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Motivation

General set-up:

let X0, . . . ,Xk be some random n-dimensional vectors;

consider a random polytope

Pn,k := conv(X0, . . . ,Xk);

Questions

Investigate the probabilistic behaviour of the volume vol(Pn,k) of the random polytope
Pn,k as k or/and n tend to infinity, e.g.

Does this random variable fulfils a central limit theorem?

Does this random variable fulfils a Berry-Esseen bound?

etc.
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Central limit theorem and Berry-Esseen bound

Let N be a standard Gaussian random variable.

Definition

We say that a sequence of real-valued random variables (Xn)n∈N satisfying E |Xn|2 <∞
for all n ∈ N fulfils a central limit theorem if

Xn − EXn√
VarXn

d→ N, n→∞.

Definition

We say that a sequence of real-valued random variables (Xn)n∈N satisfying E |Xn|2 <∞
for all n ∈ N fulfils Berry-Esseen bound with speed (εn)n∈N if

sup
t∈R

∣∣∣∣P (Xn − EXn√
VarXn

≤ t

)
− P (N ≤ t)

∣∣∣∣ ≤ c εn,

where c > 0 is a constant not depending on n.
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Example of results

Ruben (1977): let X0, . . . ,Xk be i.i.d. and distributed uniformly inside in the
n-dimensional unit ball. Then the random variable k! vol(Pn,k) fulfils central limit
theorem as n→∞.

Vu (2006): let X0, . . . ,Xk be i.i.d. and distributed uniformly inside some smooth
convex body K . Then the random variable vol(Pn,k) fulfils Berry-Esseen bound and,
hence, central limit theorem as k →∞.

Grote, Kabluchko, Thäle (2019): let X0, . . . ,Xk , k ≤ n be i.i.d. and distributed
according to one of the three models (Gaussian distribution, Beta distribution,
uniform on unit sphere). Let k = k(n) ≤ n be some arbitrary sequence of integers.
Then the random variable log(n! vol(Pn,k)) fulfils Berry-Esseen bound and, hence,
central limit theorem.
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Stationary Poisson point process in Rn

Definition

Stationary Poisson point process in Rn with intensity γ ∈ (0,∞) is a random counting
measure η such that:

for every Borel subset A ∈ Rn the distribution of η(A) is Poisson with parameter
γλ(A), where λ(·) is the Lebesgue measure;

for every m ∈ N and pairwise disjoint Borel subsets A1, . . . ,Am random variables
η(A1), . . . , η(Am) are independent.

Anna Gusakova (Ruhr University, Bochum) joint work with Chtistoph ThäleLimit theorems for Poisson-Delaunay tessellation July 5, 2019 5 / 16



Stationary Poisson point process in Rn

Definition

Stationary Poisson point process in Rn with intensity γ ∈ (0,∞) is a random counting
measure η such that:

for every Borel subset A ∈ Rn the distribution of η(A) is Poisson with parameter
γλ(A), where λ(·) is the Lebesgue measure;

for every m ∈ N and pairwise disjoint Borel subsets A1, . . . ,Am random variables
η(A1), . . . , η(Am) are independent.
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Poisson-Delaunay tessellation

Let η be a stationary Poisson point process in Rn with intensity γ ∈ (0,∞).
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Poisson Delaunay Tesselation

For a (n + 1)-tuple (x0, . . . , xn) of distinct points of η we denote by B(x0, . . . , xn) the
almost surely uniquely determined ball having the points x0, . . . , xn on its boundary.
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Poisson Delaunay Tesselation

The points x0, . . . , xn then form a Delaunay simplex conv(x0, . . . , xn) whenever
B(x0, . . . , xn) ∩ η = {x0, . . . , xn}.
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Poisson Delaunay tesselation

The collection D of all Delaunay simplices is the Poisson-Delaunay tessellation of Rn.
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Poisson Delaunay tesselation

γ = 0.3 γ = 0.5 γ = 1
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Weighted simplices in Poisson-Delaunay tessellation

Consider a parameter µ ∈ (−2,∞);

Denote by z(c) the midpoint of the circumsphere of a simplex c.

Denote by Simpln the set of all simplices c in Rn with z(c) = 0.

Endowing Simpln with the usual Hausdorff distance, we can define on Simpln the Borel
σ-field B(Simpln). Then, we define a probability measure P 0

µ as follows

P 0
µ(A) =

1

γµ
E

∑
c∈D

z(c)∈[0,1]n

1{c − z(c) ∈ A} vol(c)µ+1, A ∈ B(Simpln).

By Zn,µ we denote a random simplex with distribution P 0
µ.

Interesting special cases: Z−1 is a typical Delaunay simplex; Z0 is equal by distribution
to the almost surely uniquely defined delaunay simplex, containing 0.

Aim

Investigate the probabilistic behaviour of the log-volume Yn,µ := log(vol(Zn,µ)) of the
random simplex Zn,µ as n or/and µ tend to infinity.
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Berry-Esseen bound and central limit theorem

We will consider the following cases (regimes):

n→∞ and µ is fixed;

n→∞ and µ = o(n);

n→∞ and µ = αn for some fixed α > 0;

n→∞ and n − µ = o(n);

Theorem

Suppose that n and µ are such that we are in one of the regimes described above. Then
a sequence of random variables (Yn,µ)n∈N fulfils Berry-Esseen bound with speed

εn =
2

(µ+ 3)
√

log n
: µ = o(n) or µ is fixed,

εn =
1

n
: µ = αn or n − µ = o(n).

A sequence of random variables (Yn,µ)n∈N fulfils central limit theorem.
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Asymptotic for mathematical expectation and variance
n→∞ and µ is fixed:

EYn,µ = −n

2
log n + O(n); VarYn,µ =

1

2
log n + O(1).

n→∞ and µ = o(n):

EYn,µ = −n

2
log n + o(n log n); VarYn,µ =

1

2
log n + o(log n).

n→∞ and µ = αn for some fixed α > 0:

EYn,µ = −n

2
log n + O(n); VarYn,µ =

1

2
log

(
1 +

1

α

)
− 1

2(1 + α)
+ O

(
1

n

)
.

n→∞ and n − µ = o(n):

EYn,µ = −n

2
log n + O(n); VarYn,µ =

1

2
log 2− 1

4
+ O

(
1

n

)
.

n is fixed and µ→∞:

EYn,µ =
1

2
logµ+ O(1); VarYn,µ =

1

µ
+ O

(
1

µ2

)
.
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Anna Gusakova (Ruhr University, Bochum) joint work with Chtistoph ThäleLimit theorems for Poisson-Delaunay tessellation July 5, 2019 13 / 16



Asymptotic for mathematical expectation and variance
n→∞ and µ is fixed:

EYn,µ = −n

2
log n + O(n); VarYn,µ =

1

2
log n + O(1).

n→∞ and µ = o(n):

EYn,µ = −n

2
log n + o(n log n); VarYn,µ =

1

2
log n + o(log n).

n→∞ and µ = αn for some fixed α > 0:

EYn,µ = −n

2
log n + O(n); VarYn,µ =

1

2
log

(
1 +

1

α

)
− 1

2(1 + α)
+ O

(
1

n

)
.

n→∞ and n − µ = o(n):

EYn,µ = −n

2
log n + O(n); VarYn,µ =

1

2
log 2− 1

4
+ O

(
1

n

)
.

n is fixed and µ→∞:

EYn,µ =
1

2
logµ+ O(1); VarYn,µ =

1

µ
+ O

(
1

µ2

)
.
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Probabilistic representation for the distribution of the volume of random
simplex Zn,µ

Theorem

For any µ ∈ (−2,∞) we have

ξn(1− ξ) [γκnn! vol(Zn,µ)]2
d
= ρ2

n∏
i=1

ξi ,

where ξ ∼ Beta
(

n2+n+nµ
2

, µ+2
2

)
, ξi ∼ Beta

(
i+µ+1

2
, n−i+1

2

)
, ρ ∼ Gamma(n + µ+ 1, 1) are

independent random variables, independent of vol(Zn,µ).

Given a simplex c ∈ Simpln denote by R(c) the radius of the circumsphere of c.

Lemma

For any µ ∈ (−2,∞) we have

γκnR(Zn,µ)d
d
= ρ,

where ρ ∼ Gamma(n + µ+ 1, 1).
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Probabilistic representation for the distribution of the volume of random
simplex Zn,µ

Theorem

For any µ ∈ (−2,∞) we have

ξn(1− ξ) [γκnn! vol(Zn,µ)]2
d
= ρ2

n∏
i=1

ξi ,

where ξ ∼ Beta
(

n2+n+nµ
2

, µ+2
2

)
, ξi ∼ Beta

(
i+µ+1

2
, n−i+1

2

)
, ρ ∼ Gamma(n + µ+ 1, 1) are

independent random variables, independent of vol(Zn,µ).
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Probabilistic representation for the distribution of the volume of random
simplex Zn,µ

Let X0, . . . ,Xk , k ≤ n be i.i.d. and distributed uniformly on the unit sphere. Denote by

Sn,k := conv(X0, . . . ,Xk)

and denote by Dn,k the distance from the origin to the k-dimensional affine subspace
spanned by X0, . . . ,Xk .

Corollary

For any integer µ ∈ (−2,∞) we have

ξn vol(Zn,µ)2
d
=

(
ρ

γκn

)2

vol(Sn+µ+2,n)2,

where ρ ∼ Gamma(n + µ+ 1, 1) is independent of Sn+µ+2,n and

ξ ∼ Beta
(

n2+n+nµ
2

, µ+2
2

)
is independent of Zn,µ.

(
ρ
γκn

)2 d
= R(Zn,µ)2d (by Lemma above);

ξn
d
= D2n

n+µ+2,n (by Grote, Kabluchko, Thäle, 2019).
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Thank you for attention!
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