Isomorphic Steiner symmetrization of *p*-convex sets

Alexander Segal

Tel-Aviv University

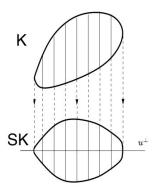
St. Petersburg, June 2013

- |K| will denote the volume of K.
- D_{n-} Euclidean ball with radius 1.
- S^{n-1} Unit sphere.
- *Proj_E* Orthogonal projection onto subspace *E*.
- \overline{K} will denote the convex hull of K. (non-standard notation).
- R_u Reflection with respect to u^{\perp} .
- Let $h_K(x) = \sup_y \langle x, y \rangle$ denote the support function of K. Then, the mean width is defined to be

$$\omega(K) = 2M^*(K) = 2\int_{S^{n-1}} h_K(u) d\sigma(u).$$

Steiner symmetrization

Let $K \subset \mathbb{R}^n$ be a compact set, and let $u \in S^{n-1}$. Think of K as a family of line segments parallel to u. Translate each segment along u until it is symmetric with respect to u^{\perp} . The result $S_u K$, a set symmetric with respect to u^{\perp} , is called **Steiner symmetrization of** K.



Properties

- $S_u K$ is symmetric with respect to u^{\perp} .
- $Vol(S_uK) = Vol(K)$ (Cavalieri's principle).
- $K \subseteq L$ implies $S_u K \subseteq S_u L$.
- $S_u(K + L) \supseteq S_u(K) + S_u(L)$ (Super-aditivity with respect to Minkowski sum).
- If K is convex, so is $S_u K$ (Brunn principle).
- Decreases surface area, diameter and outer radius.
- Increases inradius.
- If $u \perp v$ then $S_u S_v K$ is symmetric with respect to u^{\perp} and v^{\perp} .
- Maps ellipsoids to ellipsoids. Any ellipsoid may be symmetrized to a ball with n-1 symmetrizations.
- Euclidean ball the only set invariant under any Steiner symmetrization.

Theorem (Gross, 1917)

Given a **convex** body K, there exists a sequence of directions $\{u_i\}$ such that the sequence

$$S_{u_i}\ldots S_{u_1}K$$

converges to a Euclidean ball with the same volume as K.

Many applications. For example, isoperimetric inequality.

Gross's result was extended by Mani:

Theorem (Mani, 1986)

Given a convex set K and sequence $\{u_i\}$ chosen uniformly at random, the sequence $S_{u_i} \dots S_{u_1} K$ converges to a ball with probability 1.

Mani's result was recently extended by Volcic to compact sets:

Theorem (Volcic, 2012)

Given a **compact** set K and sequence $\{u_i\}$ chosen uniformly at random, the sequence $S_{u_i} \dots S_{u_1} K$ converges to a ball with probability with respect to Hausdorff metric.

And the more general case of measurable sets:

Theorem (Volcic, 2012)

Given a **measurable** set K and sequence $\{u_i\}$ chosen uniformly at random, the sequence $S_{u_i} \dots S_{u_1} K$ converges to a ball with probability 1 with respect to the symmetric difference metric.

Rate of convergence

- First result for convex set by Hadwiger exponential rate of convergence (Cn)^{n/2}
- Bourgain, Lindenstrauss and Milman *Cn* log *n* convergence up to universal constant.
- Klartag and Milman showed that one may approach the Euclidean ball isomorphically with at most 3*n* symmetrizations. That is,

Theorem (Klartag-Milman)

Let K be a convex set such that $|K| = |D_n|$. Then, there exist 3n Steiner symmetrizations that transform K into a set K' such that

$$cD_n \subseteq K' \subseteq CD_n$$
.

• Klartag (2003) - polynomial in *n* and $\log \frac{1}{\epsilon}$ - isometric result.

Fact

No results of this spirit exist for non-convex sets.

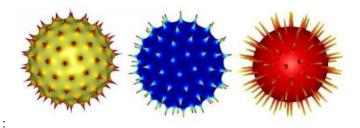
Alexander Segal

Isomorphic Steiner symmetrization

7 / 20

Definition

Let 0 . A set <math>K is called p-convex if for every λ and μ such that $\lambda^p + \mu^p = 1$ we have $\lambda K + \mu K \subseteq K$.



Note: *p*-convex sets can differ greatly from convex sets. The Banach-Mazur distance of l_p to its convex hull is $n^{1/p-1}$.

Alexander Segal

Isomorphic Steiner symmetrization 8 / 20

Theorem (S.)

Let K be a p-convex set for some $0 , such that <math>|K| = |D_n|$. Then, there exist 5n Steiner symmetrizations that transform the set K into a set K' such that $\alpha_p D_n \subseteq K' \subseteq \beta_p D_n$, where α_p, β_p are constants dependent only on p.

The proof is composed of several iterations. The plan:

- First we show that $C_p n \log n$ symmetrizations are enough (following methods of Bourgain, Lindenstrauss and Milman).
- **2** Using Milman's quotient of subspace theorem (for *p*-convex sets) we get a bound of $C_p n$.
- Iterating the above method we get the desired result of 5n symmetrizations.

Fact

Steiner symmetrization preserves p-convexity.

Follows from super-additivity: For $\lambda^{p} + \mu^{p} = 1$, $S_{u}(K) \supset S_{u}(\lambda K + \mu K) \supset \lambda S_{u}(K) + \mu S_{u}(K)$.

- Transforms projections to sections: $H \cap K \subset Proj_H(K) = S_H(K) \cap H.$
- Transforms (in some sense) sections to projections: $P_{H^{\perp}}(S_{H}(K)) \subset a_{p}(S_{H}(K) \cap H^{\perp})$, whenever K is centrally-symmetric.
- Always contained in Minkowski symmetrization, i.e.

$$S_u K \subseteq \frac{1}{2}(\overline{K} + R_u \overline{K}).$$

First estimate $(C_p n \log n)$ |

- Apply n symmetrizations with respect to some orthonormal basis to obtain a centrally symmetric set.
- Assume that aD_n ⊂ K ⊂ bD_n, for some a, b > 0. If M^{*}(K) < ^b/₄, by a result of Klartag, there exist 5n Minkowski symmetrizations that transform K into a set K' such that K' ⊂ ^b/₂D_n. Apply the corresponding Steiner symmetrizations and use the fact that they are contained in Minkowski symm.
- If K contains an ellipsoid of volume $|2aD_n|$, symmetrize the ellipsoid to a ball with n-1 symmetrizations.
- The above steps reduce the ratio $\frac{b}{a}$ at least by half each step. Thus, we may iterate steps 2 and 3 at most log $\frac{b}{a}$ times.
- Denote the new set (after the iterations) by Q. Denote by a_0, b_0 the improved quantities that satisfy $a_0D_n \subseteq Q \subseteq b_0D_n$.

First estimate $(C_p n \log n)$ II

• Obviously, $M^*(Q) \ge \frac{1}{4} diam(Q)$. By Dvoretzky-Milman's theorem there exists a subspace *E* of dimension $h = [\delta n]$ such that

$$rac{1}{4}M^*(Q)D_n\cap E\subset extsf{Proj}_E(\overline{Q})\subset 4M^*(Q)D_n\cap E,$$

where $\delta > 0$ is some universal constant.

Choose an orthonormal basis in E[⊥] and apply n − h Steiner symmetrizations with respect to this basis to obtain a new p-convex set Q'. As noted above, they transfer projections to sections so we get

$$\frac{1}{4}M^*(Q)D_n\cap E\subset \overline{Q'}\cap E\subset 4M^*(Q)D_n\cap E.$$

- Sy a lemma of Kalton and Gordon, we get that $Q' \cap E$ is isomorphic to $D_n \cap E$ up to a constant C_p dependent on p only.
- Recall that Q' contains a ball of radius a_0 , while its section contains a ball of radius at least $C_p b_0 D_n$.

First estimate $(C_p n \log n)$ III

- Consider the maximal ellipsoid \mathcal{E} inside the *p*-convex hull of a_0D_n and $C_pb_0D_n \cap E$.
- **9** By our assumption $|\mathcal{E}| \leq |2a_0D_n|$. A simple computation shows that $\frac{b_0}{a_0}$ must be bounded by some constant dependent only on p.
- **2** To sum it up, we have a bound of $Cn \log \frac{b}{a}$ symmetrizations.
- ^(a) John's theorem for p convex sets (Dilworth) guarantees the existence of an ellipsoid \mathcal{E} such that

$$\mathcal{E}\subseteq Q'\subseteq n^{\frac{1}{p}-\frac{1}{2}}\mathcal{E}.$$

Symmetrizing \mathcal{E} to the Euclidean ball we get that $\log \frac{b}{a} \leq C_p \log n$.

Note: Whenever we have a better bound for the Banach-Mazur d_K distance of our set to D_n , we automatically get a better result of $Cn \log d_K$.

We will now use Milman's quotient of subspace theorem for p-convex sets to improve the first estimate.

Theorem (Milman; Gordon-Kalton)

Let K be a p-convex set. Then, $\exists \gamma_p$, such that for every $0 < \lambda < 1$ there exist subspaces $F \subset E$ such that dim $F \ge \lambda n$ and an ellipsoid \mathcal{E} such that

$$\mathcal{E} \subset \textit{Proj}_{\textit{E}}(\textit{K}) \cap \textit{F} \subset \gamma_{\textit{P}} \left(rac{1}{1-\lambda} \log rac{2}{1-\lambda}
ight)^{rac{2}{p}-1} \mathcal{E}$$

Main Idea:

- QS theorem guarantees the existence of large (λn) sections of projections isomorphic to Euclidean (up to some function of f(λ)).
- For a given λ, find such a section F of projection onto E with dim F = λn. Then, ℝⁿ = F ⊕ F[⊥].
- Transform the projection into section by applying less than $(1-\lambda)n$ Steiner symm in $E^{\perp}.$
- Using the first estimate, one may symmetrize the new set $K' \cap F$ using at most $Cn \log f(\lambda)$ symmetrizations.
- Additionally, we may symmetrize $K' \cap F^{\perp}$ (which is of dimension $(1-\lambda)n$) using $C_p(1-\lambda)n\log((1-\lambda)n)$ symmetrizations.
- Choosing the appropriate λ allows us to improve previous result.
- This procedure can be iterated.

The details I

- We show now that using the quotient of subspace theorem, we may improve the estimate to C_pn log log n.
- Choose $\lambda = 1 \frac{1}{\log n}$ and apply QS theorem to obtain subspaces $F \subset E$ and an ellipsoid \mathcal{E} :

$$\mathcal{E} \subset \operatorname{Proj}_{E}(K) \cap F \subset \gamma_{p}(\log n \cdot \log(2\log n))^{\frac{2}{p}-1}\mathcal{E}.$$

• As before, we may send projections to sections by symmetrizing using a basis in E^{\perp} :

$$\mathcal{E}' \subset \mathcal{K}' \cap \mathcal{F} \subset \gamma_p(\log n \cdot \log(2\log n))^{\frac{2}{p}-1}\mathcal{E}'$$

• Symmetrize the ellipsoid \mathcal{E}' to Euclidean ball:

$$\lambda_1 D_n \cap F \subset K'' \cap F \subset \gamma_p(\log n \cdot \log(2\log n))^{\frac{2}{p}-1} \lambda_1 D_n \cap F$$

The details II

 By the first estimate K["] ∩ F can be symmetrized with C_pn log log n symmetrizations to obtain K̃:

$$\delta \alpha_p D_n \cap F \subset \tilde{K} \cap F \subset \delta \beta_n D_n \cap F.$$

• And the same for $\tilde{K} \cap F^{\perp}$:

$$\mu \alpha_{p} D_{n} \cap F^{\perp} \subset K_{1} \cap F^{\perp} \subset \mu \beta_{n} D_{n} \cap F^{\perp},$$

where K_1 is the result of the symmetrization process.

- Combining the above we get that K₁ is isomorphic to D_n with some new constants α'_p, β'_p.
- Applying the first estimate we finish the proof with additional $Cn \log \frac{\beta'_p}{\alpha'_n}$ symmetrizations.
- In total, we have performed at most $C_p n \log \log n$ symmetrizations.

- Actually there is no need to continue iterating the above method.
- One may assume that the optimal bound is $n\theta(n)$ for some perhaps unbounded function $\theta(n)$.
- Applying exactly the same procedure gives an a posteriori, which implies a result of C_pn symmetrizations.
- Adding one more iteration of QS theorem allows us to replace the constant C_p with 5.
- However, the cost of such estimate is that the isomorphism constants α_p , β_p might be worse.

- Assume that there exists a monotone function θ(n) such that for each p-convex set we need at least nθ(n) symm. to approach a Euclidean ball up to constants α_p, β_p.
- Choose $\lambda = 1 \frac{1}{\theta(n)}$ and apply QS theorem to obtain subspaces $F \subset E$ and an ellipsoid \mathcal{E} :

$$\mathcal{E} \subset \mathsf{Proj}_{\mathsf{E}}(\mathsf{K}) \cap \mathsf{F} \subset \gamma_{\mathsf{P}}(\theta(n)\log 2\theta(n))^{\frac{2}{p}-1}\mathcal{E}.$$

• Choose a basis in E^{\perp} and apply $\frac{n}{\theta(n)}$ symm. in E^{\perp} to obtain the following:

$$\mathcal{E}' \subset \mathcal{K}' \cap \mathcal{F} \subset \gamma_{\mathcal{P}}(\theta(n) \log 2\theta(n))^{\frac{2}{p}-1} \mathcal{E}'$$

• Symmetrize \mathcal{E}' to a ball. Then, there exists λ_1 s.t.

$$\lambda_1 D_n \cap F \subset K'' \cap F \subset \gamma_p(\theta(n) \log 2\theta(n))^{\frac{2}{p}-1} \lambda_1 D_n \cap F$$

• By the first estimate, there exist $C_p n \log(\gamma_p \theta(n))$ Steiner symm (in F) applied to K'' result in \tilde{K} s.t.

$$\delta \alpha_p D_n \cap F \subset \tilde{K} \cap F \subset \delta \beta_n D_n \cap F.$$

• Additionally, there exist $\frac{n}{\theta(n)}\theta(\frac{n}{\theta(n)}) \leq n$ symm. (in F^{\perp}) applied to \tilde{K} result in K_1 s.t.

$$\mu \alpha_p D_n \cap F^{\perp} \subset K_1 \cap F^{\perp} \subset \mu \beta_n D_n \cap F^{\perp}.$$

- Combining the above we get that K₁ is isomorphic to D_n with some new constants α'_p, β'_p.
- Applying the first estimate to K_1 we obtain a new set K_2 as desired, after $C_p n \log \frac{\beta'_p}{\alpha'_p} + C_p n \log(\gamma_p \theta(n)) + n$ symmetrizations. This contradicts the fact that $\theta(n)$ is unbounded.