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Abstract

WE CONSIDER A SPECIAL RANDOM WALK OF A PARTICLE IN A
POLYGON AND OBTAIN, AS A LIMIT, CUT OFF FRACTALS IN THE
POLYGON, WHICH ARE DESCRIBED IN TERMS OF UNIFORM
DISTRIBUTIONS OF PROBABILITY ON THE CORRESPONDING
FRACTALS. SERPINSKI TRIANGLE IS AN EXAMPLE. CHANGING A
PARAMETER OF THE RANDOM WALK WE OBTAIN IN A LIMIT
FRACTAL TYPE DISTRIBUTIONS WITH A TIGHT SUPPORT ON THE
POLYGON. CONSTRUCTION FOR THE LIMIT DISTRIBUTIONS FORMING
IS ESSENTIALLY BASED ON A GENERALIZATION OF THE FIBONACCI
NUMBERS.
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Definition of Pure type distribution

A random variable X has a pure type distribution, if exactly one
condition from the following 3 conditions takes place:

1. There erxist finit or countable set D such that P(X € D) = 1.

2. For every z € R it holds P(X = z) = 0, but there exists a Borel D
such that P((X € D) = 1) with the Lebesgue measure p(D) = 0.

3. P(X edz) < p(dz).

A

Jessen—Wintner's Theorem on Pure type (1935)

Let X1, X5,... — beii.d. rv's such that:

L Y1 X, — X as. as n — oo;

2. For every k € IN there exists a countable set Fy: P(Xy € Fy) = 1.
Then distribution of X has the Pure type.
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Polski zloty real data and simulation
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