On products of *s*-nuclear operators, $s \in (0, 1]$

Oleg Reinov

Saint Petersburg State University

Oleg Reinov On products of s-nuclear operators, $s \in (0, 1]$

An operator $T: X \to Y$ is nuclear if it is of the form

$$Tx = \sum_{k=1}^{\infty} \langle x'_k, x \rangle y_k$$

for all $x \in X$, where $(x'_k) \subset X^*$, $(y_k) \subset Y$, $\sum_k ||x'_k|| ||y_k|| < \infty$. We use the notation N(X, Y)

If T is nuclear, then

$$T: X \to c_0 \to l_1 \to Y.$$

A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 + 140. Let U be a compact operator in H. Then U has the norm convergent expansion

$$U=\sum_{n=1}^{N}\mu_n(U)(f_n,\cdot)h_n,$$

where (f_n) , (h_n) are ONS's, $\mu_1(U) \ge \mu_2(U) \ge \cdots > 0$) The $\mu_n(U)$ are called the singular values of U.

Simon B., Trace ideals and their applications, London Math. Soc. Lecture Notes 35, Cambridge University Press, 1979.

R. Schatten and J. von Neumann

۲

$$U \in S_p(H): \sum \mu_n^p(U) < \infty, \ p > 0.$$

 $\sigma_p(U) = (\sum \mu_n^p(U))^{1/p}.$

 $S^0_{\infty}(H)$ — all compact operators with the usual operator norm.

$$S_p \circ S_q \subset S_r, \ 1/r = 1/p + 1/q;$$

 $p,q\in(0,\infty)$

 $N(H) = S_1(H).$

高 とう きょう うちょう しょう

R. Schatten and J. von Neumann

۲

$$U \in S_p(H): \sum \mu_n^p(U) < \infty, \ p > 0.$$

 $\sigma_p(U) = (\sum \mu_n^p(U))^{1/p}.$

 $S^0_{\infty}(H)$ — all compact operators with the usual operator norm.

۲

$$S_p \circ S_q \subset S_r, \ 1/r = 1/p + 1/q;$$

 $p,q\in(0,\infty)$

 $N(H)=S_1(H).$

高 とう きょう うちょう しょう

s-nuclear operators – Applications de puissance s.éme sommable

An operator T : X → Y is s-nuclear (0 < s ≤ 1) if it is of the form

$$Tx = \sum_{k=1}^{\infty} \langle x'_k, x \rangle y_k$$

for all $x \in X$, where $(x'_k) \subset X^*, (y_k) \subset Y, \sum_k ||x'_k||^s ||y_k||^s < \infty$. We use the notation $N_s(X, Y)$. $\nu_s(T) := \inf(\sum_k ||x'_k||^s ||y_k||^s)^{1/s}$.

$$N_{p}(H) = S_{p}(H), 0$$

R. Oloff, p-normierte Operatorenideale, Beiträge Anal. 4, 105-108 (1972).

s-nuclear operators – Applications de puissance s.éme sommable

An operator T : X → Y is s-nuclear (0 < s ≤ 1) if it is of the form

$$Tx = \sum_{k=1}^{\infty} \langle x'_k, x \rangle y_k$$

for all $x \in X$, where $(x'_k) \subset X^*, (y_k) \subset Y, \sum_k ||x'_k||^s ||y_k||^s < \infty$. We use the notation $N_s(X, Y)$. $\nu_s(T) := \inf(\sum_k ||x'_k||^s ||y_k||^s)^{1/s}$.

۲

$$N_p(H) = S_p(H), 0$$

 R. Oloff, p-normierte Operatorenideale, Beiträge Anal. 4, 105-108 (1972).

On products of nuclear operators

A natural question (due to Boris Mityagin):

- Is it true that a product of two nuclear operators in Banach spaces can be factored through a trace class (i.e., *S*₁-) operator in a Hilbert space?
- By using an example from
 - Carleman T., Über die Fourierkoeffizienten einer stetigen Funktion, A. M., 41 (1918), 377-384.

it was shown that

- The answer is negative.
- O.I. Reinov, On products of nuclear operators, Func. Anal. and its Appl., 51:4 (2017), 90-91.

On products of nuclear operators

A natural question (due to Boris Mityagin):

- Is it true that a product of two nuclear operators in Banach spaces can be factored through a trace class (i.e., *S*₁-) operator in a Hilbert space?
- By using an example from
 - Carleman T., Über die Fourierkoeffizienten einer stetigen Funktion, A. M., 41 (1918), 377-384.
 - it was shown that
- The answer is negative.
- O.I. Reinov, On products of nuclear operators, Func. Anal. and its Appl., 51:4 (2017), 90-91.

Definition

An operator $T : X \to Y$ can be factored through an operator from $S_p(H)$ (through S_p -operator), if there are operators $A \in L(X, H), U \in S_p(H)$ and $B \in L(H, Y)$ such that T = BUA. We put

$$\gamma_{\mathcal{S}_p}(\mathcal{T}) = \inf ||A|| \, \sigma_p(\mathcal{U}) \, ||B||.$$

Factorization Theorem

Theorem

Let $m \in \mathbb{N}$. If $X_1, X_2, \ldots, X_{m+1}$ are Banach spaces, $s_k \in (0, 1]$ and $T_k \in N_{s_k}(X_k, X_{k+1})$ for $k = 1, 2, \ldots, m$, then the product

$$T := T_m T_{m-1} \cdots T_1$$

can be factored through an operator from $S_r(H)$, where

$$1/r = 1/s_1 + 1/s_2 + \cdots + 1/s_m - (m+1)/2.$$

Moreover,

$$\gamma_{S_r}(T) \leq \prod_{k=1}^m \nu_{s_k}(T_k)$$

(for $r = \infty$, we consider the class S^0_{∞}).

Factorization Theorem: f.d. analogue

Finite dimensional analogue:

Theorem

Under the above conditions, if the operator T is of finite rank and $t \in (0, r]$, then

$$\gamma_{S_t}(T) \leq (\dim T(X_1))^{1/t-1/r} \prod_{k=1}^m \nu_{s_k}(T_k).$$

In particular, if all the operators T_k are finite dimensional then

$$\gamma_{\mathcal{S}_t}(T) \leq (\min \ rankT)^{1/t-1/r} \prod_{k=1}^m \nu_{s_k}(T_k)$$

(for $r = \infty$ we consider the class S^0_{∞}).

Sharpness of the previous theorem (with a proof):

Theorem

There exists a constant G > 0 such that for every $n \in \mathbb{N}$ we can find an operator $A_n : I_1^n \to I_1^n$ with the following property: If $m \in \mathbb{N}$, $s_k \in (0, 1]$ for k = 1, 2, ..., m, $1/r = 1/s_1 + 1/s_2 + \cdots + 1/s_m - (m+1)/2$ and $t \in (0, r]$, then $\gamma_{S_t}(A_n^m) \ge Gn^{1/t-1/r} \prod_{s_k}^m \nu_{s_k}(A_n).$

k=1

Proof

Fix $n \in \mathbb{N}$ and consider an unitary matrix

$$\left(n^{-1/2} e^{\frac{2\pi jl}{n}i}\right) (j, l = 1, 2, ..., n).$$

Let $A_n: l_1^n \to l_1^n$ -be the operator generated by this matrix. Clearly, if $s \in (0,1]$, then

$$\nu_s(A_n) \leq n^{1/s-1/2}.$$

On the other hand,

$$(\sum_{\lambda} |\lambda|^p)^{1/p} \leq \nu_s(A_n),$$

where 1/p = 1/s - 1/2 and (λ) is a system of all eigenvalues of A_n (see 27.4.5 in

A. Pietsch, *Operator ideals*, 1980.)
Thus
$$\nu_s(A_n) = n^{1/s - 1/2}$$
.

高 と く ヨ と く ヨ と

3

Consider A_n^m , where $m \in \mathbb{N}$, and suppose that

$$A_n^m = BUA,$$

where $A : I_1^n \to H, B : H \to I_1^n, U \in S_t(H)$ (if $t = r = \infty$, we consider the class S_{∞}^0). Consider a diagram

$$A_n^m B: H \xrightarrow{B} l_1^n \xrightarrow{A} H \xrightarrow{U} H \xrightarrow{B} l_1^n.$$

By Grothendieck theorem (see A. Pietsch, 22.4.4),

$$\sigma_2(AB) \le c_G ||B|| \, ||A||$$

(here c_G is a Grothendieck constant [A. Pietsch, 22.4.5]). Therefore,

$$\sigma_q(UAB) \leq c_G||B||\,||A||\,\sigma_t(U),$$

where 1/q = 1/2 + 1/t.

Proof continued

Eigenvalues system of A_n^m is (λ^m) and coincides with the one of *UAB*. Consequently,

$$c_G||B|| ||A|| \sigma_t(U) \geq \sigma_q(UAB) \geq (\sum_{\lambda} |\lambda^m|^q)^{1/q} = n^{1/q}.$$

$$\begin{array}{l} 1/2 = 1/2 - 1/r + \left[(1/s_1 - 1/2) + (1/s_2 - 1/2) + \cdots + (1/s_m - 1/2) - 1/2 \right] = -1/r + \sum_{k=1}^m (1/s_k - 1/2). \end{array}$$

Therefore,

$$n^{1/q} = n^{1/2+1/t} = n^{1/t-1/r} \prod_{k=1}^{m} \nu_{s_k}(A_n).$$

Since *BUA* is an arbitrary factorization of *BUA* for A_n^m , one gets the desired inequality with a constant $G = 1/c_G$.

Now, "summing" infinitely many finite rank operators, we obtain the sharpness of our first theorem:

Theorem

Let $m \in \mathbb{N}, s_k \in (0, 1]$ for $k = 1, 2, \dots, m$ and

$$1/r = 1/s_1 + 1/s_2 + \cdots + 1/s_m - (m+1)/2.$$

One can find the operators $T_k \in N_{s_k}(X_k, X_{k+1})$ in Banach spaces so that the product

$$T:=T_mT_{m-1}\cdots T_1$$

can be factored through an operator from $S_r(H)$, but can not be factored through S_t -operator if $t \in (0, r)$.

Thank you for your attention!

э