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Motivation

A 1-unconditional convex body K ⊂ Rn, associated with a 1-unconditional
norm, i.e.

||(x1, . . . , xn)||K = ||(±x1, . . . ,±xn)||K
is a simpler object than an arbitrary convex body.
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Motivation

Mahler’s conjecture states that for any centrally symmetric convex body K ,

Vol(K )Vol(K ◦) ≥ 4n

n!
.

The conjecture is known 1-unconditional bodies (J. Saint-Raymond
(1980)).
One can give a proof using the following inequality in the positive orthant
O = {x |xi ≥ 0∀i}, that

Vol(K ∩ O)Vol(K ◦ ∩ O) ≥ 1

n!
.

This leads us to studying bodies which are convex in the positive orthants.
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Anti-blocking bodies

Definition (Anti-blocking body, Fulkerson (1971))

A convex body K ⊂ Rn
+ is called anti-blocking if for any

x = (x1, . . . , xn) ∈ K , if y = (y1, . . . , yn) ∈ Rn
+ is such that y ≤ x in the

partial order on Rn (i.e. yi ≤ xi for all 1 ≤ i ≤ n) then y ∈ K .

I.e. it is order convex, containing the origin, and positive.

An important observation – for K ⊂ Rn anti blocking, and E = sp{ei}i∈I
some coordinate subspace (Gcn),

K ∩ E = PEK .
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Polarity

We should define an analogue of a polarity operation on this class, as it
has 0 on the boundary.

Definition (Polarity for anti-blocking bodies)

Let K ∈ Rn
+ be an anti-blocking body. Define

AK := {x ∈ Rn
+ : sup

y∈K
〈x , y〉 ≤ 1}.

The definition coincides with usual polarity for the associated
1-unconditional body, and also

AK = (K + Rn
−)◦ = K ◦ ∩ Rn

+.
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Decomposition of Difference

The main important property is the following formula for mixed volumes:

Lemma (Decomposition Lemma for difference of anti-blocking bodies,
Chappell, Friedl, Sanyal (2017))

Let K ,T ⊂ Rn
+ be anti-blocking convex bodies, and let λ ≥ 0, then

K − λT =
⋃

E∈Gcn

PEK × PE⊥(−λT ),

and in particular, as this union is disjoint up to measure 0,

V (K [j ],−T [n − j ]) =

(
n

j

)−1 ∑
E∈Gcn,j

Volj(PEK ) ·Voln−j(PE⊥T ).

Where
V (K [j ],T [n − j ]) = V (K , . . . ,K︸ ︷︷ ︸

j

,T , . . . ,T︸ ︷︷ ︸
n−j

).
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Sketch of proof

The idea of the proof is to note that for each point x ∈ K −T , its positive
coordinates are in K and the negative are in −T .
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Decomposition of convex hull

A similar lemma holds for the convex hull.

Lemma (Decomposition of the convex hull of anti-blocking bodies)

Let K ,T ⊂ Rn
+ be anti-blocking convex bodies, and let λ > 0, then:

conv(K ,−λT ) =
n⋃

j=0

⋃
E∈Gcn,j

conv(PEK ,PE⊥(−λT )),

and in particular, as this union disjoint up to measure 0,

Vol(conv(K ,−λT )) =
n∑

j=0

λjV (K [n − j ],−T [j ])
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Godbersen’s conjecture

Rogers and Shephard’s inequality (1957) states that for K ⊂ Rn convex,

Vol(K − K ) ≤
(

2n

n

)
Vol(K )

n∑
j=1

(
n

j

)
V (K [j ],−K [n − j ]) ≤

n∑
j=1

(
n

j

)2

Vol(K )

Godbersen’s conjecture (C. Godbersen (1938)) states that the inequality
holds term by term, and that the only maximizers of this mixed volume are
simplices.

Theorem (Godbersen holds for anti-blocking bodies)

Let K ⊂ Rn
+ a convex anti-blocking body and 1 ≤ j ≤ n, then

V (K [j ],−K [n − j ]) ≤
(
n

j

)
Vol(K )

with equality if and only if K is an anti-blocking simplex.
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Godbersen’s conjecture

Proof of the first part of the theorem is by an application of the
Rogers-Shephard lemma for a product of section and projection.

V (K [j ],−K [n − j ]) =

(
n

j

)−1 ∑
E∈Gcn,j

Volj(PEK ) ·Voln−j(PE⊥K )

≤
(
n

j

)−1 ∑
E∈Gcn,j

(
n

j

)
Vol(K )

=

(
n

j

)
Vol(K ).
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A Saint-Raymond type inequality

Theorem (A Saint-Raymond type inequality for Mixed Volumes)

Let
K1, . . . ,Kj ,T1, . . . ,Tn−j ⊂ Rn

+

be anti-blocking bodies. Then,

V (K1, . . .Kj ,−T1, · · · − Tn−j)V (AK1, . . .AKj ,−AT1, · · · − ATn−j)

≥ 1

j!(n − j)!
.

In particular, for K ,T ⊂ Rn
+ anti-blocking,

V (K [j ],−T [n − j ])V (AK [j ],−AT [n − j ]) ≥ 1

j!(n − j)!
(?).
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A Saint-Raymond type inequality

The theorem follows from

V (K [j ],−T [n − j ])V (AK [j ],−AT [n − j ]) ≥ 1

j!(n − j)!
(?).

using a repeated Alexandrov-Fenchel inequality.
We prove (?) using the Decomposition Lemma, applying
Cauchy-Schwarz inequality and finally applying the Saint-Raymond
inequality on the projections, i.e. for E a coordinate subspace of dimension
j ,

Vol(PEK )Vol(PEAK )Vol(PE⊥T )Vol(PE⊥AT ) ≥ 1

j!

1

(n − j)!
.
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Nearly Mahler for C -bodies

C -bodies were first introduced in Rogers-Shephard (1958), as a means of
associating to a convex body some centrally symmetric convex body.

Definition

Define
C (K ,T ) = conv{K × {1},T × {−1}},

and mark C (K ) := C (K ,−K ).

We will next compute the volume product for these bodies.

This class includes the cross-polytope and the cube.
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What is the polar of a C -body?

Luckily, C (K )◦ is also a C -body.

Lemma

Let K ,T ⊂ Rn
+ a convex anti-blocking body and consider as before the

body C (K ,T ) given by

C (K ,T ) = conv{K × {1},−T × {−1}},

Then one has

C (K ,T )◦ = conv{−2AT × {1}, 2AK × {−1}}.
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The volume of a C -body

C (K ) = conv{K × {1},−K × {−1}}

=
1⋃

s=−1

(
1 + s

2
K − 1− s

2
K

)
× {s}

=
1⋃

s=−1

n⋃
j=0

⋃
E∈Gcn,j

(
PE (

1 + s

2
K )× PE⊥(−1− s

2
K )

)
× {s}

=
⋃

E∈Gcn

1⋃
s=−1

(
1 + s

2
PE (K )× 1− s

2
PE⊥(−K )

)
× {s}

=
⋃

E∈Gcn

C (PEK ,−PE⊥K ).
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The volume of a C -body – cont.

What we got is disjoint up to measure zero, so have

Vol(C (K )) =
n∑

j=0

∑
E∈Gcn,j

Vol(C (PEK ,−PE⊥K ))

=
n∑

j=0

∑
E∈Gcn,j

Vol(PEK )Vol(PE⊥K )
2

(n + 1)
(n
j

)
=

2

(n + 1)

n∑
j=0

V (K [j ],−K [n − j ])

=
2

(n + 1)
Vol(conv(K ,−K )).

The last equality is by the Decomposition Lemma for convex hull
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Mahler’s Conjecture for C -bodies

Using the previous computations on C (K ) and C (K )◦ = C (−2AK ),
Mahler’s conjecture for these bodies is equivalent to the following:

Conjecture

For an anti-blocking K ⊂ Rn
+ we have that

Vol(conv(K ,−K ))Vol(conv(AK ,−AK )) ≥ 2n
n + 1

n!
.

Proposition

For an anti-blocking K ⊂ Rn
+ we have that

Vol(conv(K ,−K ))Vol(conv(AK ,−AK )) ≥ 1

n!

 n∑
j=0

(
n

j

)1/2
2

≈ 2n
√

2πn

n!
.
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Elements from the proof

We use Cauchy-Schwartz and our Saint-Raymond type inequality:

V (K [j ],−K [n − j ])V (AK [j ],−AK [n − j ]) ≥ 1

j!(n − j)!
.

We get

Vol(conv(K ,−K ))Vol(conv(AK ,−AK ))

=

 n∑
j=0

V (K [j ],−K [n − j ])

 n∑
j=0

V (AK [j ],−AK [n − j ])


≥

 n∑
j=0

(V (K [j ],−K [n − j ])V (AK [j ],−AK [n − j ]))1/2

2

≥ 1

n!

 n∑
j=0

(
n

j

)1/2
2

≈ 2n
√

2πn

n!
.
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A lower bound for mixed volume of difference

Recall the lower (trivial) bound on the volume of a difference body

2nVol(K ) ≤ Vol(K − K )

For anti-blocking bodies, a stronger fact is true:

Corollary

Let K ,T ⊂ Rn
+ anti-blocking bodies, then

Vol(K + T ) ≤ Vol(K − T ).

This is a result of the Reveres Kleitman inequality (Bollobás, Leader,
Radcliffe (1989)), which states that for an order-convex set L ⊂ Rn,

Vol((L− L) ∩ Rn
+ ≤ Vol(L).

We would like to show that the inequality holds term by term.
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A lower bound for mixed volume of difference

The mixed volume of two anti-blocking bodies depends on whether they
are in the same orthant.

Theorem

Given two anti-blocking bodies, K ,T ∈ Rn
+,

V (K [j ],T [n − j ]) ≤ V (K [j ],−T [n − j ]).

The proof is achieved via a shadow system of Steiner symmetrizations for
the right hand side.
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Thank you for listening.
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