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Nuclear operators

An operator T : X → Y is nuclear if it is of the form

Tx =
∞∑
k=1

〈x ′k , x〉yk

for all x ∈ X , where (x ′k) ⊂ X ∗, (yk) ⊂ Y ,
∑

k ||x ′k || ||yk || <∞.
We use the notation N(X ,Y )

If T is nuclear, then

T : X → c0 → l1 → Y .

A. Grothendieck, Produits tensoriels topologiques et espases
nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 +
140.
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Let U be a compact operator in H. Then U has the norm
convergent expansion

U =
N∑

n=1

µn(U) (fn, ·)hn,

where (fn), (hn) are ONS’s, µ1(U) ≥ µ2(U) ≥ · · · > 0)

The µn(U) are called the singular values of U.

Simon B., Trace ideals and their applications, London Math.
Soc. Lecture Notes 35, Cambridge University Press, 1979.
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R. Schatten and J. von Neumann

U ∈ Sp(H) :
∑

µpn(U) <∞, p > 0.

σp(U) = (
∑

µpn(U))1/p.

S0
∞(H) — all compact operators with the usual operator

norm.

Sp ◦ Sq ⊂ Sr , 1/r = 1/p + 1/q;

p, q ∈ (0,∞)

N(H) = S1(H).
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s-nuclear operators – Applications de puissance
s.éme sommable

An operator T : X → Y is s-nuclear (0 < s ≤ 1) if it is of the
form

Tx =
∞∑
k=1

〈x ′k , x〉yk

for all x ∈ X , where
(x ′k) ⊂ X ∗, (yk) ⊂ Y ,

∑
k ||x ′k ||s ||yk ||s <∞. We use the

notation Ns(X ,Y ).
νs(T ) := inf(

∑
k ||x ′k ||s ||yk ||s)1/s .

Np(H) = Sp(H), 0 < p ≤ 1.

R. Oloff, p-normierte Operatorenideale, Beiträge Anal. 4,
105-108 (1972).
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On products of nuclear operators

A natural question (due to Boris Mityagin):

Is it true that a product of two nuclear operators in Banach
spaces can be factored through a trace class (i.e., S1-)
operator in a Hilbert space?

By using an example from

Carleman T., Über die Fourierkoeffizienten einer stetigen
Funktion, A. M., 41 (1918), 377-384.

it was shown that

The answer is negative.

O.I. Reinov, On products of nuclear operators, Func. Anal. and
its Appl., 51:4 (2017), 90-91.
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Sp-factorization

Definition

An operator T : X → Y can be factored through an operator from
Sp(H) (through Sp-operator), if there are operators
A ∈ L(X ,H), U ∈ Sp(H) and B ∈ L(H,Y ) such that T = BUA.
We put

γSp(T ) = inf ||A||σp(U) ||B||.
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Factorization Theorem

Theorem

Let m ∈ N. If X1,X2, . . . ,Xm+1 are Banach spaces, sk ∈ (0, 1] and
Tk ∈ Nsk (Xk ,Xk+1) for k = 1, 2, . . . ,m, then the product

T := TmTm−1 · · ·T1

can be factored through an operator from Sr (H), where

1/r = 1/s1 + 1/s2 + · · ·+ 1/sm − (m + 1)/2.

Moreover,

γSr (T ) ≤
m∏

k=1

νsk (Tk)

(for r =∞, we consider the class S0
∞).
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Factorization Theorem: f.d. analogue

Finite dimensional analogue:

Theorem

Under the above conditions, if the operator T is of finite rank and
t ∈ (0, r ], then

γSt (T ) ≤ (dimT (X1))1/t−1/r
m∏

k=1

νsk (Tk).

In particular, if all the operators Tk are finite dimensional then

γSt (T ) ≤ (min rankT )1/t−1/r
m∏

k=1

νsk (Tk)

(for r =∞ we consider the class S0
∞).
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Sharpness of f.d. Theorem

Sharpness of the previous theorem (with a proof):

Theorem

There exists a constant G > 0 such that for every n ∈ N we can
find an operator An : ln1 → ln1 with the following property:
If m ∈ N, sk ∈ (0, 1] for k = 1, 2, . . . ,m,
1/r = 1/s1 + 1/s2 + · · ·+ 1/sm − (m + 1)/2
and t ∈ (0, r ],
then

γSt (A
m
n ) ≥ Gn1/t−1/r

m∏
k=1

νsk (An).
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Proof

Fix n ∈ N and consider an unitary matrix(
n−1/2 e

2πjl
n

i
)

(j , l = 1, 2, . . . , n).

Let An : ln1 → ln1 -be the operator generated by this matrix.
Clearly, if s ∈ (0, 1], then

νs(An) ≤ n1/s−1/2.

On the other hand,

(
∑
λ

|λ|p)1/p ≤ νs(An),

where 1/p = 1/s − 1/2 and (λ) is a system of all eigenvalues of An

(see 27.4.5 in

A. Pietsch, Operator ideals, 1980.)
Thus νs(An) = n1/s−1/2.
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Proof continued

Consider Am
n , where m ∈ N, and suppose that

Am
n = BUA,

where A : ln1 → H, B : H → ln1 , U ∈ St(H) (if t = r =∞, we
consider the class S0

∞).
Consider a diagram

Am
n B : H

B→ ln1
A→ H

U→ H
B→ ln1 .

By Grothendieck theorem (see A. Pietsch, 22.4.4),

σ2(AB) ≤ cG ||B|| ||A||

(here cG is a Grothendieck constant [A. Pietsch, 22.4.5]).
Therefore,

σq(UAB) ≤ cG ||B|| ||A||σt(U),

where 1/q = 1/2 + 1/t.
Oleg Reinov On products of s-nuclear operators, s ∈ (0, 1]



Proof continued

Eigenvalues system of Am
n is (λm) and coincides with the one of

UAB. Consequently,

cG ||B|| ||A||σt(U) ≥ σq(UAB) ≥ (
∑
λ

|λm|q)1/q = n1/q.

But
1/2 = 1/2− 1/r + [(1/s1 − 1/2) + (1/s2 − 1/2) + · · ·+ (1/sm −
1/2)− 1/2] = −1/r +

∑m
k=1(1/sk − 1/2).

Therefore,

n1/q = n1/2+1/t = n1/t−1/r
m∏

k=1

νsk (An).

Since BUA is an arbitrary factorization of BUA for Am
n , one gets

the desired inequality with a constant G = 1/cG . �
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Sharpness of the first theorem

Now, ”summing” infinitely many finite rank operators, we obtain
the sharpness of our first theorem:

Theorem

Let m ∈ N, sk ∈ (0, 1] for k = 1, 2, . . . ,m and

1/r = 1/s1 + 1/s2 + · · ·+ 1/sm − (m + 1)/2.

One can find the operators Tk ∈ Nsk (Xk ,Xk+1) in Banach spaces
so that the product

T := TmTm−1 · · ·T1

can be factored through an operator from Sr (H), but can not be
factored through St-operator if t ∈ (0, r).
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Thank you for your attention!
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