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Motivation

General set-up:
o let Xp,..., Xk be some random n-dimensional vectors;

@ consider a random polytope

Pk = conv(Xo, . .., Xk);
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Motivation

General set-up:
o let Xp,..., Xk be some random n-dimensional vectors;

@ consider a random polytope

Pk = conv(Xo, . .., Xk);

Questions

Investigate the probabilistic behaviour of the volume vol(Pj «) of the random polytope
Pk as k or/and n tend to infinity, e.g.

@ Does this random variable fulfils a central limit theorem?

@ Does this random variable fulfils a Berry-Esseen bound?

@ etc.
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Central limit theorem and Berry-Esseen bound

Let N be a standard Gaussian random variable.

Definition
We say that a sequence of real-valued random variables (X,)nen satisfying E | Xa|? < oo
for all n € N fulfils a central limit theorem if

7)(" —EX —d> N, n— oo

VVar X, ’ '

Definition

We say that a sequence of real-valued random variables (X,)nen satisfying E |X,|? < oo
for all n € N fulfils Berry-Esseen bound with speed (€n)nen if

X, —EX,
sup|P | —— <t | —P(N<t)| <cep,
ek (NWHXH = > e s e

where ¢ > 0 is a constant not depending on n.
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Example of results

@ Ruben (1977): let Xo, ..., Xk be i.i.d. and distributed uniformly inside in the
n-dimensional unit ball. Then the random variable k! vol(P, k) fulfils central limit
theorem as n — oo.
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Example of results

@ Ruben (1977): let Xo, ..., Xk be i.i.d. and distributed uniformly inside in the
n-dimensional unit ball. Then the random variable k! vol(P, k) fulfils central limit

theorem as n — oo.

@ Vu (2006): let Xo, ..., Xk be i.i.d. and distributed uniformly inside some smooth
convex body K. Then the random variable vol(P, ) fulfils Berry-Esseen bound and,
hence, central limit theorem as k — oo.
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Example of results

@ Ruben (1977): let Xo, ..., Xk be i.i.d. and distributed uniformly inside in the
n-dimensional unit ball. Then the random variable k! vol(P, k) fulfils central limit
theorem as n — oo.

@ Vu (2006): let Xo, ..., Xk be i.i.d. and distributed uniformly inside some smooth
convex body K. Then the random variable vol(P, ) fulfils Berry-Esseen bound and,
hence, central limit theorem as k — oo.

o Grote, Kabluchko, Théle (2019): let Xo,..., Xk, kK < n be i.i.d. and distributed
according to one of the three models (Gaussian distribution, Beta distribution,
uniform on unit sphere). Let k = k(n) < n be some arbitrary sequence of integers.
Then the random variable log(n! vol(Py «)) fulfils Berry-Esseen bound and, hence,
central limit theorem.
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Stationary Poisson point process in R"

Definition
Stationary Poisson point process in R" with intensity v € (0, 00) is a random counting
measure 7 such that:

o for every Borel subset A € R” the distribution of 7(A) is Poisson with parameter
~YA(A), where A(:) is the Lebesgue measure;

o for every m € N and pairwise disjoint Borel subsets A;, ..., A, random variables
n(A1),...,n(Am) are independent.
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Stationary Poisson point process in R"

Definition
Stationary Poisson point process in R” with intensity v € (0, 00) is a random counting

measure 7 such that:
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Poisson-Delaunay tessellation

Let 1 be a stationary Poisson point process in R" with intensity v € (0, 00).
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Poisson Delaunay Tesselation

For a (n+ 1)-tuple (xo, ..., xn) of distinct points of 7 we denote by B(xo, ..., Xa) the
almost surely uniquely determined ball having the points x, ..., x, on its boundary.

Ne
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Poisson Delaunay Tesselation

The points xo, . . ., X, then form a Delaunay simplex conv(xq, . .., xn) whenever
B(xo,...,xn) N ={x0,...,%n}.
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Poisson Delaunay tesselation

The collection 2 of all Delaunay simplices is the Poisson-Delaunay tessellation of R".

Limit theorems for Poisson-Delaun:
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Weighted simplices in Poisson-Delaunay tessellation

o Consider a parameter p € (—2,00);
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Weighted simplices in Poisson-Delaunay tessellation

o Consider a parameter p € (—2,00);

@ Denote by z(c) the midpoint of the circumsphere of a simplex c.
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Weighted simplices in Poisson-Delaunay tessellation

o Consider a parameter p € (—2,00);
@ Denote by z(c) the midpoint of the circumsphere of a simplex c.

@ Denote by Simpl, the set of all simplices ¢ in R" with z(c) = 0.
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Weighted simplices in Poisson-Delaunay tessellation

o Consider a parameter p € (—2,00);
@ Denote by z(c) the midpoint of the circumsphere of a simplex c.
@ Denote by Simpl, the set of all simplices ¢ in R" with z(c) = 0.

Endowing Simpl, with the usual Hausdorff distance, we can define on Simpl, the Borel
o-field B(Simpl,). Then, we define a probability measure P9, as follows

PO(A) = %E S e z(c) € A} vol(c)*T, A€ B(Simpl,).

cED
z(c)€lo,1]”

By Z,,,, we denote a random simplex with distribution ]P’g.
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Weighted simplices in Poisson-Delaunay tessellation

o Consider a parameter p € (—2,00);
@ Denote by z(c) the midpoint of the circumsphere of a simplex c.
@ Denote by Simpl, the set of all simplices ¢ in R" with z(c) = 0.

Endowing Simpl, with the usual Hausdorff distance, we can define on Simpl, the Borel
o-field B(Simpl,). Then, we define a probability measure P9, as follows

PO(A) = %E S e z(c) € A} vol(c)*T, A€ B(Simpl,).

cED
z(c)€lo,1]”

By Z,,,, we denote a random simplex with distribution P%.

Interesting special cases: Z_; is a typical Delaunay simplex; Z; is equal by distribution
to the almost surely uniquely defined delaunay simplex, containing 0.
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Weighted simplices in Poisson-Delaunay tessellation

o Consider a parameter p € (—2,00);
@ Denote by z(c) the midpoint of the circumsphere of a simplex c.

@ Denote by Simpl, the set of all simplices ¢ in R" with z(c) = 0.

Endowing Simpl, with the usual Hausdorff distance, we can define on Simpl, the Borel
o-field B(Simpl,). Then, we define a probability measure P9, as follows

POUA = —E Y 1{c—z(c) € A} vol(c)*!, A B(Simpl,).

’Yu ce€ED
z(c)e[o,1]"
By Z,,,, we denote a random simplex with distribution Pg.

Interesting special cases: Z_; is a typical Delaunay simplex; Z; is equal by distribution
to the almost surely uniquely defined delaunay simplex, containing 0.

Aim
Investigate the probabilistic behaviour of the log-volume Y, ,, := log(vol(Z,,,.)) of the
random simplex Z, ,, as n or/and p tend to infinity.
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Berry-Esseen bound and central limit theorem

We will consider the following cases (regimes):
@ n— oo and p is fixed;
@ n— oo and u = o(n);
@ n— oo and p = an for some fixed a > 0;
°

n— oo and n— u = o(n);

Anna Gusakova (Ruhr University, Bochum) joint work Limit theorems for Poisson-Delaunay tessellation July 5, 2019 12/16



Berry-Esseen bound and central limit theorem

We will consider the following cases (regimes):
@ n— oo and p is fixed;
@ n— oo and u = o(n);
@ n— oo and p = an for some fixed a > 0;
°

n— oo and n— p = o(n);

Theorem

Suppose that n and p are such that we are in one of the regimes described above. Then
a sequence of random variables (Y, . )nen fulfils Berry-Esseen bound with speed

o(n) or p is fixed,

2
h=—— =
(e +3)y/Togn H

1
e,,z;:p,:omorn—,u:o(n).

A sequence of random variables (Yn,.)nen fulfils central limit theorem.
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Asymptotic for mathematical expectation and variance
@ n— oo and p is fixed:
1

5 logn+ O(1).

EVY,, = —g log n 4+ O(n); Var Y, =
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Asymptotic for mathematical expectation and variance

@ n— oo and p is fixed:

1
EY, = —g log n+ O(n); Var Yy, = 5 log n+ O(1).
@ n— oo and p = o(n):
1
EY.u= —g log n + o(nlog n); Var Y, , = 3 log n + o(log n).
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Asymptotic for mathematical expectation and variance

@ n— oo and p is fixed:

EY, = —g log n+ O(n); Var Yy, = % log n+ O(1).

@ n— oo and p = o(n):

1
EY.u= -2 log n + o(nlog n); Var Y, ,, = = log n+ o(log n).

2 2
@ n— oo and p = an for some fixed a > O:
n 1 1 1 1
EYn,=—21 ; Yo, ==1 14 =2 ) - —— il I
” 5 og n+ O(n) Var Y, . 5 og< +a) 20+ a) +O<n>
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Asymptotic for mathematical expectation and variance

@ n— oo and p is fixed:

EY, = —g log n+ O(n); Var Yo, = % log n+ O(1).

@ n— oo and p = o(n):

1
EY.u= -2 log n + o(nlog n); Var Y, ,, = = log n+ o(log n).

2 2
@ n— oo and p = an for some fixed a > O:
n 1 1 1 1
EYn,=—21 ; Yo, ==1 14 =2 ) - —— il I
” 5 og n+ O(n) Var Y, . 5 og( +a> 20+ a) +O<n>

@ n— oo and n—p=o(n):

EY,W:—glogn—l- O(n); Var Yn,uzélogZ—%—l—O(%) .
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Asymptotic for mathematical expectation and variance

@ n— oo and p is fixed:

EY, = —g log n+ O(n); Var Yo, = % log n+ O(1).

@ n— oo and p = o(n):

1
EY.u= -2 log n + o(nlog n); Var Y, ,, = = log n+ o(log n).

2 2
@ n— oo and p = an for some fixed a > O:
n 1 1 1 1
EYn,=—21 ; Yo, ==1 14 =2 ) - —— il I
” 5 og n+ O(n) Var Y, . 5 og( +a> 20+ a) +O(n>

@ n— oo and n—p=o(n):

EY,W:—glogn—l- O(n); Var Yn,uzélogZ—%—l—O(%) .

n is fixed and p — oo:
EY, ——71| + 0 ¥ Var Y, _—71+O —1
me =5 og 1 (1); T Ynpu 2]
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Probabilistic representation for the distribution of the volume of random
simplex Z, ,

Theorem

For any p € (—2,00) we have
€"(1 — &) [ymant vol(Z,,u)1 £ 0 ] &
=1

where £ ~ Beta (m, “;2), & ~ Beta (H&tL 2=H1) )~ Gamma(n+ p+1,1) are

independent random variables, independent of vol(Z,,,.).
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Probabilistic representation for the distribution of the volume of random
simplex Z, ,

Theorem

For any p € (—2,00) we have
€"(1 — &) [ymant vol(Z,,u)1 £ 0 ] &
=1

where £ ~ Beta (m “;2), & ~ Beta (H&tL 2=H1) )~ Gamma(n+ p+1,1) are

independent random variables, independent of vol(Z,,,.).

Given a simplex ¢ € Simpl, denote by R(c) the radius of the circumsphere of c.
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Probabilistic representation for the distribution of the volume of random
simplex Z, ,

Theorem

For any p € (—2,00) we have
€"(1 — &) [ymant vol(Z,,u)1 £ 0 ] &
=1

where £ ~ Beta (m “;2), & ~ Beta (H&tL 2=H1) )~ Gamma(n+ p+1,1) are

independent random variables, independent of vol(Z,,,.).

v

Given a simplex ¢ € Simpl, denote by R(c) the radius of the circumsphere of c.

Lemma
For any p € (—2,00) we have

’Y’fnR(Zn,u)d =
where p ~ Gamma(n + pu + 1,1).
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Probabilistic representation for the distribution of the volume of random
simplex Z, ,

Let Xo,..., Xk, k < n bei.i.d. and distributed uniformly on the unit sphere. Denote by
Sk = conv(Xo, ..., Xk)

and denote by D, x the distance from the origin to the k-dimensional affine subspace
spanned by Xp, ..., Xk.
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Probabilistic representation for the distribution of the volume of random
simplex Z, ,

Let Xo,..., Xk, k < n bei.i.d. and distributed uniformly on the unit sphere. Denote by
Sk = conv(Xo, ..., Xk)

and denote by D, x the distance from the origin to the k-dimensional affine subspace
spanned by Xp, ..., Xk.

Corollary
For any integer p € (—2,00) we have

2
€ v0l(20,f £ (L) vol(Spausaaf’

where p ~ Gamma(n + p + 1, 1) is independent of Spy,12,n and
& ~ Beta (M “;2) is independent of Z, .
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Probabilistic representation for the distribution of the volume of random
simplex Z, ,

Let Xo,..., Xk, k < n bei.i.d. and distributed uniformly on the unit sphere. Denote by
Sk = conv(Xo, ..., Xk)

and denote by D, « the distance from the origin to the k-dimensional affine subspace
spanned by Xo, ..., Xk.

Corollary

For any integer p € (—2,00) we have

2
5 VO](Znu = <%> VOI(SH+H+2,")27

where p ~ Gamma(n + p + 1, 1) is independent of Spy,12,n and
& ~ Beta (M “;2) is independent of Z, .

2
° ( ) ) 2 R(Z».)* (by Lemma above);

Yhn

0 "= D,,+M+2 » (by Grote, Kabluchko, Thile, 2019).
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Thank you for attention!
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