On products of s-nuclear operators, $s \in(0,1]$

Oleg Reinov

Saint Petersburg State University

An operator $T: X \rightarrow Y$ is nuclear if it is of the form

$$
T x=\sum_{k=1}^{\infty}\left\langle x_{k}^{\prime}, x\right\rangle y_{k}
$$

for all $x \in X$, where $\left(x_{k}^{\prime}\right) \subset X^{*},\left(y_{k}\right) \subset Y, \sum_{k}\left\|x_{k}^{\prime}\right\|\left\|y_{k}\right\|<\infty$. We use the notation $N(X, Y)$
If T is nuclear, then

$$
T: X \rightarrow c_{0} \rightarrow I_{1} \rightarrow Y
$$

(R) A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 + 140.

Let U be a compact operator in H. Then U has the norm convergent expansion

$$
U=\sum_{n=1}^{N} \mu_{n}(U)\left(f_{n}, \cdot\right) h_{n}
$$

where $\left(f_{n}\right),\left(h_{n}\right)$ are ONS's, $\left.\mu_{1}(U) \geq \mu_{2}(U) \geq \cdots>0\right)$
The $\mu_{n}(U)$ are called the singular values of U.
國 Simon B., Trace ideals and their applications, London Math. Soc. Lecture Notes 35, Cambridge University Press, 1979.
-

$$
\begin{gathered}
U \in S_{p}(H): \sum \mu_{n}^{p}(U)<\infty, p>0 . \\
\sigma_{p}(U)=\left(\sum \mu_{n}^{p}(U)\right)^{1 / p} .
\end{gathered}
$$

$S_{\infty}^{0}(H)$ - all compact operators with the usual operator norm.

$N(H)=S_{1}(H)$.
-

$$
\begin{gathered}
U \in S_{p}(H): \sum \mu_{n}^{p}(U)<\infty, p>0 . \\
\sigma_{p}(U)=\left(\sum \mu_{n}^{p}(U)\right)^{1 / p} .
\end{gathered}
$$

$S_{\infty}^{0}(H)$ - all compact operators with the usual operator norm.

$$
p, q \in(0, \infty) \begin{gathered}
S_{p} \circ S_{q} \subset S_{r}, 1 / r=1 / p+1 / q ; \\
N(H)=S_{1}(H) .
\end{gathered}
$$

- An operator $T: X \rightarrow Y$ is s-nuclear $(0<s \leq 1)$ if it is of the form

$$
T x=\sum_{k=1}^{\infty}\left\langle x_{k}^{\prime}, x\right\rangle y_{k}
$$

for all $x \in X$, where $\left(x_{k}^{\prime}\right) \subset X^{*},\left(y_{k}\right) \subset Y, \sum_{k}\left\|x_{k}^{\prime}\right\|^{s}\left\|y_{k}\right\|^{s}<\infty$. We use the notation $N_{s}(X, Y)$.
$\nu_{s}(T):=\inf \left(\sum_{k}\left\|x_{k}^{\prime}\right\|^{s}\left\|y_{k}\right\|^{s}\right)^{1 / s}$.

$$
N_{p}(H)=S_{p}(H), 0<p \leq 1 .
$$

圊 R. Oloff, p-normierte Operatorenideale, Beiträge Anal. 4 105-108 (1972).

- An operator $T: X \rightarrow Y$ is s-nuclear $(0<s \leq 1)$ if it is of the form

$$
T x=\sum_{k=1}^{\infty}\left\langle x_{k}^{\prime}, x\right\rangle y_{k}
$$

for all $x \in X$, where
$\left(x_{k}^{\prime}\right) \subset X^{*},\left(y_{k}\right) \subset Y, \sum_{k}\left\|x_{k}^{\prime}\right\|^{s}\left\|y_{k}\right\|^{s}<\infty$. We use the notation $N_{s}(X, Y)$.

$$
\nu_{s}(T):=\inf \left(\sum_{k}\left\|x_{k}^{\prime}\right\|^{s}\left\|y_{k}\right\|^{s}\right)^{1 / s}
$$

-

$$
N_{p}(H)=S_{p}(H), 0<p \leq 1 .
$$

- R. Oloff, p-normierte Operatorenideale, Beiträge Anal. 4, 105-108 (1972).

A natural question (due to Boris Mityagin):

- Is it true that a product of two nuclear operators in Banach spaces can be factored through a trace class (i.e., $S_{1^{-}}$) operator in a Hilbert space?
- By using an example fromCarleman T., Über die Fourierkoeffizienten einer stetigen Funktion, A. M., 41 (1918), 377-384. it was shown that - The answer is negative.

國 O.I. Reinov, On products of nuclear operators, Func. Anal. and its Appl., 51:4 (2017), 90-91

A natural question (due to Boris Mityagin):

- Is it true that a product of two nuclear operators in Banach spaces can be factored through a trace class (i.e., $S_{1^{-}}$) operator in a Hilbert space?
- By using an example from

國 Carleman T., Über die Fourierkoeffizienten einer stetigen Funktion, A. M., 41 (1918), 377-384.
it was shown that

- The answer is negative.

ET O.I. Reinov, On products of nuclear operators, Func. Anal. and its Appl., 51:4 (2017), 90-91.

Definition

An operator $T: X \rightarrow Y$ can be factored through an operator from $S_{p}(H)$ (through S_{p}-operator), if there are operators $A \in L(X, H), U \in S_{p}(H)$ and $B \in L(H, Y)$ such that $T=B U A$. We put

$$
\gamma_{S_{p}}(T)=\inf \|A\| \sigma_{p}(U)\|B\|
$$

Theorem

Let $m \in \mathbb{N}$. If $X_{1}, X_{2}, \ldots, X_{m+1}$ are Banach spaces, $s_{k} \in(0,1]$ and $T_{k} \in N_{s_{k}}\left(X_{k}, X_{k+1}\right)$ for $k=1,2, \ldots, m$, then the product

$$
T:=T_{m} T_{m-1} \cdots T_{1}
$$

can be factored through an operator from $S_{r}(H)$, where

$$
1 / r=1 / s_{1}+1 / s_{2}+\cdots+1 / s_{m}-(m+1) / 2
$$

Moreover,

$$
\gamma_{S_{r}}(T) \leq \prod_{k=1}^{m} \nu_{s_{k}}\left(T_{k}\right)
$$

(for $r=\infty$, we consider the class S_{∞}^{0}).

Finite dimensional analogue:

Theorem

Under the above conditions, if the operator T is of finite rank and $t \in(0, r]$, then

$$
\gamma_{S_{t}}(T) \leq\left(\operatorname{dim} T\left(X_{1}\right)\right)^{1 / t-1 / r} \prod_{k=1}^{m} \nu_{s_{k}}\left(T_{k}\right)
$$

In particular, if all the operators T_{k} are finite dimensional then

$$
\gamma_{S_{t}}(T) \leq(\min \operatorname{rank} T)^{1 / t-1 / r} \prod_{k=1}^{m} \nu_{s_{k}}\left(T_{k}\right)
$$

(for $r=\infty$ we consider the class S_{∞}^{0}).

Sharpness of the previous theorem (with a proof):

Theorem

There exists a constant $G>0$ such that for every $n \in \mathbb{N}$ we can find an operator $A_{n}: I_{1}^{n} \rightarrow I_{1}^{n}$ with the following property:
If $m \in \mathbb{N}, s_{k} \in(0,1]$ for $k=1,2, \ldots, m$,
$1 / r=1 / s_{1}+1 / s_{2}+\cdots+1 / s_{m}-(m+1) / 2$ and $t \in(0, r]$, then

$$
\gamma_{S_{t}}\left(A_{n}^{m}\right) \geq G n^{1 / t-1 / r} \prod_{k=1}^{m} \nu_{s_{k}}\left(A_{n}\right)
$$

Fix $n \in \mathbb{N}$ and consider an unitary matrix

$$
\left(n^{-1 / 2} e^{\frac{2 \pi j l}{n} i}\right)(j, I=1,2, \ldots, n)
$$

Let $A_{n}: I_{1}^{n} \rightarrow I_{1}^{n}$-be the operator generated by this matrix.
Clearly, if $s \in(0,1]$, then

$$
\nu_{s}\left(A_{n}\right) \leq n^{1 / s-1 / 2}
$$

On the other hand,

$$
\left(\sum_{\lambda}|\lambda|^{p}\right)^{1 / p} \leq \nu_{s}\left(A_{n}\right)
$$

where $1 / p=1 / s-1 / 2$ and (λ) is a system of all eigenvalues of A_{n} (see 27.4.5 in

目 A. Pietsch, Operator ideals, 1980.)
Thus $\nu_{s}\left(A_{n}\right)=n^{1 / s-1 / 2}$.

Consider A_{n}^{m}, where $m \in \mathbb{N}$, and suppose that

$$
A_{n}^{m}=B \cup A
$$

where $A: I_{1}^{n} \rightarrow H, B: H \rightarrow I_{1}^{n}, U \in S_{t}(H)$ (if $t=r=\infty$, we consider the class S_{∞}^{0}).
Consider a diagram

$$
A_{n}^{m} B: H \xrightarrow{B} I_{1}^{n} \xrightarrow{A} H \xrightarrow{U} H \xrightarrow{B} I_{1}^{n} .
$$

By Grothendieck theorem (see A. Pietsch, 22.4.4),

$$
\sigma_{2}(A B) \leq c_{G}\|B\|\|A\|
$$

(here c_{G} is a Grothendieck constant [A. Pietsch, 22.4.5]). Therefore,

$$
\sigma_{q}(U A B) \leq c_{G}\|B\|\|A\| \sigma_{t}(U)
$$

where $1 / q=1 / 2+1 / t$.

Eigenvalues system of A_{n}^{m} is $\left(\lambda^{m}\right)$ and coincides with the one of $U A B$. Consequently,

$$
c_{G}\|B\|\|A\| \sigma_{t}(U) \geq \sigma_{q}(U A B) \geq\left(\sum_{\lambda}\left|\lambda^{m}\right|^{q}\right)^{1 / q}=n^{1 / q} .
$$

But
$1 / 2=1 / 2-1 / r+\left[\left(1 / s_{1}-1 / 2\right)+\left(1 / s_{2}-1 / 2\right)+\cdots+\left(1 / s_{m}-\right.\right.$ $1 / 2)-1 / 2]=-1 / r+\sum_{k=1}^{m}\left(1 / s_{k}-1 / 2\right)$.
Therefore,

$$
n^{1 / q}=n^{1 / 2+1 / t}=n^{1 / t-1 / r} \prod_{k=1}^{m} \nu_{s_{k}}\left(A_{n}\right)
$$

Since $B U A$ is an arbitrary factorization of $B \cup A$ for A_{n}^{m}, one gets the desired inequality with a constant $G=1 / c_{G}$.

Now, "summing" infinitely many finite rank operators, we obtain the sharpness of our first theorem:

Theorem

Let $m \in \mathbb{N}, s_{k} \in(0,1]$ for $k=1,2, \ldots, m$ and

$$
1 / r=1 / s_{1}+1 / s_{2}+\cdots+1 / s_{m}-(m+1) / 2
$$

One can find the operators $T_{k} \in N_{s_{k}}\left(X_{k}, X_{k+1}\right)$ in Banach spaces so that the product

$$
T:=T_{m} T_{m-1} \cdots T_{1}
$$

can be factored through an operator from $S_{r}(H)$, but can not be factored through S_{t}-operator if $t \in(0, r)$.

Thank you for your attention!

