{ \pm}=(\sqrt{p(1-q)} \pm \sqrt{q(1-p)})^{2}
$$

There is no support at 1 when $p+q<1$.
Related work by: Tao, Meshulam, Donoho-Stark, Candès-Tao, Rudelson-Vershynin,Tropp.

Unanticipated instance of universality.

Let's return again to Voiculescu's theorem:
$\mathcal{U}_{N}^{(1)}$ and $\mathcal{U}_{N}^{(2)}$ are independent, uniformly (Haar) distributed unitary matrices of size $N \times N$.
$\left\{A_{N}\right\}_{N=1}^{\infty}$ and $\left\{B_{N}\right\}_{N=1}^{\infty}$ sequences of (nonrandom) uniformly bounded self-adjoint matrices of size $N \times N$ with spectral measures converging to μ_{A} and μ_{B}.

Then we can determine the law of

$$
A_{N} \mathcal{U}_{N}^{(1)} B_{N} \mathcal{U}_{N}^{(1){ }^{*} N} A_{N}
$$

in terms of μ_{A} and μ_{B}.

Other possibilities for \mathcal{U} ?
Further possibility:

$$
U \otimes U \text { or } U^{\otimes k}
$$

If $U^{\otimes k}$ behaves in $\mathbb{C}^{n^{k} \times n^{k}}$ like $U \in \mathbb{C}^{n \times n}$, then the eigenvalue distributions of

$$
P_{2}^{\prime} U^{\otimes k} P_{1}^{\prime}\left(U^{\otimes k}\right)^{*} P_{2}^{\prime} \text { and } P_{2} U P_{1} U^{*} P_{2}
$$

should be close when P_{i}^{\prime} and P_{i} have normalized ranks p and q.

Consider

$$
\begin{equation*}
P_{2} U^{\otimes k} P_{1}\left(U^{\otimes k}\right)^{*} P_{2} \tag{2}
\end{equation*}
$$

where U is uniformly distrubuted on $n \times n$ unitary matrices, rank $P_{1}=p n^{k}$ and rank $P_{2}=q n^{k}$.

Theorem (B.F. and R.R. Nadakuditi, 2013)
For $E \in\left[\lambda_{-}, \lambda_{+}\right]$, let $\mathcal{N}(E, \eta)$ denote the number of eigenvalues of (2) in $\left[E-\frac{\eta}{2}, E+\frac{\eta}{2}\right]$. Assume that $0<c_{0}<\frac{1}{16}$ and $k \leq c_{0} \log n$. There exist absolute constants $C, \rho>0$ such that for all $s>0$ and $\alpha, \beta>0$ satisfying $\alpha+\beta=\frac{1}{2}-c_{0}$, if

$$
\begin{equation*}
\eta:=\frac{\sqrt{\rho} \log ^{\frac{s}{2}+4} n}{n^{\beta}} \tag{3}
\end{equation*}
$$

then for all $\kappa>0$

$$
\begin{equation*}
\mathbb{P}\left(\sup _{E \in\left[\lambda_{-}+\kappa, \lambda_{+}-\kappa\right]}\left|\frac{\mathcal{N}(E, \eta)}{\eta n^{k}}-f_{M}(E)\right|>\frac{C}{n^{\alpha} \kappa^{2}}\right) \leq 2 n^{k+2} e^{-\log ^{s} n} . \tag{4}
\end{equation*}
$$

Area	Results, Further Work
Classical random matrix theory	Universality for the Jacobi ensemble
Probability in high dimensions	Angles between subspaces
Free probability	Extend beyond Haar distributed unitaries
Combinatorics/discrete harmonic analysis	Uncertainty principles for finite Abelian groups

Universality \longleftrightarrow Open Territory

